An Object-Oriented Framework

for

Reflective Metalevel Architectures

Brian Foote

University of Illinois at Urbana-Champaign

17 November 1994

Thursday

A Dissertation Proposal

Presentation Overview
An Object-Oriented Framework

for

Reflective Metalevel Architectures

What problems could we solve?

Why build languages out of objects?

What do these terms mean?

What have I done?

What do I want to do?

How do I plan to do it?

Additional Questions at your discretion

Constraint Support

Declare constraints between variables that

are enforced automatically
Constraints change the meaning of

variable access

and

variable assignment

First-class variables can permit

dynamic constraint attachment

Automatic Future Generation

Built into ABCL/1 (not ABCL/R)

Reflective Facilities in Smalltalk-80

Implicit dynamic per-method future generation

Superego send$ and send objects would support this

Every send from a given method creates a future

Accessing a future causes synchronization

Distributed Object Support

Distributed marshalling is an area

where dynamic languages have an advantage

Similar issues arise with with request brokers
and persistence

The importance of client/server database applications

underscores this need

Requires first-class
dispatching and state handling mechanisms

Exception Support

Runtime access to control or continuation objects

allows runtime exception handling

Backtracking

Error Handling

Access to runtime contexts

can support this

Dispatching Mechanisms

No single language subsumes

Smalltalk-80

CLOS

(ABCL/R)

Smalltalk’s venerable doesNotUnderstand:

is proven, but second-class

CLOS uses discriminating functions associated with

each generic function

to make multimethods and method-combination easy

ABCL/R allows blocking and non-blocking sends.

A unified scheme will use all arguments, including selectors,

as well as the context and machine objects
Sharing Mechanisms

Static Inheritance

is the only sharing mechanism
supported by CLOS and Smalltalk

Smalltalk supports single inheritance

CLOS supports multiple inheritance

Forwarding, delegation and composition
must be constructed in an ad-hoc fashion

Inheritance is static/per-class
Many interesting relationships are dynamic/per-instance
Container/Component Aggregate/Element

Dynamic Coalitions

Multiple Views/Subjectivity

Signature or Protocol objects will help
Replace elaborate preprocessors
by building and reusing such mechanisms directly

Why is this interesting?

Existing languages are too rigid to evolve gracefully

Hence,

New requirements require new languages

Just as objects are good for building programs
objects are good for building languages

An object-oriented language with a reflective

metalevel architecture is easy to extend.

Existing metaobjects may be selectively specialized
and dynamically reintroduced into a running system

New features are added by building a set of objects

to support them

Changes can be localized, or pervasize
What do these terms mean?

A programming language with

an object-oriented metalevel architecture

is one in which programs are

constructed out of first-class objects

Metalevel objects, or metaobjects are objects that

define, implement, or otherwise support the

execution of application, or base level programs

A reflective object-oriented language

allows a running program to look at or change

the (meta-)objects out of which it is built

An object-oriented framework is a set of abstract classes

and components that together embody an abstract design
or generic solution for a range of potential application

requirements

What have we done?

Frameworks

Reflective Facilities in Smalltalk-80

Ports for PCL/CLOS and ABCL/R

Id

Ego

Superego

<The Babel Framework>

Reflective Facilities in Smalltalk-80

Strengths

Cataloged ST80 Reflective Facilities

Enumerated missing facilities

More natural dispatching model

Future

Delegation to Components

Views, Dynamic Fields

Protection, Prioritized Forwarding, Protocol Adaptor

Addressed Efficiency

Speculated about new sharing mechanisms

Possible implementations

Clever virtual machine modifications

Flaws

Depends on inefficient doesNotUnderstand: hack
Inadequate descriptions of delegation mechanisms

Tardy follow through

Clever virtual machine modifications

Id and Ego

Id

A simple subset of Self in CLOS (PCL)

Ego

Had a metalevel architecture

Was built in Common Lisp

Superego

Strengths

Simple, based on Self

Scripts, Ensembles, Performers

Scenes, Performances

Policy independent dispatch

Dared to aspire to uniformity

Reflective blocks

It worked

Flaws
Awkward syntax

Too SELF-centered
Incompletely reflective

Incompletely metacircular

Obsessed with uniformity

Lacked symbiosis

Hashed Instances with Indexable parts

Grotesquely Slow

Superego Ensembles

On one hand, we can change the interpreter incrementally

On the other hand, we can make many changes

atomically

What do I Want to do?

Find a set of metaobjects that provide:

Unified Dispatching Mechanisms

Flexible Sharing Mechanisms

Automatic Future Generation

Constraint Support

Distributed Object Support

Exception Support

How do I Plan to do this?

Construct an Object-Oriented Framework

Seed the Framework using Superego

Let the requirements we’ve

discussed drive the evolution of the framework

<-> Prototype <-> Explore <-> Consolidate <->

Babel Framework

Will be built atop or into VisualWorks 2.0

Metalevel Concerns: A Comparision

 Contributions

Cataloged the Reflective Facilities in Smalltalk

Identified missing facilities

Added additional facilities, including class: and dispatch

Demonstrated Futures and Delegation support

Superego explored novel program and activation structures

including Ensembles

More universal dispatching mechanisms

More dynamic, powerful, and customizable sharing

More flexible runtime control architectures

More natural integration of contraints and distributed objects

Nature of and relationships among

languages, frameworks, reflection, and evolution
Demonstration of the power and flexibility

of dynamic, first-class objects
and open object-oriented architectures
Thesis

Just as objects are good for building programs
they are good for building languages
Reflection can be thought of simply as an

aggressively open school of object-oriented architecture

If we had a good object-oriented framework for languages

we wouldn’t need so many new languages

Such a framework should strive to cast
significant linguistic elements as first-class dynamic objects

The evolution of such a framework
be driven by real requirements
The challenge is finding the

right architecture
Ways of Dealing with Regress

Circularity

Smalltalk class/metaclass relationship

Lazy Reification

3-KRS Metaobjects, Smalltalk Contexts

Induction

Base case differs from others

What is SELF?

Classless Prototype-based

Dynamically Typed

Construction via Cloning

Smalltalk Inspired

Pure

Simple

Efficient

Reflection done using mirrors
What Objects is Smalltalk Built Of?

Object

Behavior

ClassDescription

Class

Metaclass

Method

MethodDictionary

CompiledMethod

ByteArray

Context

MethodContext/BlockContext

Message

Process

ProcessScheduler

Semaphore

SharedQueue

Compiler

What Objects is CLOS Built Of?

T

| STANDARD-OBJECT

| | METHOD-COMBINATION
| | | STANDARD-METHOD-COMBINATION

| | | | LONG-METHOD-COMBINATION

| | | | SHORT-METHOD-COMBINATION

| | METAOBJECT

| | | GENERIC-FUNCTION
| | | | STANDARD-GENERIC-FUNCTION

| | | METHOD
| | | | TRACED-METHOD

| | | | STANDARD-METHOD

| | | | | STANDARD-ACCESSOR-METHOD

| | | | | | STANDARD-WRITER-METHOD

| | | | | | STANDARD-READER-METHOD

| | | SLOT-DEFINITION
| | | | STANDARD-SLOT-DEFINITION

| | | | | STANDARD-EFFECTIVE-SLOT-DEFINITION

| | | | | STANDARD-DIRECT-SLOT-DEFINITION

| | | | EFFECTIVE-SLOT-DEFINITION

| | | | | STANDARD-EFFECTIVE-SLOT-DEFINITION

| | | | DIRECT-SLOT-DEFINITION

| | | | | STANDARD-DIRECT-SLOT-DEFINITION

| | | SPECIALIZER

| | | | EQL-SPECIALIZER

| | | | CLASS
| | | | | PCL-CLASS

| | | | | | BUILT-IN-CLASS

| | | | | | FORWARD-REFERENCED-CLASS

| | | | | | STD-CLASS

| | | | | | | FUNCALLABLE-STANDARD-CLASS

| | | | | | | STANDARD-CLASS

May Day PCL Hierarchy

What Does Superego Code look like?

Integer

0, 1, ,2, -99, etc.

Selector

dog, cat, +

Symbol

:dog, :cat

Boolean

(true, false)

(collection$ 1 2 3 4 5)

(send$ + 2 2)
;Send + 2 to 2...
(sequence$

(send$ + 2 2)

(send$ * 4 4)

99)
;Returns 99
((+ 2 2)(* 4 4) 99)
;Short form
(send$ a)

;Send to current scene
(a)

;Short form
;;; Send <- to set slot a in object x to 4...
(<- (x) a (+ 2 2))

More Superego Code

(while$

;While a<b, increment b...

(> (a) (b))

(<~ b (+ (b) 1))) ;<~ is assign in current scene
(method$
;Create a method to double n...

(collection$ n)

(collection$)

(* 2 (n)))

(<-

;Enter double in integer proto’s double slot

(integer)

double

(method$ (n) () (* 2 (n))))

(double 3)

(block$ (n) () (print (n)))

Superego Primitives

(<-

;End plus-primitive in integer’s + slot

(integer)

+

(primitive$ (self addend) ()

#'plus-primitive)

;;;

;;; plus-primitive --

;;;

Add two Superego-integers...

;;;

(defun plus-primitive (chi self addend)

 (provide-superego-integer

(+

(value self)

(value addend))))

What Objects is Superego Built Of?

Kernel Objects

instance*

method, primitive

block,send

scene, performance

environment

Atoms

Integer, Symbol

Selector, Boolean

Scripts

Send, Sequence, Collection, While

Method, Primitive

Block, Return

Reflect

What about efficiency?

Don’t ask was the answer with Superego

RFS80 discussed dispatch caching

Self customization and inlining

Intelligent objects can retain compilation assumptions

Dynamic optimization

No play-No Pay is desirable

Architectural Roles

Structural

Store

Instance

State

Templates

Sharing

Scripts

Computational

Semantics

Dispatching

Variables

Primitives

Closures

Context

Control

Namespace

Animus

Issues

Commitment

Mutability

Extensibility

Uniformity

Regress

Openness

Efficiency

Symbiosis

Concurrency

Pervasiveness

Insularity

Selectivity

Incrementality

Separation/Decoupling/Factoring/Layering

Transience

Metamorphosis

Thank You Very Much

for your time and interest
PAGE
* 24 *

