
Chapter

July 1996 GemStone Systems, Inc. 1-1

1 Introduction to
GemStone

This chapter introduces you to the GemStone system. GemStone provides a distributed,
server-based, multiuser, transactional Smalltalk runtime system, Smalltalk application
partitioning technology, access to relational data, and production-quality scalability and
availability. The GemStone object server allows you to bring together object-based
applications and existing enterprise and business information in a three-tier, distributed
client/server environment.

Overview of the GemStone System GemStone Programming Guide

1-2 GemStone Systems, Inc. July 1996

1.1 Overview of the GemStone System
GemStone provides a wide range of services to help you build objects-based information
systems. GemStone:

 • is a multi-user object server

 • is a programmable server object system

 • manages a large-scale repository of objects

 • supports partitioning of applications between client and server

 • supports queries and indexes for large-scale object processing

 • supports transactions and concurrency control in the object repository

 • supports connections to outside data sources

 • provides object security and account management

 • provides services to manage the object repository.

Each of these features is described in greater detail in the following sections.

1.2 Multi-User Object Server
GemStone can support over 1,000 concurrent users, object repositories of up to 100
gigabytes, and sustained object transaction rates of over 100 transactions per second.
Server processes manage the system, while user sessions support individual user activities.
Repository and server processes can be distributed among multiple machines, and shared
memory and SMP can be leveraged.

Multiple user sessions can be active at the same time, and each user may have multiple
sessions open. A flexible naming scheme allows separate or shared namespaces for
individual users. Coherent groups of objects can be distributed through replication.
Changes users make to objects are committed in transactions, with concurrency controls
and locks ensuring that multi-user changes to objects are coordinated. Security is provided
at several levels, from login authorization to object access privileges.

1.3 Programmable Server Object System
GemStone provides data definition, data manipulation, and query facilities in a single,
computationally complete language — GemStone Smalltalk. The GemStone Smalltalk
language offers built-in data types (classes), operators, and control structures comparable
in scope and power to those provided by languages such as C, C++, or Pascal, in addition

Introduction to GemStone Partitioning of Applications Between Client and Server

July 1996 GemStone Systems, Inc. 1-3

to multi-user concurrency and repository management services. All system-level facilities,
such as transaction control, user authorization, and so on, are accessible from GemStone
Smalltalk.

This manual discusses the use of GemStone Smalltalk for system and application
development, particularly those aspects of GemStone Smalltalk that are unique to running
in a multi-user, secure, transactional system. See theGemStone System Administration
Guide for more information about system administration functions.

1.4 Partitioning of Applications Between Client and
Server

GemStone applications can access objects and run their methods from a number of
languages, including Smalltalk, C, C++, or any language that makes C calls (such as
COBOL or Fortran). Objects created from any of these languages are interoperable with
objects created from the other languages, and can run their methods within GemStone.

To provide this functionality, GemStone provides interface libraries of Smalltalk classes,
C++ classes and functions, and C functions. These language interfaces, known collectively
as GemBuilder, allow you to move objects between an application program and the
GemStone repository, and to connect client objects to GemStone objects. GemBuilder also
provides remote messaging capabilities, client replicates, and synchronization of changes.

GemBuilder for Smalltalk is a set of classes installed in a client Smalltalk image that
provides access to objects in the GemStone repository. The client Smalltalk application
can use these classes to gain access to all of GemStone’s production capabilities.
GemBuilder for Smalltalk also supportstransparent GemStone access from a Smalltalk
application — client Smalltalk and GemStone objects are related to each other, and
GemBuilder maintains the relationship and propagates changes between these client
Smalltalk and GemStone objects, not the application.

GemBuilder for C is a library of C functions that provide a bridge between an application’s
C code and the GemStone object repository. You can work with GemStone objects by
importing them into the C program using structural access or by sending messages to
objects in the repository through GemStone Smalltalk. You can also call C routines from
within GemStone Smalltalk methods.

GemBuilder for C++ provides both persistent storage for C++ applications and access to
persistent GemStone objects from applications written in C++. Because C++ objects stored
in GemStone take on identity and exist independently of the program that created them,
they can be used by other applications, including those written in other programming
languages.

Large-Scale Repository GemStone Programming Guide

1-4 GemStone Systems, Inc. July 1996

Your GemStone system includes one or more of these interfaces. Separate manuals
available for each of the GemBuilder products provide full documentation of the
functionality and use of these products.

1.5 Large-Scale Repository
Object programming languages such as Smalltalk have proven to be highly efficient
development tools. Smalltalk exploits inheritance and code reuse and provides the
flexibility of modeling real world objects with self-contained software modules. Most
Smalltalk implementations, however, are memory based. Objects are either not saved
between executions, or they are saved in a primitive manner that does not lend itself to
concurrent usage or sharing. Smalltalk programmers save their work in an "image," which
is a file that stores their development environment on a workstation. The image holds the
application's classes and instances, the compiled code for all executable methods, and the
values of the variables defined in the product.

GemStone is based on the Smalltalk object model—like a single-user Smalltalk image, it
consists of classes, methods, instances and meta objects. Persistence is established by
attaching new objects to other persistent objects. All objects are derived from a named root
(AllUsers). Objects that have been attached and committed to the repository are visible to
all other users. However, unlike client Smalltalks with memory-based images, the
GemStone repository is accessed through disk caches, so it is not limited in size by
available memory. A GemStone repository can contain over a billion objects. Repositories
can be distributed among many different machines and files. Because each object in a
repository has a unique object identifier (known as an OOP—object-oriented pointer),
GemStone applications can access any object without having to know its physical location.

1.6 Queries and Indexes
GemStone lets you model information in structures as simple as the data permits, and no
more complex than the data demands. You can represent data objects in tables, hierarchies,
networks, queues, or any other structure that is appropriate. Each of these objects may also
be indexable. Complex data structures can be built by nesting objects of various formats.

The power and flexibility of GemStone Smalltalk allow you to perform regular and
associative access queries against very large collections. Because you can represent
information in forms that mirror the information’s natural structure, the translation of user
requests into executable queries can be much easier in GemStone. You do not need to
translate users’ keystrokes or menu selections into relational algebra formulas, calculus
expressions and procedural statements before the query can be executed. See Chapter 5,
"Querying.".

Introduction to GemStone Transactions and Concurrency Control

July 1996 GemStone Systems, Inc. 1-5

1.7 Transactions and Concurrency Control
Each GemStone session defines and maintains a consistent working environment for its
application program, presenting the user with a consistent view of the object repository.
The user works in an environment in which only his or her changes to objects are visible.
These changes are private to the user until the transaction is committed. The effects of
updates to the object repository by other users are minimized or invisible during the
transaction. GemStone then checks for consistency with other users’ changes before
committing the transaction.

GemStone provides two approaches to managing concurrent transactions:

 • Using theoptimistic approach, you read and write objects as if you were the only user,
letting GemStone manage conflicts with other sessions only when you try to commit a
transaction. This approach is easy to implement in an application, but you run the risk
of discarding the work you’ve done if GemStone detects conflicts and does not permit
you to commit your transaction. When GemStone looks for conflicts only at your
commit time, your chances of being in conflict with other users increase both with the
time between your commits and the number of objects being read and written.

 • Using thepessimistic approach, you prevent conflicts as early as possible by explicitly
requesting locks on objects before you modify them. When an object is locked, other
users are unable to lock that object or to commit any changes they have made to the
object. When you encounter an object that another user has locked, you can wait, or
abort your transaction immediately, instead of wasting time doing work that can’t be
committed. If there is a lot of competition for shared information in your application,
or your application can’t tolerate even an occasional inability to commit, using locks
may be your best choice.

GemStone is designed to prevent conflicts when two users are modifying the same object
at the same time. However, some concurrent operations that modify an object, but in
consistent ways, should be allowed to proceed. For example, it might not cause any
concern if two users concurrently added objects to the same Bag in a particular application.

For such cases, GemStone provides reduced-conflict (Rc) classes that can be used instead
of the regular classes in those applications that might otherwise experience too many
unnecessary conflicts:

 • RcCounter can be used instead of a simple number for keeping track of amounts when
it isn’t crucial that you know the results right away.

 • RcIdentityBag provides the same functionality as IdentityBag, except that no conflict
occurs if a number of users read objects in the bag or add objects to the bag at the same
time.

Connections to Outside Data Sources GemStone Programming Guide

1-6 GemStone Systems, Inc. July 1996

 • RcQueue provides a first-in, first-out queue in which no conflict occurs when other
users read objects in the queue or add objects to the queue at the same time.

 • RcKeyValueDictionary provides the same functionality as KeyValueDictionary,
except that no conflict occurs when users read values in the dictionary or add keys and
values to the dictionary at the same time.

See Chapter 6, "Transactions and Concurrency Control."

1.8 Connections to Outside Data Sources
While GemStone methods are all written in Smalltalk (except for a few primitives), you
may often want to call out to other logic written in C. GemStone provides a way to attach
external code, called userActions, to a GemStone session. With userActions, you can
access or generate external information and bring it into GemStone as objects, which can
then be committed and made available to other users. GemBuilder for C is used to write
userActions in C and add them to GemStone Smalltalk, according to rules described in the
GemBuilder for C manual. The description of class System in theGemStone Kernel
Reference describes the messages you can send to invoke these userActions.

GemStone uses this mechanism to build its GemConnect product, which provides access
to relational database information from GemStone objects. GemConnect also provides
automatic tracking of object modifications for synchronizing the relational database, and
supports the generation of SQL to update the relational database with changes.
GemConnect is fully encapsulated and maintained in the GemStone object server. Refer to
theGemConnect Programming Guide for more information about GemConnect and its
capabilities.

1.9 Object Security and Account Management
Compared to a single-user Smalltalk system, GemStone requires substantially more
security mechanisms and controls. As a tool for server implementation, multi-user
Smalltalk must handle requests from many users running a variety of applications, each of
which can require different accessibility of objects. Authentication and authorization are
the cornerstones of GemStone Smalltalk security.

A server must reliably identify the people attempting to use a system resource. This
identification process is known as authentication. Authentication requires a valid user ID
and password. Preventing unauthorized users from entering the system by requiring user
names and passwords is generally effective against casual intrusion. GemStone Smalltalk
supports its own authentication protocol, as well as the Kerberos scheme.

Introduction to GemStone Services to Manage the GemStone Repository

July 1996 GemStone Systems, Inc. 1-7

The next type of security, known as authorization, exists within GemStone and controls
individual object access. Authorization enforcement is implemented at the lowest level of
basic object access to prevent users from circumventing the authorization checking. No
object can be accessed from any language without suitable authorization. GemStone
provides a number of classes to define and manage object authorization policies. These
classes are discussed in greater detail in this manual.

Finally, GemStone defines a set ofprivileges for controlling the use of certain system
services. Privileges determine whether the user is allowed to execute certain system
functions usually only performed by the system administrator. Privileges are more
powerful than authorization. A privileged user can override authorization protection by
sending privileged messages to change the authorization scheme.

In GemStone Smalltalk, a user is represented by an instance of class UserProfile. A
UserProfile contains the following information about a user:

 • unique userID,

 • password (encrypted),

 • default authorization information,

 • privileges,

 • group memberships.

Only users who have a UserProfile can log on to the system. For more information on
UserProfile, see theGemStone System Administration Guide.

See Chapter 7, "Object Security and Authorization."

1.10 Services to Manage the GemStone Repository
GemStone objects are often an enterprise resource. They must be shared among all users
and applications to fill their role as repositories of critical business information and logic.
Their role goes beyond individual applications, requiring permanence and availability to all
parts of the system. GemStone is capable of managing large numbers of objects shared by
hundreds of users, running methods that access millions of objects, and handling queries
over large collections of objects by using indexes and query optimization. It can support
large-scale deployments on multiple machines in a variety of network configurations. All
of this functionality requires a wide array of services for management of the repository, the
system processes, and user sessions.

Services to Manage the GemStone Repository GemStone Programming Guide

1-8 GemStone Systems, Inc. July 1996

GemStone provides services that can:

 • support flexible backup and restore procedures,

 • recover from hardware and network failures,

 • perform object recovery when needed,

 • tune the object server to provide high transaction rates by using shared memory
and asynchronous I/O processes,

 • accommodate the addition of new machines and processors without recoding the
system,

 • make controlled changes to the definition of the business and application objects
in the system.

This manual provides information about programmatical techniques that can be used to
optimize your GemStone environment for system administration. Actual system
administration and management processes are discussed in theGemStone System
Administration Guide.

Chapter

July 1996 GemStone Systems, Inc. 2-1

2 Programming
With GemStone

This chapter provides an overview of the programming environment provided by
GemStone.

The GemStone Programming Model
describes how programming in GemStone differs from programming in a
client Smalltalk development environment.

GemStone Smalltalk
explains the unique aspects of GemStone Smalltalk that affect programming
and application design.

GemStone Architecture
describes GemStone’s development and runtime process architecture, and
how that architecture influences your programming design and techniques.

The GemStone Programming Model GemStone Programming Guide

2-2 GemStone Systems, Inc. July 1996

2.1 The GemStone Programming Model
GemStone is an object server, so programming with GemStone is somewhat
different than programming with a client Smalltalk development environment.
However, there is a great deal that GemStone has in common with client Smalltalk
development, so many of the programming concepts will be quite familiar to you
if you have previously worked with a client Smalltalk system.

Server-based classes, methods, and objects
One key characteristic of GemStone programming is that GemStone Smalltalk
runs in a server, not in a client. Running in a server means that GemStone classes
and methods are stored in a server-based repository (image), and activated by
processes which run on a server, often without a keyboard or screen present. The
developer writing GemStone classes and methods is usually working at a client
machine, communicating with the GemStone environment remotely.

Running in a server also means that the services provided by GemStone’s own
class library are oriented toward server activity. GemStone’s class library provides
functionality for:

 • data handling

 • collection processing and query processing

 • system management

 • user account management

The GemStone class library does not provide functionality for screen presentation
and user interface issues. User interface functionality is provided in client
Smalltalk products.

Because GemStone is an object server, it provides a large number of mechanisms
for communicating with GemStone objects from remote machines for
development purposes, application support, and system management. Remote
machines often host a programming environment that communicates with
GemStone through a GemStone interface. A significant part of programming with
GemStone is designing the interactions between various client and server-based
runtime systems and the GemStone classes, methods, and objects created by the
developer.

Programming With GemStone The GemStone Programming Model

July 1996 GemStone Systems, Inc. 2-3

Client and Server Interfaces
GemStone provides a number of client and server interfaces to make it easy for
developers to write applications which make use of GemStone objects, and to write
GemStone classes and methods which make use of external data. While an entire
application can be built in GemStone Smalltalk and run in the GemStone server,
most applications include either a user interface or interaction of some kind with
other systems. In addition, management of a running GemStone system involves
using GemStone tools and interfaces to program control activities tailored to
specific system environments.

GemStone’s interfaces are numerous. They include:

GemBuilder for Smalltalk
GemBuilder for Smalltalk consists of two parts: a set of GemStone
programming tools, and a programming interface between the client
application code and GemStone. GemBuilder for Smalltalk contains a set of
classes installed in a client Smalltalk image that provides access to objects in a
GemStone repository. Many of the client Smalltalk kernel classes are mapped
to equivalent GemStone classes, and additional class mappings can be created
by the application developer.

GemBuilder for C++
GemBuilder for C++ provides both shared storage for C++ applications and
access to shared objects stored in GemStone by applications written in other
languages. GemBuilder for C++ is implemented as a preprocessor based on
standard C++ syntax. A class library is provided, giving the programmer a
standard set of definitions for commonly used data structures such as sets,
arrays, and bags, as well as functions for managing and manipulating
GemStone objects with C++ code.

GemBuilder for C
GemBuilder for C is a library of C functions that provide a bridge between an
application’s C code and the GemStone repository. This interface allows
programmers to work with GemStone objects by importing them into the C
program using structural access, or by sending messages to objects in the
repository through GemStone Smalltalk. C routines can also be called from
within GemStone Smalltalk methods.

Topaz
Topaz is a GemStone programming environment that provides keyboard
command access to the GemStone object server. Topaz is especially useful for
repository administration tasks and batch mode procedures. Because it is
command driven and generates ASCII output on standard output channels,

The GemStone Programming Model GemStone Programming Guide

2-4 GemStone Systems, Inc. July 1996

Topaz offers access to GemStone without requiring a window manager or
additional language interfaces. You can use Topaz in conjunction with other
GemStone development tools such as GemBuilder for C to build
comprehensive applications.

UserActions (C callouts from GemStone Smalltalk)
UserActions are similar to user-defined primitives in other Smalltalks.
GemBuilder for C can be used to write these user actions, and add them to and
execute them from GemStone Smalltalk.

More information about the GemBuilder and Topaz products are found in their
respective reference manuals. UserActions are discussed in the GemBuilder for C
manual.

Gemstone Sessions
All of the GemStone interfaces provide access to GemStone objects and
mechanisms for running GemStone methods in the server. This access is
accomplished by establishing a session with the GemStone object server. The
process for establishing a session is tailored to the language or user of each
interface. In all cases, however, this process requires identification of the
GemStone object server to be used, the user ID for the login, and other information
required for authenticating the login request.

Once a session is established, all GemStone activity is carried out in the context of
that session, be it low-level object access and creation, or invocation of GemStone
Smalltalk methods.

Sessions allow multiple users to share objects. In fact, different sessions can access
the same repository in different ways, depending on the needs of the applications
or users they are supporting. For example, an employee may only be able to access
employee names, telephone extensions and department names through the
human resources application, while a manager may be able to access and change
salary information as well.

Sessions also control transactions, which are the only way changes to the
repository can be committed. However, a passive session can run outside a
transaction for better performance and lower overhead. For example, a stock
portfolio application that reports the current value of a collection of stocks may run
in a session outside a transaction until notified that a price has changed in a stock
object. The application would then start a transaction, commit the change, and
recalculate the portfolio value. It would then return to a passive session state until
the next change notification.

Programming With GemStone GemStone Smalltalk

July 1996 GemStone Systems, Inc. 2-5

On both UNIX and NT platforms, a session can be integrated with the application
into a single process, called a linked application. Each session can have only one
linked application.

Alternatively, the session can run as a separate process and respond to remote
procedure calls (RPCs) from the application. These sessions are called RPC
applications. PC-based platforms (VisualAge and Visual Smalltalk Enterprise)
must run in RPC mode. Sessions may have multiple RPC applications running
simultaneously with each other and a linked application.

2.2 GemStone Smalltalk
All Smalltalk languages share common characteristics. GemStone Smalltalk, while
providing basic Smalltalk functionality, also provides features that are unique to
multi-user, server-based programming.

GemStone Smalltalk provides data definition, data manipulation, and query
facilities in a single, computationally complete language. It is tailored to operate
in a multi-user environment, providing a model of transactions and concurrency
control, and a class library designed for multi-user access to objects. GemStone
Smalltalk operates on server-class machines to take advantage of shared memory,
asynchronous I/O, and disk partitions. It was built with transaction throughput
and client communication as chief considerations.

At the same time, its common characteristics with other Smalltalks allow you to
implement shared business objects with the same language you use to build client
applications. Since the same code can execute either on the client or on the object
server, you can easily move behavior from the client to the server for application
partitioning.

GemStone Smalltalk extends standard Smalltalk in several ways.

Language Extensions

Constraining Variables

GemStone Smalltalk allows you to constrain instance variables to hold only certain
kinds of objects. The keyword constraints: in a class creation message takes an
argument that specifies the classes the instance variable will accept. Specifying a
constraint is optional.

Constraining a variable ensures that the variable will contain either nil or instances
of the specified class or that class’s subclasses. When you constrain an instance

GemStone Smalltalk GemStone Programming Guide

2-6 GemStone Systems, Inc. July 1996

variable to be a kind of Array, you guarantee that it will always be an Array, an
instance of some subclass of Array (such as InvariantArray), or nil.

Constraining Named Instance Variables

You specify constraints on a class’s named instance variables when you create the
class. The keyword constraints: , a part of the standard subclass creation
message, takes an Array of constraints as its argument.

The following example creates a new subclass of Object with three instance
variables constrained to be Strings and one to be an Integer.

Example 2.1

Object subclass: 'Employee'
 instVarNames: #('name' 'job' 'age' 'address')
 inDictionary: UserGlobals
 constraints: #[
 #[#name, String], #[#job, String],
 #[#age, Integer], #[#address, String]].

In this example, constraints: takes as its argument an Array of two-element
Arrays. The first element is a symbol naming one of the class’s instance variables
and the second element is a class to which the variable is constrained.

Array constructors (enclosed in brackets) are used here instead of literal arrays
(enclosed in parentheses) to build the constraint.

The details of constraint specification differ for named and unordered instance
variables. Chapter 4, "Collection and Stream Classes,” explains how to constrain
unordered instance variables.

Inherited Constraints

Each class inherits instance variables and any constraints on them from its
superclass. You can make inherited constraints more restrictive in the subclass by
naming the inherited instance variables in the argument to constraints: in the
creation statement.

Programming With GemStone GemStone Smalltalk

July 1996 GemStone Systems, Inc. 2-7

The following example creates a subclass of Employee in which the constraint on
the instance variable age is SmallInteger instead of Integer:

Example 2.2

Employee subclass: 'YoungEmployee'
 instVarNames: #()
 classVars: #()
 poolDictionaries: #()
 inDictionary: UserGlobals
 constraints: #[#[#age, SmallInteger]]
 isInvariant: false.

YoungEmployee’s other inherited instance variables, which are not listed in the
constraints: argument, retain their original constraints.

You can only restrict an inherited instance variable to a subclass of the inherited
constraint. So, in the previous example, you could not have constrained age to be
of class Number or Array, since neither Array nor Number is a subclass of Integer.

Circular Constraints

A circular constraint occurs when an instance variable of a class is constrained to
hold instances of its own class, or when each of two classes is constrained to hold
instances of the other’s class.

Query Syntax

Enterprise applications need to support efficient searching over collections to find
all objects that match some specified criteria. Each collection class in GemStone
Smalltalk provides methods for iterating over its contents and allowing any kind
of complex operation to be performed on each element. All collection classes
understand the messages select: , reject: , and detect: .

In GemStone Smalltalk, an index provides a way to traverse backwards along a
path of instance variables for every object in the collection for which the index was
created. This traversal process is usually much faster than iterating through an
entire collection to find the objects that match the selection criteria.

A special query syntax lets you use GemStone Smalltalk’s extended mechanism for
querying collections with indexes. In addition, the special syntax for select blocks
lets you specify a path of named instance variables to traverse during a query.

GemStone Smalltalk GemStone Programming Guide

2-8 GemStone Systems, Inc. July 1996

Auto-Growing Collections

GemStone Smalltalk allows you to create collections of variable length, allowing
you to add and delete elements without manually readjusting the collection size.
GemStone handles the memory management necessary for this process.

Class Library Differences

No User Interface

GemStone Smalltalk does not provide any classes for screen presentation or user
interface development. These aspects of development are handled in your client
Smalltalk.

Different File Access

GemStone class GsFile provides a way to create and access non-GemStone files.
Many of the methods in GsFile distinguish between files stored on the client
machine and files stored on the server machine. GsFile allows the use of full
pathnames or environment variables to specify location. If environment variables
are used, how the variable is expanded depends on whether the process is running
on the client or the server.

Different C Callouts

GemStone Smalltalk uses a mechanism called user actions to invoke C functions
from within methods. User actions must be written and installed according to
special rules, which are described in the GemBuilder for C manual.

Class Library Extensions
You can subclass all GemStone-supplied classes, and applications will inherit all
their predefined structure and behavior. This manual discusses some of these
classes and methods. Your GemBuilder interface provides an excellent means for
becoming familiar with the GemStone class hierarchy. A complete description of
all GemStone Smalltalk classes is found in the GemStone Kernel Reference.

More Collection Classes

GemStone Smalltalk provides a number of specialized Collection classes, such as
the KeyValueDictionary classes, that have been optimized to improve application
speed and support scaling capability. A full discussion of these classes is found in
the Collections chapter of this manual.

Programming With GemStone GemStone Smalltalk

July 1996 GemStone Systems, Inc. 2-9

RC Classes

Reduced-conflict (RC) classes minimize spurious conflicts that can occur in a
multiuser environment. RC classes are used in place of their regular counterpart
classes in those applications that you determine may otherwise encounter too
many of these conflicts. RC classes do not circumvent normal conflict
mechanisms, but they have been specially designed to eliminate or minimize
commit errors on operations that analysis has determined are not true conflicts.

User Account and Security Classes

UserProfile is used by GemStone in conjunction with information GemStone
gathers during each session to provide a range of security and authorization
services, including login authorization, memory and file protection, secondary
storage management, location transparency, logical name translation, and
coordination of resource use by concurrent users. This manual contains a
discussion of how UserProfile is used by GemStone during a session. The System
Administration Guide contains procedures for creating and maintaining
UserProfiles.

Segment is used to control ownership of and access to objects. With Segment, you
can abstractly group objects, specify who owns the objects, specify who can read
them, and specify who can write them. Each repository is composed of segments.
This manual provides a full discussion of segments in the Security chapter.

Both classes are described in detail in the GemStone Kernel Reference.

System Management Classes

GemStone Smalltalk provides a number of classes that offer system management
functionality. Most of the actions that directly call on the data management kernel
can be invoked by sending messages to System, an abstract class that has no
instances. All disk space used by GemStone to store data is represented as a single
instance of class Repository, and all data management functions, such as extent
creation and access, backup and restoration, and garbage collection are performed
against this class. The class ProfMonitor allows you to monitor and capture
statistics about your application performance that can then be used to optimize
and tune your Smalltalk code for maximum performance. The class ClusterBucket
can be used to cluster objects across transactions, meaning their receivers will be
placed, as far as possible, in contiguous locations on the same disk page or in
contiguous locations on several pages.

Implementation of these classes is discussed in this manual. All of these classes are
described in detail in the GemStone Kernel Reference.

Process Architecture GemStone Programming Guide

2-10 GemStone Systems, Inc. July 1996

File In and File Out

Smalltalk allows you to file out source code for classes and methods, save the
resulting text file, and file it in to another repository. The GemStone class
PassiveObject also allows you to file out objects and file them in to another
repository. This functionality is similar to that provided by VisualWorks’ Binary
Object Streaming Service (BOSS) and Visual Smalltalk Enterprise’s Object Filer.
More information about the process is provided in this manual. A description of
the PassiveObject class is provided in the GemStone Kernel Reference.

Inter-Application Communications
GemStone Smalltalk provides two ways to send information from one currently
logged-in session to another:

GemStone can tell an application when an object has changed by sending the
application a notifier at the time of commit. Notifiers eliminate the need for the
application to repeatedly query the Gem for this information. Notification is
optional, and can be enabled for only those objects in which you are interested.

Applications can send messages directly to one another by using Gem-to-Gem
signals. Sending a signal requires a specific action by the receiving Gem.

2.3 Process Architecture
GemStone provides the technology to build and execute applications that are
designed to be partitioned for execution over a distributed network. GemStone’s
architecture provides both scalability and maintainability. Sections describing the
main aspects of GemStone architecture follow.

Gem Process
GemStone creates a Gem process for each session. The Gem runs GemStone
Smalltalk and processes messages from the client session. It provides the user with
a consistent view of the repository, and it manages the user’s GemStone session,
keeping track of the objects the users has accessed, paging objects in and out of
memory as needed, and performing dynamic garbage collection of temporary
objects. The Gem performs the bulk of commit processing. A user application is
always connected to at least one Gem, and may have connections to many Gem.
Gems can be distributed on multiple, heterogeneous servers, which provides
distribution of processing and SMP support. The Gem also offers users the ability
to link in user primitives for customization.

Programming With GemStone Process Architecture

July 1996 GemStone Systems, Inc. 2-11

Stone Process
The Stone process is the resource coordinator. One Stone process manages one
repository. It synchronizes activities and ensures consistency as it processes
requests to commit transactions. Individual Gem processes communicate with the
Stone through interprocess channels. The Stone:

 • coordinates commit processing,

 • coordinates lock acquisition,

 • allocates object IDs,

 • allocates object Pages,

 • writes transaction logs.

Shared Object Cache
The shared object cache provides efficient retrieval of objects from disk, and the
ability for multiple Gems to access the same object. When modified, an object is
written to a new location in the cache. Memory is managed and allocated on a
page basis. The cache also contains buffers for communications between Gems
and the Stone. The shared cache monitor initializes the shared memory cache,
manages cache allocation to the sessions, and dynamically adjusts this allocation
to fit the workload. It also makes sure that frequently accessed objects remain in
memory, and that large objects queries do not flush data from the cache. These
controls allow complex applications to be run on the same repository by multiple
users with no degradation in performance.

Scavenger Process
The scavenger process dynamically reclaims space used by unreferenced objects.
This process is sometimes called dynamic garbage collection, and in GemStone,
may be referred to as the GC Gem. The scavenger process also dynamically
defragments the repository while maintaining requested object clustering. It has a
multi-level collection architecture, consisting of:

 • Dynamic cleanup of temporary objects,

 • Epoch cleanup of shared objects, and

 • Full sweep of the repository.

Process Architecture GemStone Programming Guide

2-12 GemStone Systems, Inc. July 1996

Extents and Repositories
Extents are composed of multiple disk files or raw partitions. A repository, which
is the logical storage unit in which GemStone stores objects, is actually an ordered
file of one or more extents. Extents can be distributed to heterogeneous servers.
Objects can be clustered on an extent for efficient storage and access.

Extents can be mirrored for improved fault tolerance. By mirroring extents, you
store each object in two places to reduce the chance of data loss. GemStone
automatically stores each newly committed object in both locations. Any damage
to one extent leaves all the objects intact in the mirrored extent, allowing GemStone
to automatically switch over to the active mirrored extent on an extent fault. Using
mirrored extents can also improve distributed query performance. GemStone
allows the creation of one mirrored extent for each extent in the repository.

Transaction Log
GemStone’s transaction log provides complete point-in-time roll-forward
recovery. The tranlog contents are composed by the Gem, and the Stone writes the
tranlog using asynchronous I/O. Commit performance is improved through I/O
reduction, since only log records need to be written, not many object pages. In
addition, the object pages stay in memory to be reused. Log files may also be
mirrored for fault tolerance. GemStone supports both file based and raw device
configuration of tranlogs.

NetLDI
In a distributed system, each machine that runs a Stone monitor, Gem session
process, or linked application, or on which an extent resides, must have its own
network server process, known as a NetLDI (Network Long Distance
Information). A NetLDI reports the location of GemStone services on its machine
to remote processes that must connect to those services. The NetLDI also spawns
other GemStone processes on request.

Login Dynamics
When you log in to GemStone, GemStone establishes for you a logical entity called
a GsSession, which is comparable to an operating system session, job, or process.
GemStone creates a separate instance of GsSession each time a user logs in, and it
monitors, serves, and protects each session independently.

You can log into GemStone through any of its interfaces. Whichever interface you
use, GemStone requires the presentation of a user ID (a name or some other

Programming With GemStone Process Architecture

July 1996 GemStone Systems, Inc. 2-13

identifying string) and a password. If the user ID and password pair match the
user ID and password pair of someone authorized to use the system, GemStone
permits interaction to proceed; if not, GemStone severs the logical connection.

The system administrator (or a user with equivalent privileges) assigns each
GemStone user an instance of class UserProfile, which contains, among other
information, the user ID and password. GemStone uses the UserProfile to establish
logical names and default locations, resolve references to system objects, and
perform similar tasks. The system administrator gives each new UserProfile
appropriate customized rights, and stores it with a set of all other UserProfiles in
the set AllUsers.

You can obtain your own UserProfile by sending a message to System. Class
UserProfile defines protocol for obtaining information about default names,
privileges, and so forth. More information about UserProfile is provided in this
manual. Class UserProfile is described in the GemStone Kernel Reference, while
procedures for creating and maintaining UserProfile are found in the GemStone
System Administration Guide.

The GemStone system administrator can also configure a GemStone system to
monitor failures to log in, to note repeated login attempts, and to disable a user’s
account after a number of failed attempts to log into the system through that
account. The GemStone System Administration Guide describes these procedures in
greater detail.

Process Architecture GemStone Programming Guide

2-14 GemStone Systems, Inc. July 1996

