
Design and Use of Industrial
Software Architectures

Jan Bosch
University of Karlskrona/Ronneby
Jan.Bosch@ipd.hk-r.se
www.ipd.hk-r.se/~bosch

Excerpt from a working/draft version. Chapters 1 through 6 are
included. I welcome comments and questions concerning the
content of the chapters.

Copyright 1999 - Jan Bosch

All rights reserved. No part of this work may be reproduced or used in any
other way without the explicit permission of the author.

Design and Use of Industrial Software Architectures

CHAPTER 1 Design of Software Architectures 9

Requirements 10
Terminology 10
Quality Attributes and Profiles 11

Architecture Design Method Overview 12
Method 14

Functionality-based Architecture Design 16
Assessing Quality Attributes 17

Scenario-based evaluation 18
Simulation 19
Mathematical modeling 19
Experience-based reasoning 20

Architecture Transformation 20
Impose architectural style 21
Impose architectural pattern 22
Apply design pattern 22
Convert quality requirements to functionality 23
Distribute requirements 23

Concluding Remarks 24

CHAPTER 2 Software Architecture Design Case
Studies 25

Fire-Alarm Systems 25
Domain Description 26
Quality Requirements 27

Measurement Systems 29
Domain Description 29
Quality Requirements 33

Haemo Dialysis Systems 33
Domain Description 34
Quality Requirements 36

Concluding Remarks 38

CHAPTER 3 Functionality-based Architectural
Design 39

Notation 40
Defining the System Context 41
Identifying the Archetypes 44
Describing System Instantiations 46
Illustrating Functionality-Based Design 47

Fire-alarm systems 48
Measurement systems 52
Dialysis systems 52

Summary 53

CHAPTER 4 Assessing Software
Architectures 55

Introduction 55
Profiles 58

Complete and Selected Profiles 59
Defining Profiles 60
Quality Attribute Profiles 61
Example 65
Summary 66

Scenario-based Assessment 67
Simulation-based Assessment 71
Mathematical Model-based Assessment 76
The Role of Experience 78
Performing Architecture Assessment 78
Concluding Remarks 80
Further Reading 81

CHAPTER 5 Transformation of Software
Architectures 83

Introduction 83
The Architecture Transformation Process 87
Impose Architectural Style 89

Styles and Quality Attributes 90
Example 102

Impose Architectural Pattern 103
Architectural patterns and quality attributes 104
Example 117

Apply design pattern 118
Design Patterns and Quality Attributes 119
Example 122

Convert quality requirements to functionality 123
Converted quality requirements and quality
attributes 124
Example 126

Distribute requirements 126
Conclusion 128
Further Reading 129

CHAPTER 6 References 131

Copyright April 1999 by Jan Bosch (Draft version) 9/24

CHAPTER 1 Design of Software

Architectures1

1.<This chapter gives an introduction to the notion of architectural design and an overview of the method pre-
sented in this part of the book>

In our experience, the most complex activity during application development is the
transformation of a requirement specification into an architecture for the system.
The later phases also are challenging activities, but, for instance, detailed design
and implementation, are better understood and more methodological and techno-
logical support is available to the software engineer. The process of architectural
design is considerably less formalized and little methodological support is avail-
able. In industry, the design of a software architecture is often more like art or intu-
itive craftsmanship than objective engineering.

Although software systems have had architectures since the early days of comput-
ers, it has only during recent years recognized as more important to explicitly spec-
ify and analyze software architectures. One important factor is this is the fact that
especially quality requirements are heavily influenced by the architecture of the
system. Architectural design is a typical multiple objective design activity where
the software engineer has to balance the various requirements during architectural
design.

In this part of the book, we present an architecture design method that provides sup-
port for an objective, rational design process balancing and optimizing, especially,
the quality requirements. The method iteratively assesses the degree up to which
the architecture supports each quality requirement and improves the architecture
using transformations until all quality requirements are fulfilled. The presented

Design of Software Architectures

10/24 Copyright April 1999 by Jan Bosch (Draft version)

method complements traditional design methods in that it focuses on quality
attributes whereas traditionally the functionality is prioritized.

The method consists of three phases, i.e. functionality-based architectural design,
architecture evaluation and architecture transformation. In this chapter, we give a
brief overview over the method, whereas chapters 3, 4 and 5 describe the method
phases in detail. The remainder of this chapter is organized as follows. In the next
section, we describe a common terminology for requirements; in particular quality
requirements, and describe the notion of profiles and their use in the specification
of quality requirements. Section 2 provides a rationale for software architecture
design and handling quality requirements explicitly and presents a brief overview
over the three main phases in the method. The subsequent sections describe these
phases and the chapter is concluded in section 6.

1. Requirements

Requirement engineering has been studied extensively [refs] and it is not the aim of
this book to address the process of identifying and specifying requirements.
Instead, the requirement specification is used as an input for architectural design.
There is, however, one aspect to requirement engineering that is relevant for soft-
ware architecture design: the specification of quality requirements. Our experience
is that most requirement specifications either do not specify the quality attributes at
all, or specify them very unclear and, consequently, not measurable. In the remain-
der of this section, we first establish a terminology for the various requirement con-
cepts. Subsequently, in section 1.2, we discuss the specification of quality
requirements and the use of, so-called, profiles for this purpose.

1.1 Terminology

In this section, we define the terminology related to requirements that we will use
throughout the remainder of this book.

System requirements are defined as the top-level requirement set consisting of soft-
ware, hardware and mechanical requirements. In this book, we focus on fulfilling
the software requirements and ignore other types of requirements. Software
requirements can be defined as consisting of functional requirements and quality
requirements (also referred to as system properties). The functional requirements
are related to the domain-related functionality of the application. Typically, a func-
tional requirement is implemented by a subsystem or a group of components, i.e.

Copyright April 1999 by Jan Bosch (Draft version) 11/24

functional requirements are traceable in the architecture. Quality requirements can
be categorized in development and operational quality requirements. Development
quality requirements are qualities of the system that are relevant from a software
engineering perspective, e.g. maintainability, reusability, flexibility and demonstra-
bility. Operational quality requirements are qualities of the system in operation, e.g.
performance, reliability, robustness and fault-tolerance. Different from functional
requirements, quality requirements can generally not be pinpointed to a particular
part of the application but are a property of the application as a whole.

1.2 Quality Attributes and Profiles

As mentioned in the introduction to this section, our experience is that quality
requirements such as performance and maintainability are generally specified
rather weakly in industrial requirement specifications. In some of our architecture
design projects with industry, the initial requirement specification contained state-
ments such as “The maintainability of the system should be as good as possible”
and “The performance should be satisfactory for an average user”. Such subjective
statements, although well intended, are totally useless for the evaluation of software
architectures. For example, [Gilb 88] discusses the quantitative specification of
quality requirements and presents useful examples.

Some research communities, e.g. performance [Smith 90], real-time [Liu & Ha 95]
and reliability [Neufelder 93], have spend considerable effort on the specification
of their particular quality requirement, but the software development industry has
not adopted these techniques. One of the reasons is that these techniques tend to be
rather elaborate and require considerable effort to complete. Since, within an engi-
neering discipline, each activity is a balance of investment and return, these tech-
niques may not have provided sufficient return-on-investment, from the perspective
of industrial software engineers.

However, when one intends to treat the architecture of a software system that one is
working on explicitly in order be able to early predict the quality attributes of the
system, it is also necessary to specify quality requirements in sufficient detail. One
common characteristic for quality requirements is that stating a required level with-
out an associated context is meaningless. For instance, the statement “Performance
= 200” or “Maintainability = 0.8” is virtually meaningless.

However, one common denominator of most specification techniques is that some
form of profile is used as part of the specification. A profile is a set of scenarios,
generally with some relative importance associated with each scenario. The profile

Design of Software Architectures

12/24 Copyright April 1999 by Jan Bosch (Draft version)

used most often in object-oriented software development is the usage profile, i.e. a
set of usage scenarios that describe typical uses for the system. The usage profile
can be used as the basis for specifying a number of, primarily operational, quality
requirements, such as performance and reliability. However, for other quality
attributes, other profiles are used. For example, for specifying safety we have used
hazard scenarios and for maintainability we have used change scenarios.

Based on our experience, we believe that it is necessary to specify the relevant pro-
files for the software quality requirements that are to be considered explicitly in the
architecture design process. Using the profile, one can make a more precise specifi-
cation of the requirement for a quality attribute. For example, the required perfor-
mance of the system can be specified using the usage profile by specifying the
relative frequency and the total number of scenarios per time unit.

In chapter 4, the specification and usage of profiles is discussed in more detail and
several examples are presented.

2. Architecture Design Method Overview

In software industry, our experience is that quality requirements are generally dealt
with by a rather informal process during architecture design. Conventional object-
oriented design methods, e.g. [Booch 94, Jacobsen et al. 92, Rumbaugh et al. 91],
tend to focus on achieving the required system functionality, but do not spend much
attention on quality requirements. Implicitly, these methods assume that using an
object-oriented modeling approach will automatically lead to reusable and flexible
systems, thus one could state that the maintainability and reusability requirements
are incorporated up to some extent. However, only these quality attributes are con-
sidered and only implicitly.

Software engineers in industry, lacking support for the early evaluation of quality
requirements, develop systems using the available design methods and measure the
quality attributes of the system once it has been built. There are at least two prob-
lems with this approach: first, not all quality attributes can be measured before the
system is put in operation. For instance, to measure maintainability of a system
generally requires up to several years before one can make generalizable statements
about the required effort for implementing new requirements. Second, even if one
is able to measure a quality attribute once the system has been built, e.g. perfor-
mance, the effort required to rework the system if it does not fulfil the requirements
is generally rather costly. Often, the cost of reworking a system to incorporate the

Copyright April 1999 by Jan Bosch (Draft version) 13/24

Architecture Design Method Overview

quality requirements after it has been built is one or several magnitudes of order
higher than performing the evaluation and transformation of the system design
early in the development. The focus on software architecture design currently expe-
rienced in the software engineering community can be explained by the above argu-
ments, i.e. explicit evaluation of the architecture of software systems with respect
to the quality requirements will minimize the risk of building a system that fails to
meet its quality requirements and consequently decrease the cost of system devel-
opment.

At this point it is relevant to notice that many exceptions to the observation exist.
Especially companies that have been working in a particular domain for several
years, e.g. embedded systems, often have remarkable success rates in achieving the
quality requirements on their systems. The main explanation for this is that soft-
ware architects at those companies often have a considerable understanding of the
possibilities and obstacles of particular architectural designs in their domain. Since
the system architects often are experienced in building systems in the domain,
experience helps them to minimize system redesign. However, although this is one
of the most successful means for companies to build up a competitive advantage,
one can identify at least three disadvantages. First, the design expertise is generally
tacit knowledge. Thus when the experienced software architect leaves the company,
so does the design expertise. In addition, when the organization enters a new
domain, the experience base has to be created again through trial and error. Second,
since the expertise used as a basis for the design decisions is implicit and design is,
up to some extent, performed based on ‘gut feeling’, it is virtually impossible to
perform critical evaluations. This is disadvantageous for the company since it may
result in design decisions based on incorrect assumptions by the software architect.
In addition, the software engineering community does not benefit from the gener-
ated design expertise since it is not objectified and evaluated. Finally, it complicates
the education of software architects at universities since there is no body of knowl-
edge available that can be taught. Consequently, the students have to obtain this by
hands-on design experience, hopefully under the guidance of a mentor.

The observations discussed above are by no means novel. Computer science and
software engineering research have spent considerable effort on several of the qual-
ity requirements. This has lead to the formation of several ‘quality attribute-based’
research communities that focus on one quality attribute and try to maximize the
systems they build with respect to their particular quality attribute. Examples of
such communities are those working on real-time systems, high-performance sys-
tems, reusable systems and, more recently, maintainable systems. Several of these
communities have proposed their own design methods and evaluation techniques.

Design of Software Architectures

14/24 Copyright April 1999 by Jan Bosch (Draft version)

For instance, in real-time systems [Liu & Ha 95], in high-performance computing
[Smith 90] and in reusable systems [ref-ICSR?].

Each of the research communities address relevant and important aspects of soft-
ware systems and to achieve progress in hard problems, one needs to focus and
ignore issues outside the focus. However, there is a major problem in this develop-
ment and that is that, since each research community has a tendency to study a sin-
gle system quality requirement, it consequently does not address the composition of
its solutions with the solutions proposed by research communities studying differ-
ent quality requirements. Concrete industrial software systems never have only a
single quality requirement to fulfil, but generally have to achieve multiple of these
requirements. For instance, most real-time systems should be reusable and main-
tainable to achieve cost-effective operation and usage, whereas fault-tolerant sys-
tems also need to fulfil other requirements such as timeliness and maintainability.
No pure real-time, fault-tolerant, high-performance or reusable computing systems
exist, even though most research literature within the respective research communi-
ties tends to present systems as being such archetypical entities. All realistic, practi-
cal computing systems have to fulfil multiple quality requirements.

One may wonder why the above is a problem: if the quality-attribute oriented
research communities develop their solutions and guidelines, why not just compose
the solutions and guidelines in the system currently under design. The answer is
that the solutions and guidelines provided for fulfilling the quality requirements
tend to be conflicting, i.e. using a solution for improving one quality attribute will
generally affect other quality attributes negatively. For example, reusability and
performance are generally considered to be contradicting, as well as fault-tolerance
and real-time computing. As a consequence, when the customer for a system has
extreme performance requirements, it requires that this customer accepts that the
maintainability of the system will be very low, i.e. it is very costly to incorporate
new requirements. This observation has been implicitly accepted by the software
engineering community, but very few examples of approaches to explicitly han-
dling the conflicts in quality requirements exist. Consequently, lacking a supporting
method, software engineers in industry design system architectures in an ad-hoc,
intuitive, experience-based manner, with the consequent risk of unfulfilled system
properties.

2.1 Method

As we identified in the previous section, there is a lack of software design methods
that explicitly address and balance the quality attributes of a system. In this part of
the book, we present our approach to addressing the identified problems, including

Copyright April 1999 by Jan Bosch (Draft version) 15/24

Architecture Design Method Overview

an architecture design method that incorporates explicit evaluation of and design
for quality requirements. The developed approach is part of our research efforts in
the domain of software architecture. It is important to note that it is explicitly not
our intention to present the final architecture design method. Instead, we report on
our experiences with software architecture design, the generalizations we made
based on our experiences and the validation of the generalizations that we per-
formed. The architecture design method presented in this part of the book is a gen-
eralization of the design of three software architectures in the embedded systems
domain, i.e. fire-alarm systems, measurement systems and dialysis systems. Mem-
bers of our research group have been involved in the design of these systems, either
while working in industry or as part of a joint research project between our research
group and one or more industrial partners. Since these systems will be used exten-
sively as examples, we present the systems and their domains in more detail in
chapter 2.

FIGURE 1. Outline of the architectural design method

The architecture design process can be viewed as a function taking a requirement
specification that is taken as an input to the method and an architectural design that
is generated as output. However, this function is not an automated process and con-
siderably effort and creativity from the involved software architects is required. The
software architecture design is used for the subsequent phases, i.e. detailed design,
implementation and evolution. In figure 1, the main steps in the method are pre-

requirement
specification

functionality-based
architectural design

application
architecture

estimate
quality

attributes

architecture
transformation

QA-optimizing
solutions

not OK

OK

Design of Software Architectures

16/24 Copyright April 1999 by Jan Bosch (Draft version)

sented graphically. The design process starts with a design of the software architec-
tural based on the functional requirements specified in the requirement
specification. Although software engineers generally will not design a system less
reliable or reusable, the quality requirements are not explicitly addressed at this
stage. The result is a first version of the application architecture design. This design
is evaluated with respect to the quality requirements. Each quality attribute is given
an estimate in using a qualitative or quantitative assessment technique. The esti-
mated quality attribute values are compared to the values in the requirements speci-
fication. If all estimations are as good or better than required, the architectural
design process is finished. Otherwise, the second stage is entered: architecture
transformation. During this stage, the architecture is improved by selecting appro-
priate quality attribute-optimizing transformations. Each set of transformations
(one or more) results in a new version of the architectural design. This design is
again evaluated and the same process is repeated, if necessary, until all quality
requirements are fulfilled or until the software engineer decides that no feasible
solution exists. The transformations, i.e. quality attribute optimizing solutions, gen-
erally improve one or some quality attributes while they affect others negatively.

The fact that the method is iterative is not novel. Some design methods for one-QR
based systems, e.g. real-time or performance engineering, follow a similar iterative
process. For instance, Smith [Smith 90] defines a similar method for performance
engineering but she only considers performance.

In the remainder of this chapter, the three main steps in the method, i.e. functional-
ity-based architecture design, evaluation and assessment of software architectures
and the transformation of software architectures are described in more detail.

3. Functionality-based Architecture Design

The first step during software architecture design is to develop a software architec-
ture based on the functional requirements. Based on the requirement specification,
the top-level, i.e. architecture, design of the system is performed. The main issue
during this phase is to identify the core abstractions, i.e., the archetypes, based on
which the system is structured. Although these abstractions are modeled as objects,
our experience is that these objects are not found immediately in the application
domain. Instead, they are the result of a creative design process that, after analyzing
the various domain entities, abstracts the most relevant properties and models them
as architecture entities. Once the abstractions are identified, the interactions
between them are defined in more detail.

Copyright April 1999 by Jan Bosch (Draft version) 17/24

Assessing Quality Attributes

The process of identifying the entities that make up the architecture is different
from, for instance, traditional object-oriented design methods. Those methods start
by modeling the entities present in the domain and organize these in inheritance
hierarchies, i.e. a bottom-up approach. Our experience is that during architectural
design it is not feasible to start bottom-up since that would require dealing with the
details of the system. Instead one needs to work top-down.

Architecture entity identification is related to domain analysis methods [ref-
domainanalysis]. However, different from these approaches, our experience is that
the entities resulting from architecture design are generally not found in the
domain. A second difference between architecture design and domain analysis is
that the architecture of a system generally covers multiple domains.

The assumption underlying our approach is that an architectural design based on
the functional requirements only does not preclude the use of transformations for
optimizing quality requirements. Some researchers believe that an architectural
design cannot be separated in the way proposed in this paper. We agree that no pure
separation can be achieved, i.e. an architectural design based on functional require-
ments only will still have values for its quality attributes. However, we believe that
an objective and repeatable architectural design method must be organized accord-
ing to our principles since it is unlikely that an architectural design process does not
require iterations to optimize the architecture. Since an architecture based on func-
tional requirements only is more general, it can be reused as input for systems in the
same domain but with different quality requirements. On the other hand, it is
unlikely that a software architecture that fulfils a particular set of quality require-
ments will be applicable in a domain with different functional requirements.

Chapter 3 discusses the design of software architectures based on their functional
requirements in more detail.

4. Assessing Quality Attributes

One of the core features of the architectural design method is that the quality
attributes of a system or application architecture are explicitly evaluated during
architecture design; thus without having a concrete system available. Although sev-
eral notable exceptions exist, our experience is that the traditional approach in soft-
ware industry is to implement the system and then measure the actual values for the
quality system properties. The obvious disadvantage is that potentially large
amounts of resources have been put on building a system that does not fulfil its

Design of Software Architectures

18/24 Copyright April 1999 by Jan Bosch (Draft version)

quality requirements. In the history of software engineering, several examples of
such systems can be found. Being able to estimate the quality attributes of the sys-
tem already during early development stages is important to avoid such mishaps.

However, the question is how to measure system properties based on an abstract
specification such as an architectural design. For obvious reasons it is not possible
to measure the quality attributes of the final system based on the architecture
design. Instead, the goal is to evaluate the potential of the designed architecture to
reach the required levels for its quality requirements. For example, some architec-
tural styles, e.g. layered architectures, are less suitable for systems where perfor-
mance is a major issue, even though the flexibility of this style is relatively high.

Four different approaches for assessing quality requirements have been identified,
i.e. scenarios, simulation, mathematical modeling and objective reasoning. For
each quality requirement, the engineer can select the most suitable approach for
evaluation. In the subsequent sections, each approach is described in more detail.

4.1 Scenario-based evaluation

To assess a particular quality attribute, a set of scenarios is developed that concret-
izes the actual meaning of the requirement. For instance, the maintainability
requirement may be specified by a change profile that captures typical changes in
requirements, underlying hardware, etc. The profile can then be used to evaluate
the effort required to adapt the architecture to the new situation. Another example is
robustness where the architecture can be evaluated with respect to the effects of
invalid input.

The effectiveness of the scenario-based approach is largely dependent on the repre-
sentativeness of the scenarios. If the scenarios form accurate samples, the evalua-
tion will also provide an accurate result. Object-oriented design methods use
scenarios to specify the intended system behavior, e.g. use-cases [Jacobsen et al.
92] and scenarios [Wirfs-Brock et al. 90]. For architectural design, however, two
sets of scenarios should be developed, i.e. one for design and one for evaluation
purposes. Once a version of the architecture is ready for evaluation, the software
engineer can ‘run’ the scenarios for the architecture and evaluate the results. For
instance, if most of the change scenarios require considerable reorganizations of the
architecture, one can conclude that the maintainability of the architecture is low.

In our experience, scenario-based assessment is particularly useful for development
quality attributes. Quality attributes such as maintainability can be expressed very
naturally through change scenarios. In [Bengtsson & Bosch 99b], we present a sce-

Copyright April 1999 by Jan Bosch (Draft version) 19/24

Assessing Quality Attributes

nario-based technique that we developed for predicting maintainability based on
the software architecture.

4.2 Simulation

Simulation of the architecture using an implementation of the application architec-
ture provides a second approach for estimating quality attributes. The main compo-
nents of the architecture are implemented and other components are simulated
resulting in an executable system. The context, in which the system is supposed to
execute in, could also be simulated at a suitable abstraction level. This implementa-
tion can then be used for simulating application behavior under various circum-
stances.

Simulation of the architecture design is, obviously, not only useful for quality
attribute assessment, but also for evaluating the functional aspects of the design.
Building a simulation requires the engineer to define the behavior and interactions
of the architecture entities very precise, which may uncover inconsistencies in the
design earlier than traditional approaches.

Once a simulation is available, one can execute execution sequences to assess qual-
ity attributes. Robustness, for example, can be evaluated by generating or simulat-
ing faulty input to the system or by inserting faults in the connections between
architecture entities.

Simulation complements the scenario-based approach in that simulation is particu-
larly useful for evaluating operational quality attributes, such as performance of
fault-tolerance by actually executing the architecture implementation, whereas sce-
narios are more suited for evaluating development quality attributes, such as main-
tainability and flexibility. Nevertheless, the implementation of the architecture in
the simulation can be used to evaluate, for instance, maintainability, by changing
the implementation according to change scenarios and measuring the required
effort.

4.3 Mathematical modeling

Various research communities, e.g. high-performance computing [Smith 90], reli-
able systems, real-time systems [Liu & Ha 95], etc., have developed mathematical
models that can be used to evaluate especially operational quality attributes. Differ-
ent from the other approaches, the mathematical models allow for static evaluation
of architectural design models. For example, performance modeling is used while

Design of Software Architectures

20/24 Copyright April 1999 by Jan Bosch (Draft version)

engineering high-performance computing systems to evaluate different application
structures in order to maximize throughput.

Mathematical modeling is an alternative to simulation since both approaches are
primarily suitable for assessing operational quality attributes. However, the
approaches can also be combined. For instance, performance modeling can be used
to estimate the computational requirements of the individual components in the
architecture. These results can then be used in the simulation to estimate the com-
putational requirements of different execution sequences in the architecture.

4.4 Experience-based reasoning

A fourth approach to assessing quality attributes is through objective reasoning
based earlier experiences and logical argumentation. Experienced software engi-
neers often have valuable insights that may prove extremely helpful in avoiding bad
design decisions. Although some of these experiences are based on anecdotal evi-
dence, most can often be justified by a logical line of reasoning.

This approach is different from the other approaches in that the evaluation process
is less explicit and more based on subjective factors such as intuition and experi-
ence. The value of this approach should, however, not be underestimated. Most
software architects we have worked with had well-developed intuitions about
‘good’ and ‘bad’ designs. Their analysis of problems often started with the ‘feeling’
that something was wrong. Based on that, an objective argumentation was con-
structed either based on one of the aforementioned approaches or on logical reason-
ing. In addition, this approach may form the basis for the other evaluation
approaches. For example, an experienced software engineer may identify a main-
tainability problem in the architecture and, to convince others, define a number of
scenarios that illustrate this.

5. Architecture Transformation

Once the quality attributes of an architecture have been assessed, the estimated val-
ues are compared to the requirements specification. If one or more of the quality
requirements are not satisfied, the architecture has to be changed to cover these
requirements also. This requires the software engineer to analyse the architecture
and to decide due to what cause the property of the architecture is inhibited. Often,
the evaluation itself generates hints as to what parts or underlying principles cause
low scores.

Copyright April 1999 by Jan Bosch (Draft version) 21/24

Architecture Transformation

Assessment of the quality attributes is performed assuming a certain context, con-
sisting of, certain subsystems, e.g. databases or GUI systems and one or more oper-
ating systems and hardware platforms. Whenever a quality attribute is not fulfilled,
one may decide to either make changes to the presumed context of the system
architecture or to make changes to the architecture itself. In the architectural design
method discussed in this part of the book, changes to the architecture are performed
as architecture transformations. Each transformation leads to a new version of the
architecture that has the same functionality, but different values for its properties.

The consequence of architecture transformations is that most transformations affect
more than one property of the architecture; generally some properties positively
and others in a negative way. For instance, the Strategy design pattern [Gamma et
al. 94] increases the flexibility of a class with respect to exchanging one aspect of
its behavior. However, performance is often reduced since instances of the class
have to invoke another object (the instance of the Strategy class) for certain parts of
their behavior. However, in the general case, the positive effect of increased flexi-
bility considerably outweighs the minor performance impact.

Four categories of architecture transformations have been identified, organized in
decreasing impact on the architecture, i.e. imposing an architectural style, imposing
an architectural pattern, applying a design pattern and converting quality require-
ments to functionality. One transformation does not necessarily address a quality
requirement completely. Two or more transformations might be necessary. In the
sections below, each category is discussed in more detail.

5.1 Impose architectural style

Shaw and Garlan [Shaw & Garlan 96] and Buschmann et al. [Buschmann et al. 96]
present several architectural styles (or patterns) that improve the possibilities for
certain quality attributes for the system the style is imposed upon and are less sup-
portive for other quality attributes. Certain styles, e.g. the layered architectural
style, increase the flexibility of the system by defining several levels of abstraction,
but generally decrease the performance of the resulting system. With each architec-
tural style, a fitness for each system property is associated. The most appropriate
style for a system depends primarily on its quality requirements. Transforming an
architecture by imposing an architectural style results in a complete reorganization
of the architecture.

Although architectural styles can be merged up to some extent, more often a differ-
ent style is used in a subsystem than at the system level, provided that the sub-
system acts as a correct component at the system level. However, if, during design

Design of Software Architectures

22/24 Copyright April 1999 by Jan Bosch (Draft version)

iteration, a second architectural style is selected for a part of the system, it is neces-
sary to make sure that the constraints of the two styles do not conflict with each
other.

In our approach, we explicitly distinguish between the components that are used to
fulfil the functional requirements and the software architecture of the system that is
used to fulfil the quality requirements. In practice, the distinction is generally not as
explicit, i.e. also the implementation of a component influences most quality
attributes, e.g. reliability, robustness and performance.

5.2 Impose architectural pattern

A second category of transformations is the use of architectural patterns1. An
architectural pattern is different from an architectural style in that it is not predomi-
nant and can be merged with architectural styles without problems. It is also differ-
ent from a design pattern since it affects the complete architecture, or at least the
larger part of it. Architectural patterns generally impose a rule [Perry & Wolf 92]
on the architecture that specifies how the system will deal with one aspect of its
functionality.

Architectural patterns generally deal with some aspect of the system behavior that
is not in the application domain, but addresses some of the supporting domains. For
example, the way the system deals with concurrency, persistence, fault-tolerance or
distribution. If the software architect decides to implement concurrency using an
application-level scheduler that invokes the entities that need some active behavior,
then this decision puts requirements on most architectural entities since each entity
needs to support a particular interface and needs to limit its execution time to a
small and predictable period. Architectural patterns are generally orthogonal to
each other and to architectural styles, but affect most entities in the architecture.

5.3 Apply design pattern

The third class of transformations is the application of a design pattern. This is gen-
erally a less dramatic transformation than the former two categories. For instance,
an abstract factory pattern [Gamma et al. 94] might be introduced to abstract the
instantiation process for its clients. The abstract factory pattern increases maintain-
ability, flexibility and extensibility of the system since it encapsulates the actual

1. Note that our use of the term “architectural pattern” is different from the use in [Bus-
chmann et al. 96].

Copyright April 1999 by Jan Bosch (Draft version) 23/24

Architecture Transformation

class type(s) that are instantiated, but decreases the efficiency of creating new
instances due to the additional computation, thereby reducing performance and pre-
dictability. Different from imposing an architectural style, causing the complete
architecture to be reorganized, the application of a design pattern generally affects
only a limited number of classes in the architecture. In addition, a class can gener-
ally be involved in multiple design patterns without creating inconsistencies.

5.4 Convert quality requirements to functionality

A fourth type of transformation is the conversion of a quality requirement into a
functional solution that consequently extends the architecture with functionality not
related to the problem domain but used to fulfil the requirement. Exception han-
dling is a well-known example that adds functionality to a component to increase
the fault-tolerance of the component.

This type of transformation is different from the first three in that it does not change
the existing structure of the software architecture, but instead primarily adds func-
tional entities to the structure that fulfil a particular quality requirement.

5.5 Distribute requirements

The final activity of a transformation iteration deals with quality requirements
using the divide-and-conquer principle: a quality requirement at the system level is
distributed to the subsystems or components that make up the system. Thus, a qual-
ity requirement X is distributed over the n components that make up the system by
assigning a quality requirement xi to each component ci such that X=x1+ ... +xn.

A second approach to distribute requirements is by dividing the quality requirement
into two or more functionality-related quality requirements. For example, in a dis-
tributed system, fault-tolerance can be divided into fault-tolerant computation and
fault-tolerant communication.

Distributing requirements does not change the structure or functionality of the soft-
ware architecture that is under design, but it facilitates the breaking down of quality
requirements and their assignment to lower-level components. This process is anal-
ogous to the process of decomposition of functional requirements during conven-
tional system design.

Design of Software Architectures

24/24 Copyright April 1999 by Jan Bosch (Draft version)

6. Concluding Remarks

In this chapter, we have introduced the architecture design method that is the topic
of this part of the book. We started by providing a terminology for requirements in
general and quality requirements in particular. Based on that discussion, we intro-
duced the notion of profiles and their relevance for the definition of quality require-
ments. In section 2, we provided an introduction to software architecture and
presented an overview over the architecture design method. In the subsequent sec-
tions, we presented an overview over the three main phases in the method, i.e. func-
tionality-based architecture design, architecture evaluation and architecture
transformation.

In the following chapters, first three systems are introduced that are used as exam-
ples in the subsequent chapters. Then, each of the main phases of the method is dis-
cussed in a separate chapter.

Copyright April 1999 by Jan Bosch (Draft version) 25/38

CHAPTER 2 Software Architecture
Design Case Studies

Software architecture design is, similar to most engineering and design disciplines,
very hard to discuss at an abstract level. Instead, one needs concrete examples of
relevant systems to discuss alternative design solutions and ways of argumentation.
In this chapter, we present three examples that will be used throughout this part of
the book. All three systems are in the embedded systems domain, but still rather
diverse. These systems are not just examples for illustrative purposes, but they have
been the subject of architecture design projects with various industrial partners and
our research group.

1. Fire-Alarm Systems

The description of fire-alarm systems presented here is based on the work that was
performed by TeleLarm AB, a swedish security company. The work originally
started in 1992 with the aim of taking advantage of the benefits of object-oriented
technology. Concretely, the aim of the project was to develop an object-oriented
framework that would be able to handle the large variety of fire-alarm products
ranging from small home and office installations to large, complex systems servic-
ing industrial multi-building sites. The first version of the framework was com-
pleted in 1994 and, on the average, 500 systems per year have been installed at
client sites. The experiences from using the framework have been very positive in

Software Architecture Design Case Studies

26/38 Copyright April 1999 by Jan Bosch (Draft version)

that it delivered the two main promises of software reuse, i.e. increased quality and
decreased development effort. For example, not a single fault has been detected in
the framework after beta-testing. Secondly, the software has proved to be easy to
modify; a number of changes proved to be implemented with considerable less
effort than expected based on earlier experience.

During 1996, a second version of the framework was developed and fielded. This
version primarily improved the modularization in the framework, extended the
domain covered by the framework and improved some dimensions of variability.

The notion of object-oriented frameworks was introduced in chapter 7 and has
importance in the design of object-oriented software architectures as well as in the
use of software architectures, but in this part of the book we are only concerned
with the design aspects of the fire-alarm system framework. Finally, the description
of fire-alarm system is based on [Molin 97] and [Telelarm 96].

1.1 Domain Description

The main function of a fire-alarm system is to monitor a large number of detectors
and, whenever a potential fire is detected, activate a number of outputs. Several
examples of outputs exist, including alarm bells, alarm texts on displays, extin-
guisher system and automatic alarming of the fire department. Detectors, or input
devices, cover a wide variety of types, ranging from the traditional temperature and
smoke sensors to ultra-sensitive laser-based some detectors. The wide variety in
input and output devices presents one of the major challenges to the software archi-
tecture design.

A second dimension of variability is the range of systems that should be covered by
the architecture. At the low end there are very cost sensitive systems that still
should fulfil standards and regulations. High-end systems include advanced sen-
sors, a sophisticated high-speed extinguisher control system and a large and com-
plex graphical user interface. For instance, conventional sensors have three
externally visible states, i.e. normal, alarm or fault. The advanced sensors instead
transmit particle density (smoke intensity) or temperature values to a control unit
that deduces, based on the input date and using various algorithms, whether there is
an alarm or fault situation.

A third relevant aspect of fire-alarm systems is their highly distributed nature.
Detectors and output units are distributed throughout a building and, in the case of
high-end systems, over multiple buildings. The software controlling the fire alarm

Copyright April 1999 by Jan Bosch (Draft version) 27/38

system has to monitor all input devices for alarms and, if alarms occur, activate the
correct output devices.

Because of potential consequences in case of a failure of the fire-alarm system,
continuous self monitoring is part of the system behavior. Due to this one can think
of the system as consisting of two levels of functionality, i.e. domain-related func-
tionality and system monitoring functionality.

The platforms for the fire-alarm systems range from small 8-bit micro controller
systems to larger 16-bit systems that can be connected to form a distributed net-
work with a capability of up to 10 000 addressable detectors. In addition, the instal-
lation owner can configure names and physical locations of detectors, the texts that
appear on displays in case of fire and the relations between output devices and
detectors, i.e. what output devices are activated when particular detectors indicate
an alarm.

1.2 Quality Requirements

At the start of the design project, it was identified that the company maintained a
family of fire-alarm systems that used different real-time kernels, different hard-
ware and different programming languages. In addition, each system was available
in different language versions and with functionality specific for particular coun-
tries. The goal of the project was to cover these systems and system variations
using a single product-line architecture and component base, i.e. a product-line
architecture.

In addition to addressing the variability described above the system had support a
number of other quality requirements as well. Below, the quality requirements are
described:

• Configurability: It should be relatively simple to instantiate specific versions
of the fire-alarm system. For instance, configuration with country, language and
hardware specific details should be easy.

• Demonstrability: Although the architecture can affect reliability of instantiated
systems only up to some extent, one can require that the architecture simplifies
testing and facilitates the demonstration of the reliability of resulting systems.
This is particularly important since fire-alarm systems need to be certified by an
external certification institute.

• Performance: The performance of a fire-alarm system is dependent on the size
of the system, the available memory and the CPU processing capacity, making
it hard to state absolute performance requirements at this level. However, the

Software Architecture Design Case Studies

28/38 Copyright April 1999 by Jan Bosch (Draft version)

architecture and reusable components should be efficient, i.e. not be consider-
ably slower than a system-specific implementation.

• Maintainability: The system should be prepared for incorporating new require-
ments, e.g. by ‘factoring out’ potential variable parts and representing them as
separate entities.

Since the maintainability of the architecture and provided levels of configurability
are the primary requirements on a product-line architecture, we discuss these
aspects in more detail. Below a list of potential new requirements or requirement
categories is presented.

• Detector technology: New types of detectors enter the market continuously.
These detectors not only vary with respect to the measured variables, but, more
important, in the way they interface with the fire-alarm system.

• Extinguishers: Extinguisher systems are also evolving constantly, due to new
technology but also due to, e.g. new environmental standards.

• Compatibility: Several other systems in an organization are interested in com-
municating with the fire-alarm system for, among others, retrieving data and
setting alarm boundaries. In addition, new fire-alarm systems should be able to
incorporate legacy fire-alarm systems.

• Hardware: Cost play a major role in the fire-alarm systems domain. Conse-
quently, new hardware with a better price/performance ratio should be incorpo-
rated in the fire-alarm system with limited effort.

• Man-machine interface: There is a constant and quick development in technol-
ogy used to interface with operators. Starting with LEDs and buttons, succeeded
by LCD screens and numeric keypads, the current level is to have a graphical,
window-based interface. However, the development is towards incorporating
multiple medias in the interface with the fire-alarm system.

• Standards: Although standards have a tendency to lag behind the industrial
practice, they do change on a regular basis and the changes need to be incorpo-
rated in the products.

• User-adapted instantiations: Large customers often have additional (or even
conflicting) requirements on the fire-alarm system that have to be incorporated
in their instantiation against limited effort. In addition, when upgrades of the
product become available, these customers should have the ability to upgrade
while maintaining their additions.

Copyright April 1999 by Jan Bosch (Draft version) 29/38

Measurement Systems

2. Measurement Systems

The increasing automation of the production process has begun to address pro-
cesses beyond the primary production processes. During the last decade, one can
recognize an increasing need for automated tools that support the quality control
processes surrounding the actual production. The emergence of the ISO9000 qual-
ity standards, the quality thinking in general and the increased productivity of pro-
duction technology requires the quality control systems to improve productivity as
well and whereas many factories used manual quality control by personnel, nowa-
days the need for automated support is obvious. This development has dramatically
increased the need for automated measurement systems. The advantages of mea-
surement systems are generally improved performance/cost ratio and more consis-
tent and accurate quality control. This development increased the needs for
reusability of existing measurement system software. Although these systems, con-
ceptually, have a rather similar structure, in practice the implementation of these
systems tends to be rather diverse. This is due to the fact that real-time constraints,
concurrency and requirements resulting from the underlying hardware strongly
influence the actual implementation.

Despite these difficulties, we have, together with our industrial partner, EC-Grup-
pen, a company located in southern-swedish developing embedded systems,
designed an object-oriented framework for measurement systems that would
decrease their software development cost by increasing reuse of existing software
and, as an important second requirement, increase the flexibility of running applica-
tions. Operators of the measurement systems often need to make some adjustments
in the way the measurement system evaluates a measurement item and the system
should provide this flexibility. However, traditional systems constructed in C and
assembly often have difficulty to provide this functionality. Part of the results of the
project are reported in [Bosch 99].

2.1 Domain Description

Measurement systems are a class of systems used to measure the relevant values of
a process or product. These systems are different from the, better known, process
control systems in that the measured values are not directly, i.e. as part of the same
system, used to control the production process that creates the product or process
that is measured. A measurement system is used for quality control on produced
products that can then be used to separate acceptable from unacceptable products or
to categorize the products in quality categories. In some systems, the results from
the measurement are stored in case in the future the need arises to refer to this infor-

Software Architecture Design Case Studies

30/38 Copyright April 1999 by Jan Bosch (Draft version)

mation, e.g. if customers complain about products that passed the measurement
system.

Although a measurement system contains considerable amounts of software, a sub-
stantial part of these systems is hardware since it is connected to the real-world
through a number of sensors and actuators. The sensors provide information about
the real-world through the noticed impulses. However, whereas traditional sensors
were primarily hardware and had a very low-level interface to the software system,
new sensors provide increasing amounts of functionality that previously had to be
implemented as part of the software. For instance, a conventional temperature sen-
sor would only provide the A/D conversion and the software would need to convert
this A/D value into the actual temperature in Celsius or Kelvin and, in addition, had
to do the calibration of the sensor. Modern temperature sensors perform their own
calibration and immediately provide the actual temperature in the required format.
The interface between the sensor and the system is becoming more and more high-
level, but also more complex since the amount of configurability of the sensors is
increasing.

With respect to the actuators one can recognize a similar development. Whereas the
software previously had to be concerned with the actuation through the actuators,
modern actuators often only need a set value expressed in application domain con-
cepts such as angular speed or force. For example, to control the open angle of a
valve in a traditional measurement system, one would have to generate a ‘duty
cycle’ in software. A duty cycle is the periodic process of sending out a ‘1’ for part
of the cycle and a ‘0’ for the rest. The ratio between the time the output is ‘1’ and
the time the output is ‘0’ represents the ‘force’ expressed through the actuator.
When opening a valve for 70% requires that the system outputs a ‘1’ for 70% of the
cyclic period and a ‘0’ for the remaining 30%. The implementation of this is often
achieved through an interrupt routine that changes the output signal when required.
Modern actuators contain considerably more functionality and will generate the
duty cycle themselves, requiring only the set value from the software.

These developments in the domain of sensors and actuators changes measurement
systems from small, single processor systems that are developed very close to the
hardware to distributed computing systems since the more complex sensors and
actuators often contain their own processors. However, although the increased
functionality of the sensors and actuators reduces the complexity of constructing
measurement systems, the increased demands on these systems and the resulting
increase in size make that the construction of measurement systems is a complex
activity. The languages and tools used to construct measurement systems ought to
provide powerful means to deal with this complexity.

Copyright April 1999 by Jan Bosch (Draft version) 31/38

Measurement Systems

A measurement system, however, consists of more than sensors and actuators. A
typical measurement cycle starts with a trigger indicating that a product, or mea-
surement item, is entering the system. The first step after the trigger is the data-col-
lection phase by the sensors. The sensors measure the various relevant variables of
the measurement item. The second step is the analysis phase during which the data
from the sensors is collected in a central representation and transformed until it has
the form in which it can be compared to the ideal values. Based on this comparison,
certain discrepancies can be deduced which, in turn, lead a classification of the
measurement item. In the third phase, i.e. actuation, the classification of the mea-
surement item is used to select the appropriate actions that are associated with the
classification and subsequently these actions are performed. Example actions may
be to reject the item, causing the actuators to remove the item from the conveyer
belt and put it in a separate store, or to print the classification on the item so that it
can be automatically recognized at a later stage. One of the requirements on the
analysis phase is that the way the transformation takes place, the characteristics
based on which the item is classified and the actions associated with each classifi-
cation should be flexible and easily adaptable, both during system construction, but
also, up to some extent, during the actual system operation.

Based on the above discussion, one can wonder whether the traditional view on
measurement systems as a centralized system with one main control loop is still
appropriate. During the project, we became convinced that the system should to be
viewed as a collection of communicating, active entities that co-operate to achieve
the required system behavior. This improves decomposition of the system,
decreases the dependencies between the various parts and increase system flexibil-
ity. However, decomposing the system into active entities requires processes to be
available, or at least simulated, by the underlying operating system.

Another important aspect is the real-time behavior of the measurement system. Dif-
ferent from many real-time systems, a measurement system is not a periodic sys-
tem. The real-time constraints in the system are, directly or indirectly, related to the
triggering point where a product to be measured enters the system. Although, when
running at maximum performance, this becomes a periodic behavior, the start is not
determined by the clock, but by a physical event. In the ideal situation, the software
engineer would specify the real-time constraints on the different activities in the
system. Based on that specification, the system would schedule the activities such
that the real-time constraints are met or, if it is not possible to schedule all activi-
ties, respond to the software engineer with a message. However, in the current situ-
ation, the software engineer implements the tasks that have to be performed and
performs a test run of the system. Often, the system does not meet all deadlines at

Software Architecture Design Case Studies

32/38 Copyright April 1999 by Jan Bosch (Draft version)

first and the software engineer has to adjust the system to fulfil the requirements by,
e.g. changing the priorities of the different processes.

Finally, the requirements on modern measurement systems often result in systems
that are no longer confined to a single processor. Distribution plays an increasingly
important role in measurement systems. However, the presence of distribution
should not require the software engineer to change the basic architecture of the sys-
tem. The system should just be extended with behavior for dealing with communi-
cation over address spaces.

In figure 2, the entities that are part of a simple measurement system is shown. The
system consists of five entities that communicate with each other to achieve the
required functionality. Below, a sequence of events during a normal measurement
cycle for an entity is shown:

1. The trigger triggers the abstract factory when a physical item enters the system.

2. The abstract factory creates a representation of the physical object in the software,
i.e. the measurement item.

3. The measurement item requests the sensor to measure the physical object.

4. The sensor sends back the result to the measurement item which stores the results.

5. After collecting the required data, the measurement item compares the measured
values with the ideal values.

6. The measurement item sends a message to the actuator requesting the actuation
appropriate for the measured data.

FIGURE 2. Architecture of a simple measurement system

12

4

3

5

6

sensor

measurement

abstract factory

actuator

triggeritem

Copyright April 1999 by Jan Bosch (Draft version) 33/38

Haemo Dialysis Systems

2.2 Quality Requirements

Measurement systems should support the functionality described in the previous
section. However, in addition to these functional requirements, one can identify a
number of quality requirements as well.

• Intuitive: As any type of system the designed framework should be based on
concepts that have a direct correspondence in the application domain. The way
these concepts are used and combined should be logically consistent with the
view of a domain expert.

• Configurability: The framework should provide reusable components for the
construction of measurement systems. This requires a delicate balance between
generality and speciality. It also means that the components and decomposition
dimensions have to be chosen such that relatively general components from dif-
ferent dimensions can be composed to form specific components that can be
used in real system with minimal extensions.

• Flexible: Although flexibility would be considered to be a positive aspect of
any system, the requirements on the flexibility of measurement systems are
higher than average. As described, the actual composition of the system from its
components, the analysis process and the reaction by the system based on the
analysis results needs to be easily adaptable both during application develop-
ment as well as during system operation.

• Real-time constraints: Although most traditional system construction
approaches deal with real-time constraints by running tests on the system and
measuring the system responses, we already discussed the advantages of
expressing real-time constraints directly as part of the system. The difficulty
with both real-time and concurrency is the platform dependence of the imple-
mentation of these techniques.

3. Haemo Dialysis Systems

Haemo dialysis systems present an area in the domain of medical equipment where
competition has been increasing drastically during recent years. The aim of a dialy-
sis system is to remove water and certain natural waste products from the patient’s
blood. Patients that have, generally serious, kidney problems and consequently pro-
duce little or no urine use this type of system. The dialysis system replaces this nat-
ural process with an artificial one.

Software Architecture Design Case Studies

34/38 Copyright April 1999 by Jan Bosch (Draft version)

We have been involved in a research project aimed at designing a new software
architecture for the dialysis machines produced by Althin Medical. The software of
the existing generation of products was exceedingly hard to maintain and certify
and management had become convinced that it was necessary to develop the next
generation of the dialysis system software independent of the existing software.
The partners involved in the project were Althin Medical, EC-Gruppen and the
University of Karlskrona/Ronneby. The goal for EC-Gruppen was to study novel
ways of constructing embedded systems, whereas our goal was to study the process
of designing software architecture and to collect experiences. As a research
method, we used Action Research [Argyris et al 85], i.e. researchers actively partic-
ipated in the design process and reflected on the process and the results. The results
of the research project are reported, among others, in [Bengtsson & Bosch 99a].

3.1 Domain Description

An overview of a dialysis system is presented in figure 3. The system is physically
separated into two parts by the dialysis membrane. On the left side the dialysis fluid
circuit takes the water from a supply of a certain purity (not necessarily sterile),
dialysis concentrate is added using a pump. A sensor monitors the concentration of
the dialysis fluid and the measured value is used to control the pump. A second
pump maintains the flow of dialysis fluid, whereas a third pump increases the flow
and thus reduces the pressure at the dialysis fluid side. This is needed to pull the
waste products from the patient’s blood through the membrane into the dialysis
fluid. A constant flow of dialysis fluid is maintained by the hydro mechanic devices
that ensure exact and steady flow on each side (rectangle with a curl).

On the right side of figure 3, the extra corporal circuit, i.e. the blood-part, has a
pump for maintaining a specified blood flow on its side of the membrane. The
patient is connected to this part through two needles usually located in the arm that
take blood to and from the patient. The extra corporal circuit uses a number of sen-
sors, e.g. for identifying air bubbles, and actuators, e.g. a heparin pump to avoid
cluttering of the patients blood while it is outside the body. However, these details
are omitted since they are not needed in this context.

The dialysis process, or treatment, is by no means a standard process. A fair collec-
tion of treatments exists including, for example, Haemo Dialysis Filtration (HDF)
and Ultra Filtration (UF) and other variations, such as single needle/single pump,
double needle/single pump. Treatments are changed due to new research results but
also since the effectiveness of a particular treatment decreases when it is used too
long for a patient. Although the abstract function of a dialysis system is constant, a
considerable set of variations exists already. Based on experience the involved

Copyright April 1999 by Jan Bosch (Draft version) 35/38

Haemo Dialysis Systems

company anticipates several additional changes to the software, hardware and
mechanical parts of the system that will be necessary in response to developments
in medical research.

FIGURE 3. Schematic of Haemo Dialysis Machine

As an input to the project, the original application architecture was used. This archi-
tecture had evolved from being only a couple of thousand lines of code very close
to the hardware to close to a hundred thousands lines mostly on a higher level then
the hardware API. The system runs on a PC-board equivalent using a real-time ker-
nel/operating system. It has a graphical user interface and displays data using dif-
ferent kinds of widgets. It is a quite complex piece of software and because of its
unintended evolution, the structure that was once present has deteriorated substan-
tially. The three major software subsystems are the Man Machine Interface (MMI),
the Control System, and the Protective system (see figure 4).

The MMI has the responsibilities of presenting data and alarms the user, i.e. a nurse,
and getting input, i.e., commands or treatment data, from the user and setting the
protective and control system in the correct modes.

The control system is responsible for maintaining the values set by the user and
adjusting the values according to the treatment selected for the time being. The
control system is not a tight-loop process control system, only a few such loops
exists, most of them low-level and implemented in hardware.

Patient

H20

The extra

The dialysis fluid circuit

corporal circuit

Filter

sensorheater

dialysis fluid
concentrate

= pump

Software Architecture Design Case Studies

36/38 Copyright April 1999 by Jan Bosch (Draft version)

The protective system is responsible for detecting any hazard situation where the
patient might be hurt. It is supposed to be as separate from the other parts of the
system as possible and usually runs on a own task or process. When detecting a
hazard, the protective system raises an alarm and engages a process of returning the
system to a safe-state. Usually, the safe-state is stopping the blood flow or dialysis-
fluid flow.

FIGURE 4. Legacy system decomposition

The documented structure of the system is no more fine-grained than this and to do
any change impact analysis, extensive knowledge of the source code is required.

3.2 Quality Requirements

The aim during architectural design is to optimize the potential of the architecture
(and the system built based on it) to fulfil the software quality requirements. For
dialysis systems, the driving software quality requirements are maintainability,
reusability, safety, real-timeliness and demonstrability. Below, these quality
requirements are described in the context of dialysis systems.

Maintainability. Past haemo dialysis machines produced by our partner company
have proven to be hard to maintain. Each release of software with bug corrections
and function extensions have made the software harder and harder to comprehend
and maintain. One of the major requirements for the software architecture for the
new dialysis system family is that maintainability should be considerably better
than the existing systems, with respect to corrective but especially adaptive mainte-
nance:

• Corrective maintenance has been hard in the existing systems since dependen-
cies between different parts of the software have been hard to identify and visu-
alize.

Man Machine Interface

Protective SystemControl System

Hardware API

Copyright April 1999 by Jan Bosch (Draft version) 37/38

Haemo Dialysis Systems

• Adaptive maintenance is initiated by a constant stream of new and changing
requirements. Examples include new mechanical components as pumps, heaters
and AD/DA converters, but also new treatments, control algorithms and safety
regulations. All these new requirements need to be introduced in the system as
easily as possible. Changes to the mechanics or hardware of the system almost
always require changes to the software as well. In the existing system, all these
extensions have deteriorated the structure, and consequently the maintainability,
of the software and subsequent changes are harder to implement. Adaptive
maintainability was perhaps the most important requirement on the system.

Configurability. The software developed for the dialysis machine should be easily
configurable. Already today there are different models of haemo dialysis machines
and market requirements for customization will most probably require a larger
number of haemo dialysis models. Consequently, it should be relatively simple to
instantiate the product-line architecture for a particular system.

Safety. Haemo dialysis machines operate as an extension of the patients blood flow
and numerous situations could appear that are harmful and possibly even lethal to
the patient. Since the safety of the patient has very high priority, the system has
extremely strict safety requirements. The haemo dialysis system may not expose
the dialysis patient to any hazard, but should detect the rise of such conditions and
return the dialysis machine and the patient to a state which present no danger to the
patient, i.e. a safe-state. Actions, like stopping the dialysis fluid if concentrations
are out of range and stopping the blood flow if air bubbles are detected in the extra
corporal system, are such protective measures to achieve a safe state. This require-
ment has to some extent already been transformed into functional requirements by
the safety requirements standard for haemo dialysis machines [CEI/IEC 601-2], but
only as far as to define a number of hazard situations, corresponding threshhold
values and the method to use for achieving the safe-state. However, a number of
other criteria affecting safety are not dealt with. For example, if the communication
with a pump fails, the system should be able to determine the risk and deal with it
as necessary, i.e. achieving safe state and notify the nurse that a service technician
is required.

Real-timeliness. The process of haemo dialysis is, by nature, not a very time criti-
cal process, in the sense that actions must be taken within a few milli- or microsec-
onds during normal operation. During a typical treatment, once the flows,
concentrations and temperatures are set, the process only requires monitoring.
However, response time becomes important when a hazard or fault condition arises.
In the case of a detected hazard, e.g. air is detected in the extra corporal unit, the
haemo dialysis machine must react very quickly to immediately return the system

Software Architecture Design Case Studies

38/38 Copyright April 1999 by Jan Bosch (Draft version)

to a safe state. Timings for these situation are presented in the safety standard for
haemo dialysis machines [CEI/IEC 601-2].

Demonstrability. As previously stated, the patient safety is very important. To
ensure that haemo dialysis machines that are sold adhere to the regulations for
safety, an independent certification institute must certify each construction. The
certification process is repeated for every (major) new release of the software
which substantially increases the cost for developing and maintaining the haemo
dialysis machines. One way to reduce the cost for certification is to make it easy to
demonstrate that the software performs the required safety functions as required.
This requirement we denote as demonstrability.

4. Concluding Remarks

The design of software architectures, similar to other engineering disciplines, is
hard to present and discuss without concrete examples. In this chapter, we have pre-
sented three software systems that will be used as examples in the subsequent chap-
ters, i.e. fire-alarm systems, measurement systems and dialysis systems. All three
systems are in the embedded systems domain and have to deal with rapidly devel-
oping contexts in terms of requirements, hardware and other technology and each
system has to support considerable variation in terms of the instantiations that need
to be supported by the architecture and its base of reusable components. For each
system, we provided a domain description and discussed the primary quality
requirements.

Copyright April 1999 by Jan Bosch (Draft version) 39/54

CHAPTER 3 Functionality-based
Architectural Design

Architecture design is the process of converting a set of requirements into a soft-
ware architecture that fulfils, or at least facilitates the fulfillment of, the require-
ments. The method for architecture design presented in this part of the book has a
focus on the explicit evaluation of and design for quality requirements, but that
does not mean that the functional requirements are irrelevant. Before one can start
to optimize an architecture for quality requirements, the first step must be to design
a first version of the architecture based on the functional requirements.

The first design phase in the <NAME> method consists of three main steps. The
first step concerned with determining the context of the system under design, the
interfaces of the system to the external entities it interacts with and the behavior the
system should exhibit at the interfaces. The second step is the identification of the
archetypes, i.e. the main architectural abstractions, and the relations between the
archetypes. Our experience is that finding these archetypes is very important espe-
cially for the later phases. Architecture transformations tend to build additional
structures around the archetypes for fulfilling quality requirements. The final step
in functionality-based architectural design is the description of system instances
using the archetypes and the system interfaces. Since the architecture, for instance
in the case of product-line architectures, may be required to support a number of
different instantiations, these have to be specified explicitly to verify that the sys-
tem, in addition to the commonality also supports the required variability.

Functionality-based Architectural Design

40/54 Copyright April 1999 by Jan Bosch (Draft version)

The assumption underlying our approach to architectural design is that starting
from the functional requirements does not preclude the optimization of quality
requirements during the later architecture design stages. There are some authors
[refs] that perform an architectural design based on all requirements and believe
that design cannot be separated in the way proposed in this book. We agree that no
pure separation can be achieved, i.e. an architectural design based on functional
requirements only will still have values for its quality attributes. However, our posi-
tion is that an objective and repeatable architectural design method must be orga-
nized according to our principles since it is unlikely that an architectural design
process does not require iterations to optimize the architecture. Since an architec-
ture based primarily on functional requirements is more general and can be reused
as input for systems in the same domain but with different quality requirements. On
the other hand, it is unlikely that a software architecture that fulfils a particular set
of quality requirements will be applicable in a domain with different functional
requirements.

The remainder of this chapter is organized as follows. In the next section, we
briefly introduce the notation that we will use throughout the book, i.e. UML, or at
least the parts of UML that we make use of. In section 2, the definition of the sys-
tem context is discussed, i.e. the first step in the method. The topic of the subse-
quent section is the identification of archetypes, whereas the definition of
architecture instantiations is discussed in section 4. To illustrate the discussed
method steps, we present a number of examples from the case studies discussed in
the previous chapter. Finally, the chapter is concluded in section 6.

1. Notation

Architecture designs have to be disseminated among the architects of a system,
between the architects and the software engineers and between the architects and
the other stakeholders of the system. For this purpose, an architecture needs to be
documented using some notation and associated descriptions. Our experience is
that the documentation of a design in general, and of an architecture design in par-
ticular, requires a considerable translation from the internal representation of the
software architect. Often, all kinds of relevant information seems to disappear in
the process because no feasible ways of documenting these aspects are available.
Undoubtedly, this is also true for the designs presented in this book, but we have no
alternative ways of documenting architectures.

Copyright April 1999 by Jan Bosch (Draft version) 41/54

Defining the System Context

In our architecture design projects, we have used a subset of the Unified Modeling
Language (UML) [refs]. The reasons for choosing UML are largely practical, i.e.
the notation is wide-spread and enjoys a wide acceptance. In addition, most soft-
ware engineers are able to interpret UML diagrams. Finally, the notion of architec-
ture components and the concept of an object are rather similar, due to which the
notation matches architecture specifications reasonably well.

FIGURE 5. Illustrating some of the UML components

Providing a thorough introduction to UML is not within the scope of this book.
However, we will briefly introduce the primary components in UML. In figure 5, a
number of UML components is shown, i.e. class and three types of relations, i.e.
generalization, aggregation and association. In addition, the comments component
is shown. These components are used to describe structural properties of a software
system. In figure 6, an example sequence diagram is shown that can be used to
describe the dynamic properties of a group of classes. It shows the interaction
between three objects, including a call to another object, to the object itself, a
nested call and a call back to the sender.

*** This section needs to be extended once I know what notation is needed in the
remainder of this part ***

2. Defining the System Context

“No object is an island”, wrote XX [ref] several years ago. The same can be said to
be true for software systems in general. All software has to interface with one or
more external entities. Different from what one may suspect, it is the externally vis-

Comments

SubClass1 Subclass2

AggregatedClass
SuperClass

(from java.awt)

Aggregation
AssociatedClass

Generalization Generalization

Association

Functionality-based Architectural Design

42/54 Copyright April 1999 by Jan Bosch (Draft version)

ible behavior of a system that is the thing that counts. All our efforts as software
architects and engineers are judged from this perspective, although it is difficult to
maintain this viewpoint since virtually all of our efforts are spend on the internals
of software systems.

FIGURE 6. UML Sequence diagram

The entity at the other end of an interface may be located at a lower-level, a higher-
level or at the same-level as the system that we are designing. Examples of lower-
level entities include network interface and sensor or actuator interfaces, whereas
same-level entities often are systems that address a different functional domain, but
need to communicate because of system integration requirements. For instance, in
the case of Securitas Larm, high-end fire-alarm system has to interface with other
building automation systems to achieve more intelligent behavior. For instance, if
no humans are supposed to be in one part of the building, the particle-density sen-
sors should be more sensitive then when smoking persons might be walking around
in that part. In the latter case, sensors should not activate the alarm when temporary
peeks in particle density are detected. Higher-level entities may be system integra-
tion software, e.g. in the case of the fire-alarm system, the building automation inte-
gration system, or human beings, e.g. operators of the system or other users.

Explicitly defining the system in terms of the functionality and quality required on
its interfaces is an important starting point once the requirements by the customer

anObject anotherObject aThirdObject

msg1

msg2

msg3

msg4 msg5

msg6

Copyright April 1999 by Jan Bosch (Draft version) 43/54

Defining the System Context

have been defined. It allows one to distribute requirements to the interfaces and to
define the various quality requirements more precisely. Interface-specific require-
ments allow for the specification of both operational and development quality
requirements. For example, performance, real-time and reliability requirements can
be expressed on the services provided on the interface. In addition, maintainability
and flexibility requirements can be expressed in terms of the likely changes at the
interface.

An additional reason for explicitly defining the system context and boundaries is
because our experience is that there is a natural tendency to include more and more
aspects during design. In the situations that explicit effort is spent on software
architecture design, there generally also is an understanding that this process should
be allowed to take time. Because there is no extreme time pressure, software archi-
tects, in our experience, try to extend the domain of the design because each of
these extensions will improve the applicability of the architecture and allow for
likely future requirements to be integrated more easily. The problem, however, is
that these extensions increase the design and development cost, resulting in the sit-
uation where the current development project budget is partially used for mainte-
nance activities in response to likely, but not certain future requirements.
Management may easily react to this development using the well-known tool, i.e.
strict deadlines, not allowing for a sufficiently thought-through architecture. The
more fruitful approach to this is to explicitly define the system boundaries and the
functional and quality requirements, requiring software engineers to stick to their
appointed domain.

In the case of a software architecture design for a product-line, the definition of the
system context is somewhat more complicated since products in the product-line
tend to have variations in the interfaces they provide. The product-line architecture
has to support the superset over all products of the interfaces, functional require-
ments and quality requirements without sacrificing cost and resource efficiency for
the low-end product. The latter may prove difficult to achieve in practice, but, in
our experience, the reasons for these difficulties are often located in the reusable
assets rather than in the architecture. Since the architecture is primarily facilitating
the fulfillment of functional and quality requirements, it often quite possible to
exclude or short-cut parts of the architecture for low-end products. In later chapters,
we address the implementation of variability in reusable assets, including the issues
related to excluding functionality for low-end instantiations of reusable compo-
nents.

Concluding, the following activities are part of the system context definition step:

Functionality-based Architectural Design

44/54 Copyright April 1999 by Jan Bosch (Draft version)

• Define the interfaces of the system to external entities. These entities may be
located at a lower level, a higher level or at the same level.

• Associate functional and quality requirements with each interface. Both opera-
tional and development quality requirements can be associated with interfaces.

• In the case of a product-line architecture, the variability in the interfaces sup-
ported by the various products in the product-line should be explicitly identified
and specified. The cost and resource efficiency of low-end products should not
be sacrificed for the requirements of high-end products.

3. Identifying the Archetypes

Once the boundaries for the system has been defined, the next step is to identify and
define the core abstractions based on which the system is structured. We refer to
these core abstractions as archetypes. It is of critical importance to successful archi-
tecture design that the architect finds a small set of, often highly abstract, entities
that, when combined, are able to describe the major part of the system behavior at
an abstract level. These entities form the most stable part of the system and sup-
posed not to be changed or only in very limited ways. Our experience is that even
relatively large systems can be described in terms of a small number of archetypes.

It is important to note that the archetypes are radically different from subsystems.
Whereas subsystems decompose system functionality into a number of big chunks,
the archetypes represent stable units of abstract functionality that appear over and
over again in the system. In the examples later in this chapter, the difference will be
exemplified more clearly.

The process of identifying the entities that make up the architecture is different
from, for instance, traditional object-oriented design methods as proposed by,
among others, [Booch 94] and [Rumbaugh et al. 91]. Those methods start by mod-
eling the entities present in the domain and organize these in inheritance hierar-
chies, i.e. a bottom-up approach. Our experience is that during architectural design
it is not feasible to start bottom-up since that would require dealing with the details
of the system. Instead one needs to work top-down.

Architecture entity identification is related to domain analysis methods (see [ref]
for an excellent overview), but some relevant differences exist. First, although
archetypes are modeled as domain objects, our experience is that these objects are
not found immediately in the application domain. Instead, they are the result of a

Copyright April 1999 by Jan Bosch (Draft version) 45/54

Identifying the Archetypes

creative design process that, after analyzing the various domain entities, abstracts
the most relevant properties and models them as architecture entities. Once the
abstractions are identified, the interactions between them are defined in more detail.
A second difference between architecture design and domain analysis is that the
architecture of a system generally covers multiple domains.

Once one has reduced the archetype candidates to a small and manageable set that
has proven some stability, the relations between the archetypes are identified and
defined. The types of relations are generally domain specific and describe control
and/or data flow in the system. The relations should not be generic relation types as,
for instance, the generalization and aggregation relations in object-oriented model-
ing. The presence of these relations, especially generalization, between archetypes
is suspicious and one should reconsider whether the involved archetypes should
perhaps be merged.

Within the domain of architecture description languages, e.g. [Allen & Garlan 97],
architectures are described in terms of components and connectors. The connectors
are explicitly modeled entities representing the relations between components.
When using particular architectural styles, the connectors are style specific as well.
For instance, in the pipes and filters architectural style, the pipes are represented as
connectors. However, connectors are not equivalent to relations between arche-
types. Instead, connectors represent one way of implementing relations. When the
components implementing two related archetypes provide a good match, the rela-
tion may not be represented explicitly but rather through normal message passing.
However, if some mismatch between the components exists, then the necessary
glue code can be implemented in a connector that then becomes a first-class entity
in the implementation.

Small groups of related archetypes tend to form system-specific ‘architectural pat-
terns’ that are applicable in many locations in the system instantiations. The ‘archi-
tectural patterns’ may prove to have a wider validity than just the system context
and may actually suit more systems in an application domain.

Finally, no explicit guidelines exist that decide on when the identification and defi-
nition of archetypes is done and the team has to move on to the next phase. Our
experience is that, during the process, a consensus develops within the team on
when sufficient effort has been spent and the design activity can proceed to the next
step. However, during later phases, it may prove necessary to return to this step and
rework the archetypes. It is important to allow for this type of iteration and not to
force the creative process in a waterfall model too early and easily.

Functionality-based Architectural Design

46/54 Copyright April 1999 by Jan Bosch (Draft version)

Concluding, the following activities take place during archetype identification:

• The identification of archetype candidates.

• The selection of a small and stable set of archetypes from the candidates. This
may require the exclusion of candidates, but especially the merging of candi-
dates is rather common.

• The identification and selection of relations between archetypes.

4. Describing System Instantiations

The identified collection of archetypes captures the most stable and core abstrac-
tions of the system domain. However, these abstractions do not provide a system
description. To describe the system under design, an instantiation of the archetypes
and the relations between them is required. Since the archetypes capture core
abstractions in the system domain, they are generally instantiated in many places in
the system in many different concrete forms.

Since a system instantiation is concerned with the structure of concrete instances of
the final product, a decomposition of the system into subsystems is generally rele-
vant. A recursive decomposition of the system into a hierarchy of subsystems helps
to deal with the complexity of software systems. The complexity of a software sys-
tem does not have to be the result of sheer size, it can also result from a multitude of
interfaces to the system or because of highly prioritized, but strongly conflicting
quality requirements. For instance, the new generation of certain types of embed-
ded systems, e.g. handheld devices, have extreme flexibility and performance
requirements. The cost effective implementation of these conflicting quality
requirements is a major challenge for the software engineers involved.

The recursive decomposition of the system into subsystems is populated with
instantiated archetypes. At the leaf levels of the system, the subsystems are
assigned individual instances of archetypes. The generic relations between the
archetypes identified during the previous step are instantiated together with the
instantiation of the involved archetypes. The assignment of archetypes to sub-
systems and specification of relations between subsystems allows for a verification
of the match between the domain abstractions represented by the archetypes and the
concrete system instantiation. If mismatches are identified, this is generally the
indication of a problem that needs to be investigated to make sure that no funda-

Copyright April 1999 by Jan Bosch (Draft version) 47/54

Illustrating Functionality-Based Design

mental mistakes have been made that often prove extremely costly to repair at a
later stage.

It is the description of the system instantiation that we consider to be the architec-
ture of a software system, i.e. its decomposition into its main components. How-
ever, this decomposition does not need to be single level, but may incorporate a two
or more levels of decomposition for critical parts of the system. As we will discus
in later chapters, the goal of software architecture design is to specify, early in the
development process, a system structure that allows for the fulfillment of the sys-
tem requirements. In certain cases, it is required to perform more detailed analysis
of critical parts of the system in order to be able to state with sufficient certainty
that the system will fulfil its quality requirements.

Product-line architectures need to support multiple system instantiations, since the
individual products in the family have unique requirements. During the definition
system instantiations, explicit attention has to be directed to the variation in system
instantiation for each product. Although the difficulties of providing the required
variability are primarily found in the implementation of the reusable assets, uncare-
ful design of the software architecture can lead to unwanted rigidness in dimensions
where flexibility is required.

Summarizing, the following activities take place during the definition of system
instantiations:

• The system is recursively decomposed into subsystems.

• Each subsystem is either populated with instantiated archetypes that fulfil the
functionality required from the system or is represented by an individual instan-
tiated archetype.

• The generic relations between the archetypes are instantiated for the instantiated
archetypes and a verification of the match between abstractions and the concrete
system decomposition is performed.

• Sufficient variability of product-line architectures is verified by the definition of
multiple system instantiations, representing different products.

5. Illustrating Functionality-Based Design

In the following sections, we illustrate the functionality-based design for the exam-
ple systems discussed in the previous chapter. Although based on real-world sys-

Functionality-based Architectural Design

48/54 Copyright April 1999 by Jan Bosch (Draft version)

tems, the designs presented here have been modified and simplified for illustrative
purposes. Because of this, the designs presented here may seem somewhat small
and naive, but since these designs will be transformed in chapter 5 to incorporate
the quality requirements we are forced to keep the size of the initial designs small.

5.1 Fire-alarm systems

Defining the system context. A fire-alarm system is a relatively autonomous sys-
tem, but it does provide a number of interfaces to its context. The first issue to
decide whether the mechanical and hardware parts of the detectors and alarm
devices are part of the system or not. Since we are concerned with the architecture
of the software system, we consider those parts to be external and consequently
interfaces exist between the software system and the physical detectors and alarm
devices.

As second issue that we need to decide upon is whether the communication system
is part of the system at hand, because the fire-alarm system is highly distributed in
nature. In this case, we decide that communication is included as a part since it
forms an integral part of the fire-alarm system functionality.

A second interface of the system is towards the operator of the system. In the case
of an alarm, but also for activating and deactivating parts of the system and moni-
toring its behavior. This amount of variability of the functionality of the interface is
very large, but one can identify a number of core issues that need to be retrievable
via the operator interface, such as the location of an alarm or fault warning in the
building. Part of this interface is the interaction with external contacts that need to
be notified when the system enters certain states, e.g. alarm, such as the local fire
station.

A third interface, although related to the previous, is concerned with the interaction
to other building automation systems. Other systems may be interested in certain
events that take place in the fire-alarm system and may request to be notified. Sim-
ilarly, the fire-alarm system may want to affect the state and behavior of other sys-
tems, e.g. in case of a fire in a part of the building, the passage-control system may

Copyright April 1999 by Jan Bosch (Draft version) 49/54

Illustrating Functionality-Based Design

be ordered to unlock all doors in that part allowing people to leave the building
without having to use their cards and codes at every door.

FIGURE 7. Interfaces of the fire-alarm system

In figure 7, the interfaces provided by the fire-alarm system are presented graphi-
cally. As discussed earlier, in a real design, one would assign functional and quality
requirements to the identified interfaces and define the interaction at these inter-
faces in more detail. However, we leave this step here to avoid exposing unneces-
sary details of the system.

Identifying the archetypes. When searching for entities that grasp the behavior of
several entities and are still abstract, one can detect a number of candidates. Among
these, we will use the following as archetypes:

• Point: The notion of a point represents highest-level abstraction concerning
fire-alarm domain functionality. It is the abstraction of the two subsequent
archetypes.

• Detector: This archetype captures the core functionality of the fire-detection
equipment, including smoke and temperature sensors.

• Output: The output archetype contains generic output functionality, including
traditional alarms, such as bells, extinguishing systems, operator interfaces and
alarm notification to, e.g., fire stations.

Functionality-based Architectural Design

50/54 Copyright April 1999 by Jan Bosch (Draft version)

• Control Unit: Since a fire-alarm system is a distributed system by nature, small
groups of points are located at control units that interact with the detectors and
outputs in the group. Control units are connected to a network and can commu-
nicate. The latter is of crucial importance since the detector alarms in one con-
trol unit should often lead to the activation of outputs in other control units.

In figure 8, the relations between the archetypes are shown. As discussed earlier,
detector and output are specializations of point and points are contained in control
units. Control units communicate with other control units to exchange data about
detectors and to activate outputs.

FIGURE 8. Relations between the fire alarm system archetypes

Describing system instantiations. The first activity in this step is to identify sub-
systems. The actual system design is decomposed in six main subsystems. How-
ever, since we scaled down the actual system for illustrative purposes, we identify
only those subsystems directly related to the identified archetypes for the example
fire-alarm system.

FIGURE 9. Subsystems of the fire-alarm system

To understand the instantiation of the fire-alarm system, we present two system
instantiation that are at the two extreme ends of the complexity scale. The first sys-

Point

(from java.awt)

Detector Output

ControlUnit

communicates with

Copyright April 1999 by Jan Bosch (Draft version) 51/54

Illustrating Functionality-Based Design

tem, shown in figure 10, represents a small system that might be found, for exam-
ple, in a single family house. It consists of a small set of detectors, five smoke
detectors in the example, one control unit and two outputs, i.e. a sound alarm and a
simple LED-based user interface. The functionality available to the user is to acti-
vate or deactivate the system and the feedback from the system is an indication for
alarm and one for faults, i.e. internal system errors.

FIGURE 10. Example small fire-alarm system instantiation

A considerably larger example of an instantiated fire-alarm system is shown in fig-
ure 11. The fire-alarm system covers a site consisting of two buildings and each
building is divided into 4 sections. Each section is supervised by a control unit. One
of the control units has an operator interface as a point connected to it. Since the

Functionality-based Architectural Design

52/54 Copyright April 1999 by Jan Bosch (Draft version)

control units are able to communicate with each other, the operator can monitor the
complete system from the control unit that the interface is connected to.

FIGURE 11. Example two-building fire-alarm system

5.2 Measurement systems

Defining the system context.

Identifying the archetypes.

Describing system instantiations.

5.3 Dialysis systems

Defining the system context.

Identifying the archetypes.

Describing system instantiations.

Copyright April 1999 by Jan Bosch (Draft version) 53/54

Summary

6. Summary

Architecture design connects the activity of requirements engineering to conven-
tional detailed design by providing a top-level design incorporating the main design
decisions. In this chapter, we discussed the first step in the architecture design pro-
cess, i.e. designing the first version of the architecture based on the functional
requirements. The method for architecture design presented in this part of the book
has a focus on the explicit evaluation of and design for quality requirements, but
that does not mean that the functional requirements are irrelevant. Before one can
start to optimize an architecture for quality requirements, the first step must be to
design a first version of the architecture based on the functional requirements.

The first design phase discussed in this chapter consists of three main steps. The
first step concerned with determining the context of the system under design, the
interfaces of the system to the external entities it interacts with and the behavior the
system should exhibit at the interfaces. In addition, the variability required from the
components is specified. The second step is the identification of the archetypes, i.e.
the main architectural abstractions, and the relations between the archetypes. Our
experience is that finding these archetypes is very important especially for the later
phases. Architecture transformations tend to build additional structures around the
archetypes for fulfilling quality requirements. The final step in functionality-based
architectural design is the recursive decomposition of the system into subsystems
and the description of system instances using the archetypes and the system inter-
faces. Since the architecture, for instance in the case of product-line architectures,
may be required to support a number of different instantiations, these have to be
specified explicitly to verify that the system, in addition to the commonality also
supports the required variability.

Functionality-based Architectural Design

54/54 Copyright April 1999 by Jan Bosch (Draft version)

Copyright April 1999 by Jan Bosch (Draft version) 55/82

CHAPTER 4 Assessing Software
Architectures

In the previous chapter, a first version of some software architectures, based on the
functional requirements, was designed. In order to decide whether these architec-
ture fulfil their quality requirements as well, the architectures needs to be assessed.
In this chapter we discuss a number of different approaches to architecture evalua-
tion that we have experienced as being useful. These techniques are illustrated
using the example architectures presented in the previous chapter.

1. Introduction

One of the core features of the architectural design method is that the quality
attributes of a system or application architecture are explicitly evaluated during
architecture design; thus without having a concrete system available. Although sev-
eral notable exceptions exist, our experience is that the traditional approach in soft-
ware industry is to implement the system and then measure the actual values for the
quality system properties. The obvious disadvantage is that potentially large
amounts of resources have been put on building a system that does not fulfil its
quality requirements. In the history of software engineering, several examples of
such systems can be found. Being able to estimate the quality attributes of the sys-
tem already during early development stages is important to avoid such mishaps.

Assessing Software Architectures

56/82 Copyright April 1999 by Jan Bosch (Draft version)

However, the question is how to measure system properties based on an abstract
specification such as an architectural design. For obvious reasons, it is not possible
to measure the quality attributes of the final system based on the architecture
design. Instead, the goal is to evaluate the potential of the designed architecture to
reach the required levels for its quality requirements. For example, some architec-
tural styles, e.g. layered architectures, are less suitable for systems where perfor-
mance is a major issue, even though the flexibility of this style is relatively high.

The assessment of an architecture can have different goals, depending on the ambi-
tion level of the software architect and the applicability of the assessment tech-
niques used:

• Relative assessment: At the lowest ambition level, the software architect is
interested in the comparison of two candidate architectures and is concerned
with what architecture is more suited for a particular quality attribute. These
two architectures may either be two completely different alternatives, but it may
also be two subsequent versions of an architecture, where the latter has been
transformed to improve the assessed quality attribute or another. For instance,
one may assess two architectures for maintainability to decide which of the two
is easiest to maintain.

The main disadvantage is that relative assessment only gives a ‘boolean’
answer, e.g. architecture A is more suited than architecture B for a given quality
attribute. In the situation where the software architect has two alternative archi-
tectures, A and B, and two quality attributes, e.g. performance and maintainabil-
ity, and one of the architectures is more suited for performance and the other
more suited for maintainability, the architect has too little information to make a
decision concerning which alternative is more viable. The one architecture may
be only slightly worse for performance, but considerably better for maintain-
ability, but relative assessment gives no information concerning this.

• Absolute assessment: At a higher ambition level, the software architect is inter-
ested in making absolute statements about the quality attributes of the software
architecture. Examples of these are statements about the throughput of the sys-
tem, average response times of individual actions and the maintenance cost of
the system. If the architect is able to perform assessments at the absolute level
with an acceptable accuracy, then it is possible to compare the assessment
results to the requirement specification and decide on whether the system will
fulfil all its requirements, including the quality requirements before the system
is actually build. In addition, the comparison of alternative architectures or sub-
sequent versions of an architecture become much more informed and the archi-
tect has quantifiable, objective means to select alternatives.

Copyright April 1999 by Jan Bosch (Draft version) 57/82

A disadvantage of this approach is that although we know what level the archi-
tecture provides for the assessed quality attributes, we have no information
about the theoretically maximum (or minimum) values for the quality attributes.
Thus, we have assessment results that, for instance, predict performance and
maintainability levels, but we have no clue whether evolving this architecture or
a fundamentally different architecture will provide, potentially, much higher
performance and much lower maintenance cost.

• Assessment of theoretical maximum1: At the highest level of assessment we
assess an architecture both for its current level and for its theoretical maximum
(or minimum) for the relevant quality attributes. The gap between current and
maximum levels allows us to determine whether evolving the architecture is
still useful and whether we need to start making trade-offs between quality
attributes, and potentially renegotiate with the stake-holders to change the
requirement specification, or that either evolving the current architecture or a
fundamentally different architecture would be able to incorporate both quality
requirements without conflicts.

In our experience, the currently available techniques for architecture assessment
allows us to make absolute statements about quality attributes at the software archi-
tecture level (although perhaps not at the level of accuracy that we would like), but
we have no means to predict theoretical maximum (or minimum) values for soft-
ware architectures.

This chapter is organized as follows. In the next section, the notion of scenario pro-
files is introduced and explained in detail. These profiles are used for the assess-
ment of quality attributes. Three approaches for assessing quality requirements
have been identified, i.e. scenarios, simulation and mathematical modeling. For
each quality requirement, the engineer can select the most suitable approach for
evaluation. Each assessment approach is discussed in a separate section. Section 6
discusses the importance of experience and creative insight of software architects
and engineers. This section is followed by a discussion of architecture assessment
in the broad sense and the paper is concluded in section 8. Some relevant further
reading is discussed in section 9.

1. Thanks to PO Bengtsson for pointing this out to me.

Assessing Software Architectures

58/82 Copyright April 1999 by Jan Bosch (Draft version)

2. Profiles

Quality requirements such as performance and maintainability are, in our experi-
ence, generally specified rather weakly in industrial requirement specifications. In
some of our cooperation projects with industry, the initial requirement specification
contained statements such as “The maintainability of the system should be as good
as possible” and “The performance should be satisfactory for an average user”.
Such subjective statements, although well intended, are useless for the evaluation
of software architectures. For example, [Gilb 88] discusses the quantitative specifi-
cation of quality requirements and presents useful examples.

Several research communities, e.g. performance [Smith 90], real-time [Liu & Ha
95] and reliability [Neufelder 93], have developed techniques used for the specifi-
cation and assessment of their particular quality requirement. Typical for these
techniques is that they tend to require considerable effort from the software engi-
neer for creating specifications and predictions. Secondly, since the ambition is to
produce detailed and accurate results, these techniques generally require informa-
tion about the system under development that is not available during architectural
design, but earliest during detailed design. Since we are interested in making pre-
dictions early in the design process, before the important, architectural design deci-
sions cannot be revoked, other techniques are required that do not require as much
detailed information and, consequently, may lead to less precise results, but give at
least indications of the quality of the prediction. Finally, it is important to note that
the software engineering industry at large has not adopted the techniques developed
by the quality-attribute research communities. One explanation might be that
within an engineering discipline, each activity is a balance of investment and
return. These techniques may not have provided sufficient return-on-investment,
from the perspective of industrial software engineers, to be economically viable.

However, when one intends to treat the architecture of a software system that one is
working on explicitly in order be able to early predict the quality attributes of the
system, one is required to specify quality requirements in sufficient detail. One
common characteristic for quality requirements is that stating a required level with-
out an associated context is meaningless. For instance, the statement “Performance
= 200” or “Maintainability = 0.8” is meaningless for architecture evaluation.

However, one common denominator of most quality attribute specification tech-
niques is that some form of profile is used as part of the specification. A profile is a
set of scenarios, generally with some relative importance associated with each sce-
nario. The profile used most often in object-oriented software development is the

Copyright April 1999 by Jan Bosch (Draft version) 59/82

Profiles

usage profile, i.e. a set of usage scenarios that describe typical uses for the system.
The usage profile can be used as the basis for specifying a number of, primarily
operational, quality requirements, such as performance and reliability. However,
for other quality attributes, other profiles are used. For example, for specifying
safety we have used hazard scenarios and for maintainability we have used change
scenarios.

Based on our experience, we believe that it is necessary to specify the relevant pro-
files for the software quality requirements that are to be considered explicitly in the
architecture design process. Using the profile, one can make a more precise specifi-
cation of the requirement for a quality attribute. For example, the required perfor-
mance of the system can be specified using the usage profile by specifying the
relative frequency and the total number of scenarios per time unit.

2.1 Complete and Selected Profiles

There are two ways of specifying profiles for quality attributes, i.e. the complete
and the selected profiles.When defining a complete profile for a quality attribute,
the software engineer defines all relevant scenarios as part of the profile. For exam-
ple, a usage profile for a relatively small system may include all possible scenarios
for using the system (perhaps excluding exceptional situations). Based on this com-
plete scenario set, the software engineer is able to perform an analysis of the archi-
tecture for the studied quality attribute that, in a way, is complete since all possible
cases are included.

It should, at this point, be clear to the reader that complete profiles only work in a
limited number of cases. It requires systems to be relatively small and one is only
able to predict complete scenario sets for some quality attributes. For instance, in
order to predict the maintainability of the system, the definition of a complete pro-
file assumes that one is able to define all changes that will be required from the sys-
tem during its operation, or during a predefined period of time. It is safe to assume
that this is impossible in all but highly artificial situations.

The alternative to complete profiles are selected profiles. Selected profiles are anal-
ogous to the random selection of sample sets from populations in statistical experi-
ments. Assuming the sample set is selected according to some requirements, among
others randomness, the results from the sample set can be generalized to the popu-
lation as a whole. One of the major problems in experiment-based research is the
truly random selection of elements from the population, because of practical or eth-
ical limitations. However, even if one does not succeed to achieve random selec-
tion, but is forced to make a structured selection of elements for the sample set, the

Assessing Software Architectures

60/82 Copyright April 1999 by Jan Bosch (Draft version)

research methodology developed for a weaker form of experimentation, known as
quasi-experimentation, allows one to still make scientifically validated statements.

The notion of selected profiles makes use of the above principles. Assuming a large
population of possible scenarios, e.g. change scenarios, one selects individual sce-
narios that are made part of the sample set. A complete sample set is what we, so
far, have referred to as a profile. Assuming the selection of scenarios has been done
careful, one can assume that the profile represents an accurate image of the scenario
population. Consequently, results from architecture analysis based on the profile,
will provide accurate results for the system and not just for the profile.

2.2 Defining Profiles

The most difficult issue in defining a profile is, obviously, the selection of scenarios
that become part of the profile. Since these scenarios are selected and defined by
software engineers and other stakeholders, it is hard to claim that this process is
random. In our experience, totally unsupported selection and definition of scenarios
leads, in some cases, to situations where particular types of scenarios, e.g. changes
to the user interface, become overrepresented. To address this, we divide the pro-
cess of profile specification into two main steps:

• Definition of scenario categories: The first step in profile specification is the
decomposition of the scenario ‘population’ into a number of smaller popula-
tions that cover particular aspects of the system. For instance, in the case of
usage profiles, one may identify different users of the system, e.g. local user,
remote user, operator, etc. To give a second example, in the case of maintenance
profiles, one may identify changes to the different interfaces to the context of
the system, e.g. the hardware, the communication protocols, the user-interface,
etc. In our experience, we normally define around 6 categories, but this is
heavily dependent on the type of system and the intentions of the software
architects for defining the profiles.

• Selection and definition of scenarios for each category: In the second step,
the software architects select, for each category, a set of scenarios that is repre-
sentative for the sub-population. Of course, we moved the problem of represen-
tativeness one level down from the profile as a whole to the category. However,
in our experience, when dealing with a particular category, e.g. hardware
changes in a maintenance profile, it is considerably easier to cover all relevant
aspects in that category. In addition, even if the scenarios within a category are
not representative, the resulting profile will still be closer to the ideal compared
to not using categories. Finally, in our experience, we select and define up to 10

Copyright April 1999 by Jan Bosch (Draft version) 61/82

Profiles

scenarios per category for quality attributes that are crucial for the system and 3
to 5 scenarios for important quality attributes.

The fact that humans are part of the process of selecting scenarios and categories
can be considered a weakness, especially compared to automated random selection.
However, it is not possible to perform random selection for the definition and the
alternative is to not use scenarios and architecture analysis at all. And, as discussed
in the introductory chapter, we know what the lack of assessment early in the
design process leads to.

Once the categories and scenarios that are part of the profile have been selected and
defined, the next step is to assign weights to the scenarios. The weights indicate
slightly different things for different profiles, e.g. in the case of a usage profile, the
weight indicates the relative frequency of executing a particular scenario whereas,
in the case of a maintenance profile, the weight indicates the predicted relative like-
lihood of a particular change scenario.

There exist many different approaches to assigning weights to scenarios. For
instance, scenarios can be rated on a scale from 1 to 10 or 1 to 100 or an approach
using (--, -, o, +, ++) can be used. We have no preferences on the particular
approach to use, but we do require that the approach used is quantifiable and that
the weights can be converted to relative weights.

For example, assume that the scenarios in a profile have been rated on a scale 1 to
10. Once all weights have been assigned, we calculate the relative weight by adding
the scores of all scenarios to achieve a total X. The relative weight of each scenario
is than calculated as assigned weight divided by X. This results in a number
between 0 and 1 and indicates the relative importance of the scenario in the profile.
The sum of relative weights of all scenarios in the profile is, obviously, 1. Later in
this chapter, we will describe how the weights are used in architecture assessment.

2.3 Quality Attribute Profiles

In the disposition, we have, up to this point, implicitly indicated that each quality
attribute has an associated profile. Although this is true for several system
attributes, some profiles can actually be used for assessing more than one quality
attribute. In this section, we briefly describe the most important quality attributes
and their associated profiles.

The following quality attributes can be considered as the most relevant from a gen-
eral software system perspective.

Assessing Software Architectures

62/82 Copyright April 1999 by Jan Bosch (Draft version)

• Performance: The general efficiency with which the system performs its func-
tionality, measured in throughput, i.e. number of use scenarios per time unit, or
the response time of use scenarios, is generally considered to be a very impor-
tant property of any software system. Especially in large systems, the architec-
ture plays a central role in achieving high performance since performance
bottlenecks are not caused by the actual computation related to the domain func-
tionality, but are due to context switches, synchronization points, dynamic
memory management, etc.

Profile: Usage profile describing either a complete or selected set of functional
scenarios, describing a particular instance of system usage by one of the users.
Scenario categories generally decompose the use scenario space based on user
types and/or system interfaces. Scenario weights represent the relative fre-
quency of the scenario.

Architecture description data: The architecture should contain, in addition to
the base information concerning component and component functionality, the
system behavior in response to the use scenarios in the profile, the required
computation at each component, the average (and worst-case) delays due to e.g.
synchronization and the general overhead in the system. This information can
either be generated by the software architects based on intelligent guessing or
based on historical data from existing systems.

• Maintainability: Similar to performance, also maintainability is a quality
attribute fundamentally affected by the architecture of a software system. The
way the system functionality is decomposed into components leads to highly
different efforts in response to requirements changes. This because a require-
ment change may lead to a local change in one architecture and may require
changes in several components in another architecture. There are considerable
cost differences between the two examples, due to the additional effort of
changing more than one component, but also due to the increased architecture
erosion and other effects. Finally, there are requirement changes that have so-
called architectural impact, i.e. they require the architecture to be changed. It
should be possible to incorporate all likely requirement changes without
changes to the software architecture since changes with architectural impact
tend to be prohibitively expensive.

Profile: Maintenance profile, consisting of change categories and change sce-
narios. Change categories tend to be organized around the interfaces the system
has to its surroundings. Generally, the hardware and operating system, the inter-
face to other systems the system under design is intended to communicate with
and the user interface to each of the user types tend to become change catego-
ries. The change scenarios describe concrete requirement changes that lead to
changes to the software. The relative weight of a scenario indicates its relative

Copyright April 1999 by Jan Bosch (Draft version) 63/82

Profiles

likelihood, i.e. the chance that the scenario (and the scenarios it represent) occur
during a time period. Note that since we assume that multiple requirement
changes may take place during this time period, it is more than possible that,
especially likely, change scenarios happen multiple times. This does not mean
that the concrete change scenario happens more than once (the requirement
change can only be incorporated once), but that multiple concrete scenarios may
occur from the set represented by the change scenario. Since these scenarios are
assumed to have a similar impact, it does not matter for the assessment which
concrete scenario is counted.

Architecture description data: As we will see in the examples later on in the
chapter, change scenarios are evaluated with respect to their impact on the
architecture. Impact is calculated in terms of number of lines of code that have
to be changed. In order to determine this, the estimated size of the architectural
components in terms of lines of code needs to be available for maintainability
assessment.

• Reliability: More than the quality attributes described earlier is reliability a
function of many factors, including the architecture, the detailed design, the
implementation, the education and experience levels of the people involved, etc.
During architecture assessment, we are, naturally, primarily concerned with the
architectural dimension of reliability. The architectural aspect of reliability is
concerned with the component interaction during operation and the effects of
component errors on the system reliability as a whole. Use scenarios that use
multiple components will have a lower reliability than use scenarios using fewer
components since the combined component reliabilities lead to lower use sce-
nario reliabilities. (*** Need to give Claes a call/email to figure out how this
works ***)

Profile: Usage profile, where the use scenarios are evaluated with respect to the
component reliabilities, resulting in use scenario reliabilities. Based on these
reliabilities and the relative weights, a system reliability can be calculated.

Architecture description data: In addition to the knowledge about the archi-
tectural components and information about the component interaction in
response to each use scenario, the software architect needs component reliabil-
ity data. This data can either be based on historical data, on intelligent guessing
or the reliability data can be converted into component requirements. The com-
ponent designers and implementers then need to assess component reliability
and make sure that the required levels are achieved.

• Safety: Safety is concerned with the negative or even destructive effects the
system under design may have on the real-world and entities in the real-world.
It is, consequently, not concerned with the system functionality, but with the
effects the system may have on the real-word. The effects may be physical, e.g.

Assessing Software Architectures

64/82 Copyright April 1999 by Jan Bosch (Draft version)

a dialysis machine not detecting air bubbles in the extra-corporeal blood flow,
but need not be, e.g. a banking system performing incorrect money transfers,
thereby damaging customers and/or the banking corporation itself. In addition,
the safety requirement is supposed to both detect internal system errors and
incorrect system input.

Profile: Hazard profile, containing hazard scenarios, i.e. situations where not
detecting a fault may lead to negative or disastrous consequences. The hazard
categories can be organized according to certification documents, as is the case
for medical systems, the interaction points of the system with the real-world or
the critical system components, whose failure may lead to hazard situations.

Architecture description data: Safety is often an issue in embedded systems,
i.e. systems including mechanical, hardware and software parts. Since safety is
primarily a system attribute and the software safety is derived from the system
safety, the relation between system architecture and the software architecture
should be explicit and clear.

• Security: Software systems may become subject to unintentional or intentional
attempts to access the system or parts of the system by unauthorized entities, be
it other systems or persons. Security is not just an issue for military (intelli-
gence) systems, but is relevant for most business and governmental systems
since most organizations both have the right and the obligation to keep data
inaccessible for all but authorized users. This includes the situation where users
of the system are only authorized to perform those tasks that are part of their
role within the organization. Especially intentional access attempts by unautho-
rized entities can take many forms, including attacks at the level of system hard-
ware, but there is definitely an architectural component in security. One issue is
that security should preferably be handled consistent throughout the system;
another being that ‘compartmentalization’ needs to be handled at the system
level. Finally, software security is part of system security, which in turn may be
part of other security schemes.

Profile: Authorization profile, at least divided in a matrix of two by two main
categories, i.e. unintentional versus intentional unauthorized access attempts
and internal versus external unauthorized access attempts. In addition, all sys-
tem interfaces can be used for categorization. The usage profile may be used as
a secondary profile to provide information on the actual usage of the system.

Architecture description data: Except for the base architecture description
data, no additional information is required. (**check **)

Copyright April 1999 by Jan Bosch (Draft version) 65/82

Profiles

2.4 Example

To illustrate the selection and definition of a profile, we use the dialysis system as
an example. As described in chapter 2, one of the driving quality attributes for the
dialysis system is maintainability. The company had learned the hard way the
importance of developing maintainable software. In table 1, a summary of the
maintenance profile for the dialysis system is shown. Six change categories are pre-
sented, i.e. changes driven by the market, the hardware, safety regulations, medical
advances, communication and I/O and, finally, algorithm implementation. For each
of the scenario categories, one or a few scenarios are presented. The example is dis-
cussed in more detail in [Bengtsson & Bosch 99].

Table 1: Dialysis System Maintenance Profile

Category Scenario Description Weight

Market
Driven

C1 Change measurement units
from Celsius to Fahrenheit for
temperature in a treatment.

0.043

Hardware C2 Add second concentrate pump
and conductivity sensor.

0.043

Hardware C3 Replace blood pumps using
revolutions per minute with
pumps using actual flow rate (ml/
s).

0.087

Hardware C4 Replace duty-cycle controlled
heater with digitally interfaced
heater using percent of full effect.

0.174

Safety C5 Add alarm for reversed flow
through membrane.

0.087

Medical
Advances

C6 Modify treatment from linear
weight loss curve over time to
inverse logarithmic.

0.217

Medical
Advances

C7 Change alarm from fixed flow
limits to follow treatment.

0.087

Sum 1.0

Assessing Software Architectures

66/82 Copyright April 1999 by Jan Bosch (Draft version)

2.5 Summary

The definition of profiles for the quality attributes considered most relevant for the
software architecture design allows for concrete and precise description of the
meaning of statements about quality attributes. For instance, a maintenance profile
describes what changes are most likely to occur and should be easy to incorporate.
For instance, using the profile as input, the software architect is able to optimize the
architecture for the most likely changes, thereby improving the maintainability of
the system.

In order to achieve the above situation, however, the software architecture needs to
have two important tools available, i.e. techniques to assess the quality attributes
and techniques to transform the architecture to improve its quality attributes. These
two issues are the subject of the current and next chapter, respectively.

The software architect can decide to define a complete scenario for a particular
quality attribute, but often this is not feasible and one is required to define a
selected profile. The definition of a selected profile for a quality attribute consists
of the following steps:

• Define scenario categories: As a first step, the scenario population for the qual-
ity attribute is divided into categories. Generally speaking, five to six categories
can be used, but this depends on the type of system.

• Define scenarios: For each category, a set of scenarios is selected by the soft-
ware architect that cover the category as well as possible. In our experience, up

Medical
Advances

C8 Add sensor and alarm for
patient blood pressure

0.087

Com.
and I/O

C9 Add function for uploading
treatment data to patient’s digital
journal.

0.043

Algorithm
Change

C10 Change controlling algo-
rithm for concentration of dialysis
fluid from PI to PID.

0.132

Table 1: Dialysis System Maintenance Profile

Category Scenario Description Weight

Sum 1.0

Copyright April 1999 by Jan Bosch (Draft version) 67/82

Scenario-based Assessment

to ten scenarios can be used for a detailed assessment, but three to five suffice
for obtaining a good indication.

• Assign weights: Each scenario is assigned a weight indicating its ‘likelihood’.
For instance, in the case of performance, the weight denotes the relative fre-
quency of the scenario, whereas in the case of maintainability, the weight
expresses the chance that this change scenario occurs. No approach to assigning
weights is enforced, but, as a minimum, the weights should quantifiable.

• Normalize the weights: To simplify the use of the profile in the assessment
techniques described in the subsequent sections, the weights of the scenarios are
normalized, such that the sum of all scenario weights is one.

3. Scenario-based Assessment

In the remainder of this chapter, a number of approaches to architecture assessment
are discussed. The approaches have different advantages and disadvantages, but
tend to complement each other. In this section, we discuss scenario-based assess-
ment of software architectures.

Scenario-based assessment is directly depending on the profile defined for the qual-
ity attribute that is to be assessed. The effectiveness of the technique is largely
dependent on the representativeness of the scenarios. If the scenarios form accurate
samples, the evaluation will also provide an accurate result. Scenario-based assess-
ment of functionality is not new. Several object-oriented design methods use sce-
narios to specify the intended system behavior, e.g. use-cases [Jacobsen et al. 92]
and scenarios [Wirfs-Brock et al. 90]. The main difference to the object-oriented
design methods is twofold. First, we use scenarios for the assessment of quality
attributes, rather than for describing and verifying functionality. Second, in addi-
tion to use scenarios, we also use other scenarios that define other quality attributes,
e.g. change and hazard scenarios.

If, however, the software architect decides to use traditional use-cases during archi-
tectural design and the use profile is a selected profile, it might be important to
define the use-cases independent of the use profile. The reason is that the architec-
ture design will, most likely, be optimized for the set of use-cases. If the set of use-
cases and the use profile are the same, then one can no longer assume that the
assessment of the architecture based on the profile is representative for the scenario
population as a whole. However, while developing the scenarios, it is not necessary
to develop two sets. The two sets could be generated later by randomly dividing the
initially specified set of scenarios. In addition, depending on the system, it might be

Assessing Software Architectures

68/82 Copyright April 1999 by Jan Bosch (Draft version)

necessary to develop new scenarios for evaluation purposes if the design is iterated
a number of times.

Scenario-based assessment can be used for comparing two architectures and for an
absolute assessment of a single architecture. The main difference is the amount of
quantitative data or estimates necessary to perform the assessment, which is consid-
erably larger in the latter form. Below, we will describe first describe the absolute
assessment and then discuss how one can scale down the approach for comparative
assessment.

(** figure presenting scen. based assessment process **)

Scenario-based assessment consists of two main steps:

• Impact analysis: As an input to this step, the profile and the software architec-
ture are taken. For each scenario in the profile, the impact on the architecture is
assessed. For a change scenario, the number of changed and new components
and the number of changed and new lines of code could be estimated. For per-
formance, the execution time of the scenario could be estimated based on the
path of execution, the predicted component execution times and the delays at
synchronization points. The results for each scenario are collected and summa-
rized.

• Quality attribute prediction: Using the results of the impact analysis, the next
step is to predict the value of the studied quality attribute. For performance, the
scenario impact data can be used to calculate throughput by combining the sce-
nario data and the relative frequency of scenarios. For maintainability, the
impact data of the change scenarios allows one to calculate the size in changed
and new lines of code for an average change scenario. Using a change request
frequency figure that is either estimated or based on historical data, one can cal-
culate a total number of changed and new lines of code. Using historical data
within the company or figures from the research literature, the software archi-
tect can calculate the maintenance cost by, for instance, multiplying the number
of work hours per maintained line of code with the total number of maintained
lines of code.

To illustrate scenario-based assessment, we present maintainability assessment and
an associated maintenance profile as an example. We use dialysis system example
discussed in chapter 2 and the maintenance profile in table 1. For each of the
change scenarios in the maintenance profile, an impact analysis is performed. In
this case, the changed code is expressed in the percentage of lines of code affected
in an existing component. The component sizes are taken from a small prototype

Copyright April 1999 by Jan Bosch (Draft version) 69/82

Scenario-based Assessment

that was constructed as part of the joint research project with the involved compa-
nies, i.e. EC-Gruppen and Althin Medical. The result of the impact analysis is
shown in table 2.

Table 2: Impact Analysis per Scenario

Scenario Affected Components Volume

C1 HDFTreatment (20% change) +
new Normaliser type component

,2*200+
20 = 60

C2 ConcentrationDevice (20%
change) + ConcCtrl (50% change)
+ reuse with 10% modification of
AcetatPump and ConductivitySen-
sor

,2*100+
,5*175+
,1*100+
,1*100 =
127,5

C3 HaemoDialysisMachine (10%
change) + new AlarmHandler +
new AlarmDevice

,1*500+
200+100
=350

C4 Fluidheater (10% change), remove
DutyCycleControl and replace
with reused SetCtrl

,1*100
= 10

C5 HDFTreatment (50% change) ,5*200
= 100

C6 AlarmDetectorDevice (50%
change) + HDFTreatment (20%
change) + HaemoDialysisMa-
chine (20% change)

,5*100+
,2*200+
,2*500
= 190

C7 see C3 = 350

C8 new ControllingAlgorithm + new
Normaliser

100+20
= 120

C9 HDFTreatment (20% changes) +
HaemoDialysisMachines (50%
changes)

,2*200+
,5*500
= 290

C10 Replacement with new
ControllingAlgorithm

= 100

Assessing Software Architectures

70/82 Copyright April 1999 by Jan Bosch (Draft version)

Using the impact analysis data, we can calculate the average number of lines of code
(LOC) for a change scenario:

0.043*60 + 0.043*127.5 + 0.087*350 + 0.174*10 + 0.217*100 + 0.087*190 +
0.087*350 + 0.087*120 + 0.043*290 + 0.132*100 = 145 LOC / Change

Assuming a number of change requests per year of 20 and an average productivity
of 1 LOC/hour (which is high for medium-sized and large systems, where studies
have shown a productivity of 0.2 LOC/hour), one can calculate a maintenance
effort for the architecture of:

20 change requests * 145 LOC/change request * 1 hour/LOC = 2800 hours

This equals about 1.5 person working full-time on the maintenance of the software
system. Note that these figures incorporate all maintenance related activities,
including updating the requirement specification, design documents and user docu-
mentation, the actual design and implementation, regression testing and testing of
the new functionality and the deployment of the software.

As mentioned earlier, scenario-based assessment can also be used for the compari-
son of two or more alternative architectures. In that case, the quantification of
impact data is less important and no prediction of quality attribute is done. Instead,
for each architecture, impact data is collected, which can be on a (--, ..., ++) scale
and summarized. Using this model, each architecture is assigned a score and the
software architect can select the most appropriate architecture by comparing the
scores. However, the disadvantages of relative assessment discussed in the intro-
duction remain.

Finally, in our experience, scenario-based assessment is particularly useful for
development quality attributes. Quality attributes such as maintainability can be
expressed very naturally through change scenarios. Although operational quality
attributes, such as performance, can be assessed using this technique as well, we
have experienced that other assessment techniques are sometimes preferable.

Summarizing, scenario-based assessment can be used both for relative (or compar-
ative) and absolute assessment. It consists of two major steps, i.e. impact analysis,
taking the software architecture and the profile as input and generating impact data,
and quality attribute prediction, using the impact data to make a statement about the
level of the quality attribute. In the case of comparative assessment, the quality
attribute prediction phase does not lead to a figure, but to a ranking of alternative
architectures.

Copyright April 1999 by Jan Bosch (Draft version) 71/82

Simulation-based Assessment

4. Simulation-based Assessment

The assessment technique discussed in the previous section is rather static in that no
executing dynamic model is used. An alternative is simulation-based assessment in
which a high-level implementation of the software architecture is used. The basic
approach consists of an implementation of the components of the architecture and
an implementation of the context of the system. The context, in which the software
system is supposed to execute, should be simulated at a suitable abstraction level.
This implementation can then be used for assessing the behavior of the architecture
under various circumstances.

Once a simulated context and high-level implementation of the software architec-
ture are available, one can use scenarios from the relevant profiles to assess the rel-
evant quality attributes. Robustness, for example, can be evaluated by generating or
simulating faulty input to the system or by inserting faults in the connections
between architecture entities.

The process of simulation-based assessment consists of a number of steps:

• Define and implement the context: The first step is to identify the interfaces of
the software architecture to its context and to decide how the behavior of the
context at the interfaces should be simulated. It is very important to choose the
right level of abstraction, which generally means to remove most of the details
normally present at system interfaces. For instance, for an actuator in the con-
text of the system requiring a duty cycle to be generated, the simulated actuator
would accept, for instance, a flow or temperature setting.

Especially for embedded systems where time often plays a role, one has to
decide whether time-related behavior should be implemented in the system. For
instance, when increasing the effect of the heater in the dialysis system, the
actual water temperature will increase slowly until a new equilibrium is met.
The software architect has to decide whether such delays in effects between
actuators and sensors should be simulated or not. This decision is depending on
the quality attributes that the software architect intends to assess and the
required accuracy of the assessment.

Finally, for architecture simulation as a whole, but especially for the simulation
of the system context, one has to make an explicit balance between cost and
benefit. One should only implement at the level of realism required to perform
the assessments one is interested in.

• Implement the architectural components: Once the system context has been
defined and implemented, the components in the software architecture are con-

Assessing Software Architectures

72/82 Copyright April 1999 by Jan Bosch (Draft version)

structed. The description of the architecture design should at least define the
interfaces and the connections of the components, so those parts can be taken
directly from the design description. The behavior of the components in
response to events or messages on their interface may not be specified as
clearly, although there generally is a common understanding, and the software
architect needs to interpret the common understanding and decide upon the
level of detail associated with the implementation.

Again, the domain behavior that is implemented for each component as well as
the additional functionality for collecting data is again dependent on the quality
attributes that the software architect intends to assess. For some quality
attributes, additional architecture description data needs to be associated with
the components. For instance, in the case of performance assessment, estimated
execution times may be associated with operations on the component interfaces.
In that case, generally a simulated system clock is required in order to be able to
calculate throughput and average response time figures.

• Implement profile: Depending on the quality attribute(s) that the software
architect intends to assess using simulation, the associated profile will need to
be implemented in the system. This generally does not require as much imple-
mentation effort as the context and the architecture, but the software architect
should be able to activate individual scenarios as well as run a complete profile
using random selection based on the normalized weights of the scenarios.

For example, in virtually all cases, the use profile needs to be implemented. The
software architect generally is interested in performing individual use scenarios
to observe system behavior, but also to simulate the system for an indefinite
amount of time using a scenario activator randomly selecting scenarios from the
profile.

• Simulate system and initiate profile: At this point, the complete simulation,
including context, architecture and profile(s) is ready for use. Since the goal of
the simulation is to assess the software architecture, the software architect will
run the simulation and activate scenarios in a manual or automatic fashion and
collect results. The type of result depends on the quality attribute being
assessed.

It is important to note that for several quality attributes, the simulation will actu-
ally run two profiles. For instance, for assessing safety, the system will run its
use profile in an automated manner, and the hazard scenarios will, either manu-
ally or automatically, be activated. Whenever a hazard scenario occurs, data
concerning the system context is collected. For example, in the dialysis system
example, all values relevant to the safety of the patient, e.g. blood temperature,
concentrate density, air bubbles, heparin density, etc. are collected from the

Copyright April 1999 by Jan Bosch (Draft version) 73/82

Simulation-based Assessment

simulation to see if any of these values, perhaps temporarily, exceed safety
boundaries.

• Predict quality attribute: The final step is to analyze the collected data and to
predict the assessed quality attribute based on the data. Depending on the type
of simulation and the assessed quality attribute, excessive amounts of data may
be available that need to condensed. Generally, one prefers to automate this task
by extending the simulation with functionality for generating condensed output
or using other tools.

To give an example, for performance assessment, the system may have run tens
(or hundreds) of thousands of use scenario instances and collected the times
required to execute the scenario instances. All this data needs to be condensed
to average execution times per scenario, perhaps including a standard deviation.
This allows one to make statements about system throughput, scenario-based
throughput and average response times of individual scenarios.

Simulation of the architecture design is not only useful for quality attribute assess-
ment, but also for evaluating the functional aspects of the design. Building a simu-
lation requires the engineer to define the behavior and interactions of the
architecture entities very precise, which may uncover inconsistencies in the design
earlier than when using traditional approaches. In our experience, it is extremely
useful to be forced to express exactly what the functionality of an architecture com-
ponent should be. Simulation has been used in all three examples systems described
in chapter 2 and the experiences have been very positive. Although there is an over-
head involved in the implementation of, especially, the system context, our experi-
ence is that the advantages easily outweigh these.

The fact that an executable specification of the system is available early in the
design process often proves to be highly relevant. It is important to note that it is
possible to have a simulation of the system available during the whole design pro-
cess. This is achieved through iterative refinement of the simulated context and the
system implementation. Using this approach, the software architect iteratively
details the design and the context in which the design operates until the context is
no longer simulated, but the actual context. If this level is achieved, the system
implementation is also complete. It is possible to use parts of the actual system con-
text early in the design and use simulated parts where the system is not sufficiently
detailed yet. Although our experience is that this approach is very interesting for,
especially, the implementation of embedded systems with high availability and
strict safety requirements, it is outside the scope of this book. We refer to, among
others, [ref] for more elaborate discussions.

Assessing Software Architectures

74/82 Copyright April 1999 by Jan Bosch (Draft version)

Simulation complements the scenario-based approach in that simulation is particu-
larly useful for evaluating operational quality attributes, such as performance of
fault-tolerance by actually executing the architecture implementation, whereas sce-
narios are more suited for evaluating development quality attributes, such as main-
tainability and flexibility.

Simulation can be used for the assessment of reliability in two ways. First, using
component reliability figures, one can simulate component failures during auto-
mated execution of the usage profile and collect reliability figures for the architec-
ture based on this data. Secondly, some research results, e.g. [ref-claes-SDL] has
shown that correlations exist between the reliability of specifications and the sys-
tems implemented based on those specifications. Thus, the reliability of the archi-
tecture implementation in the simulation gives an indication of the reliability of the
final system.

Although simulation is primarily suited for the assessment of operational quality
attributes, the implementation of the architecture in the simulation can be used to
evaluate development quality attributes, such as maintainability. Once the simulat-
tion is available, the software architect can actually implement scenarios from the
maintenance profile and measure the required effort and identify the affected com-
ponents and the extent of change. Using this data, one can extrapolate the required
effort for the complete system.

Finally, the accuracy of simulation-based assessment depends on a number of fac-
tors. First, the accuracy of the profile used to assess the quality attribute. Second, it
is dependent on how well the simulated system context reflects real world condi-
tions. Finally, the relation between the architecture implementation and the imple-
mentation of the final system. Consequently, the factors influencing accuracy are
considerably more than for scenario-based assessment, but the early availability of
an executable implementation of the system has, as discussed, several advantages
as well.

*** example - measurement system paper? Main problem, nice functional model,
but what quality attribute? ***

Summarizing, simulation-based assessment makes use of an executable model of
the software architecture and a simulation of the context of the system. Using the
model and its context, one can execute the profile for the quality attribute that is to
be assessed. Using the data collected during profile execution, one can predict the
level of quality attribute for the software architecture. The simulation-based assess-
ment process consists of the following steps:

Copyright April 1999 by Jan Bosch (Draft version) 75/82

Mathematical Model-based Assessment

• Define and implement the context

• Implement the architectural components

• Implement profile

• Simulate system and initiate profile

• Predict quality attribute

FIGURE 12. Simulation of a beer can inspection system

5. Mathematical Model-based Assessment

Various research communities, e.g. high-performance computing [Smith 90], reli-
able systems [Neufelder 93], real-time systems [Liu & Ha 95], etc., have developed
mathematical models that can be used to evaluate especially operational quality
attributes. Different from the other approaches, the mathematical models allow for
static evaluation of architectural design models. For example, performance model-
ing is used while engineering high-performance computing systems to evaluate dif-
ferent application structures in order to maximize throughput. Using, for instance,

measurement
item

trigger

trigger

triggerinstantiate

get value (5x)

update (10x)

actuate

actuate

trigger

Assessing Software Architectures

76/82 Copyright April 1999 by Jan Bosch (Draft version)

queuing network theory [Smith 90], the software engineer can develop a mathemat-
ical representation that can be analyzed.

Mathematical modeling is an alternative to simulation since both approaches are
primarily suitable for assessing operational quality attributes. However, the
approaches can also be combined. For instance, performance modeling can be used
to estimate the computational requirements of the individual components in the
architecture. These results can then be used in the simulation to estimate the com-
putational requirements of different use scenarios in the architecture.

The process of model-based assessment consists of the following steps:

• Select and abstract a mathematical model: As mentioned in the introduction,
most quality attribute-oriented research communities have developed mathe-
matical models for assessing ‘their’ quality attribute. The models are generally
well-established, at least within the community, but tend to be rather elaborate
in that much, rather detailed, data and analysis is required. Consequently, part of
the required data is not available at the architectural level and the technique
requires too much effort for architecture assessment as part of an iterative
design process. Thus, the software architect is required to abstract the model.
This may result in less precise prediction, but that is, within limits, acceptable at
the software architecture design level.

• Represent the architecture in terms of the model: The mathematical model
that has been selected and abstracted does not necessarily assume that the sys-
tem it models consists of components and connections. For instance, real-time
task models assume the system to be represented in terms of tasks. Conse-
quently, the architecture needs to be represented in terms of the model.

• Estimate the required input data: The model, even when abstracted, often
requires input data that is not included in the basic architecture definition. This
data, then, has to be estimated and deduced from the requirement specification
and the designed software architecture. For instance, real-time task models
require data about, among others, priority, frequency, deadline and computa-
tional requirements of tasks and information about the synchronization points in
the system.

• Predict the quality attribute: Once the model is defined, the architecture
expressed in terms of the model and all required input data available, the soft-
ware architect is able to calculate the resulting prediction for the assessed qual-
ity attribute. In some cases, for instance non-trivial performance assessments
based on the performance engineering method developed by [Smith 90] may
require more advanced approaches.

Copyright April 1999 by Jan Bosch (Draft version) 77/82

The Role of Experience

The software metrics research community has developed a variety of product met-
rics of which at least part can be used for the assessment of software architectures.
Validation of several of these metrics has shown correlation to quality attributes.
For instance, McCabe’s cyclomatic complexity metric has shown correlation to the
maintenance cost of software systems. However, it is important to note that correla-
tions are statistical relations, meaning that although true on the average, a metric
does not have to predict accurately for the software architecture at hand.

Different from the two aforementioned assessment techniques, mathematical
model-based assessment does not make use of profiles, or at least not of selected
profiles. This means that the assessment technique provides an immediate transla-
tion from the software architecture to the quality attribute, without incorporating
the actual meaning of the quality requirement as specified by the customer. (**
extend argument **)

*** example: real-time task model a la Liu for, e.g. fire alarm system? ***

Concluding, mathematical model-based assessment provides an alternative prima-
rily to simulation-based assessment in that these models are primarily available for
operational quality attributes. Which assessment technique to choose depends
upon, at least, two factors. First, no appropriate mathematical models may be avail-
able for the relevant quality attributes. Second, although the development of a com-
plete simulation model may require substantial effort, but if the model is used to
assess more than one quality attribute, the effort can be divided. Mathematical
models are unique for each quality attribute.

6. The Role of Experience

In the previous sections, we have discussed three approaches to quantitative archi-
tecture assessment. The reason we stress these approaches is because we hope to
progress the state of the art towards quantitative, objective assessment rather than
the current state-of-practice, that often is subjective and qualitative. However, it is
by no means our intention to diminish the value of architecture assessment through
objective reasoning based on earlier experiences and logical argumentation. At
numerous occasions, we have encountered experienced software architects and
engineers who provided valuable insights that proved extremely helpful in avoiding
bad design decisions. Although some of these experiences are based on anecdotal
evidence, most can often be justified by a logical line of reasoning.

Assessing Software Architectures

78/82 Copyright April 1999 by Jan Bosch (Draft version)

This approach is different from the other approaches in that the evaluation process
is less explicit and more based on subjective factors such as intuition and experi-
ence. The value of this approach should, nevertheless, not be underestimated. Most
software architects we have worked with had well-developed intuitions about
‘good’ and ‘bad’ designs. Their analysis of problems often started with the ‘feeling’
that something was wrong. Based on that, an objective argumentation was con-
structed either based on one of the aforementioned approaches or on logical reason-
ing. In addition, this approach may form the basis for the other evaluation
approaches. For example, an experienced software engineer may identify a main-
tainability problem in the architecture and, to convince others, define a number of
scenarios that illustrate this.

To give an example, during the design of the fire alarm system architecture, it was
identified that the system is inherently concurrent. Consequently, it was necessary
to choose a concurrency model. Earlier experience by some team members in ear-
lier small embedded systems had shown that fine-grain concurrency with a preemp-
tive scheduler could be error-prone considering the possibility of race conditions.
The argumentation by those team members convinced the team as a whole and lead
to a transformation of the architecture that was later named the Point pattern [Molin
and Ohlsson 97?]. In the next chapter, the Point pattern and the associated architec-
ture transformation are discussed in more detail.

7. Performing Architecture Assessment

So far, in this chapter, we have primarily discussed techniques and approaches that
can be used as part of architecture assessment, but we have not shown how these
parts are integrated in a full-scale architecture assessment process. Although the
reader may have deduced this from the discussion in this and previous chapters, we
will here explicitly define the main steps in architecture assessment.

First, one should observe that architecture assessment is an iterative activity that is
part of an iterative design process. Once the architecture is assessed for the first
time, it will enter the transformation phase, assuming it does not already fulfil all its
requirements. After transformation, the architecture will, again, be assessed for its
quality attributes.

The first time the architecture is assessed, or possibly even before functionality-
based design is performed, the profiles for the relevant quality attributes should be
defined. It is important no notice that it is generally not feasible nor useful to assess

Copyright April 1999 by Jan Bosch (Draft version) 79/82

Performing Architecture Assessment

all or many quality attributes. As in any engineering discipline, the benefit should
outweigh the cost for each activity. Since both the definition of the profile and the,
repetitive, assessment process are time-consuming activities, only those quality
attributes should be selected for explicit assessment that are crucial for system suc-
cess and for which it is unclear whether they will be fulfilled.

Once the relevant quality attributes have been selected and the profiles for these
quality attributes have been defined, the next step is to select an assessment tech-
nique. As a very general rule, our experience is that development quality attributes
are generally most easily assessed using a scenario-based approach whereas opera-
tional quality attributes can be assessed using either simulation-based assessment or
a mathematical or metrics-based model. However, each system is unique and may
require deviation from this general rule. In certain cases, one may decide to use two
techniques to assess the same quality attribute. This allows the software architect to
cross-reference results and to increase confidence in the assessment or, alterna-
tively, investigate inconsistencies.

The above steps are generally performed once during architecture design, for
instance the first time assessment of the architecture is performed. During the
design iterations, the actual architecture assessment is performed during every iter-
ation and for each quality attribute. Assuming one is able to achieve quantitative
predictions for each quality attribute, the result is a table containing, for each ver-
sion of the architecture, the required level, the predicted level and an indication for
each quality attribute. The indication may simply show that the attribute is or is not
fulfilled, but also that the attribute needs to be renegotiated with the customer or
that a, generally negative, relation exists to another quality attribute.

Concluding, the process of architecture assessment can be divided into two compo-
nents, i.e. a part that is performed once and a part that is executed for every design
iteration:

• Select the relevant quality attributes and define the required levels

• Define a profile for each quality attribute

• Select an assessment technique for each quality attribute

For each design iteration:

• Perform the quality attribute assessment for the current version of the architec-
ture

• Assemble the results and decide upon continuation, renegotiation or termination
of the design project

Assessing Software Architectures

80/82 Copyright April 1999 by Jan Bosch (Draft version)

8. Concluding Remarks

Assessment of software architectures is the process of predicting quality attributes
of the system developed based on a software architecture. We have identified three
different goals with architecture assessment. First, relative assessment is used to
compare two alternative architectures. Although useful, the disadvantage of relative
assessment is that when comparing alternative architectures for more than one qual-
ity attribute, one has only ‘boolean’ data to base the selection on. Second, the soft-
ware architect can perform absolute assessment resulting in quantitative statements
about the quality attributes for the assessed architecture. This allows the software
architect to decide whether the requirements are met by the assessed architecture.
However, absolute assessment provides no means to determine upon the theoretical
limits for the architecture and the distance between the current level and the theo-
retical maximum or minimum. The third goal of architecture assessment is to deter-
mine the theoretical maximum of a software architecture for a particular quality
attribute. In our experience, techniques are available for the first two assessment
goals, but no work, to the best of our knowledge, is currently available with respect
to the third goal.

The meaning of quality requirements in the requirement specification is often rather
vague and imprecise. In this chapter, we propose to define scenario profiles that
define the meaning of quality requirements more precisely. Two approaches to
defining profiles exist, i.e. complete profiles and selected profiles. The first defines
all relevant scenarios for a particular quality attribute, whereas the second selects a
limited number of scenarios from a large population of possible scenarios. To struc-
ture the selection process, scenario categories are defined to divide the population
into parts.

We have presented three architecture assessment techniques, i.e. scenario-based,
simulation-based and mathematical model-based architecture assessment. The sce-
nario-based approach assesses the impact of the scenarios in the profile and predicts
the quality attribute based on the impact data. Simulation-based assessment devel-
ops an abstract system context that is simulated and a high-level implementation of
the architecture. Generally, for practical reasons, also the profile that is used for the
assessment is implemented. During the simulation, relevant data is collected and
the quality attribute can be predicted using the collected data. Finally, the software
architect can use a, often adapted, mathematical model developed by one of the
quality attribute research communities. The adapted model can be used to predict
the quality attribute.

Copyright April 1999 by Jan Bosch (Draft version) 81/82

Further Reading

We have discussed the importance of experience in software architecture assess-
ment and design. Although our goal is to improve the state of practice by providing
objective and quantitative means to reason about architectures, it is explicitly not
our intention to diminish the value of experience and creative insight in the archi-
tecture design process. Experienced and creative software architects and engineers
are a necessary ingredient in any successful software development project.

Finally, we have briefly mentioned the overall software architecture assessment
process. This process can be divided in two parts. The first part is performed once
during the design of a software architecture and includes activities such as selecting
and defining the relevant quality attributes, developing the associated profiles and
selecting an assessment technique for each quality attribute. The second part of the
process is performed for each iteration of the architecture and consists of perform-
ing the assessment for the relevant quality attributes, collecting the results and to
decide upon continuation, renegotiation or termination of the design project.

9. Further Reading

< to be written >

Assessing Software Architectures

82/82 Copyright April 1999 by Jan Bosch (Draft version)

Copyright April 1999 by Jan Bosch (Draft version) 83/130

CHAPTER 5 Transformation of
Software Architectures

The approach to architectural design presented in this book consists of three major
phases, i.e. functionality-based architectural design, architecture assessment and
architecture transformation. In the previous chapters, the first two phases have been
presented. In this chapter, the notion of transforming an architecture to improve one
or more of its quality attributes is discussed. We identify four types of architectural
transformations that can be used change the properties of the system. The transfor-
mations are illustrated using the example software architectures discussed in earlier
chapters.

1. Introduction

During functionality-based architecture design, the structure of the system has been
determined by the application domain and the functional requirements. The identi-
fied archetypes and the system instances described using the archetypes are based
on the software architect’s perception of the domain. Since the perception of the
software architect is largely formed based on the culture in which the architect lives
and the education that he or she has received. Consequently, it is likely that other
software architects and engineers will share the perception of the software architect
that designed the initial version of the architecture. The fact that domain under-
standing is shared among, at least, the software engineering community is an

Transformation of Software Architectures

84/130 Copyright April 1999 by Jan Bosch (Draft version)

important property of the functionality-based design, since it allows for easy com-
munication between members of the community. Thus, when software develop-
ment based on the software architect design is initiated, it is relatively easy for the
software architect to explain the important concepts underlying the design. In addi-
tion, if the software architect disappears during the development, the persons taking
over will have an easier task to understand the architecture design and maintain the
conceptual integrity [Brooks 95]. Finally, during maintenance, software maintain-
ers will have easier understanding of the constraints, rules and rationale underlying
the architecture, thereby maintaining conceptual integrity and, consequently, slow
the software aging process.

Thus, the functionality-based design of the architecture is based on domain analysis
that is formed by the culture and education and thus, up to some extent, shared by,
at least, the software engineering community. As mentioned, this has important
advantages. However, there is an important issue that has remained implicit: the
functionality-based architecture design may not fulfil the quality requirements put
on the system! Performance, maintainability and other quality attributes of the
architecture may not be satisfactory.

Assessment of the software architecture, as discussed in the previous chapter, is
performed to collect information on the quality attributes of the architecture so that
these can be compared to the requirements. If one or more of the quality require-
ments are not satisfied, the architecture has to be changed to improve the quality
attributes. This is the process of architecture transformation, which is the topic of
this chapter.

Architecture transformation requires the software engineer to analyze the architec-
ture and to decide due to what cause the property of the architecture is inhibited.
Often, the assessment generates hints as to what parts or underlying principles
cause low scores. The assessment of the quality attributes is performed assuming a
certain context, consisting of certain subsystems, e.g. databases or GUI systems and
one or more operating systems and hardware platforms. Consequently, whenever a
quality attribute is not fulfilled, one may decide to either make changes to the pre-
sumed context of the system architecture or to make changes to the architecture
itself.

If it is decided that the software architecture, rather than the context or the require-
ment specification, should be changed the architecture is subjected to a series of
one or more architecture transformations. Each transformation leads to a new ver-
sion of the architecture that has the same domain functionality, but different values
for its properties.

Copyright April 1999 by Jan Bosch (Draft version) 85/130

The consequence of architecture transformations is that most transformations affect
more than one property of the architecture; generally some properties positively
and others in a negative way. For instance, the Strategy design pattern [ref-Gamma]
increases the flexibility of a class with respect to exchanging one aspect of its
behavior. On the down-side, performance is often reduced since instances of the
class have to invoke another object (the instance of the Strategy class) for certain
parts of their behavior. In the general case, however, the positive effect of increased
flexibility considerably outweighs the minor performance impact.

We have identified four categories of architecture transformations, organized in
decreasing impact on the architecture, i.e. imposing an architectural style, imposing
an architectural pattern, applying a design pattern and converting quality require-
ments to functionality. One transformation does not necessarily address a quality
requirement completely. Two or more transformations might be necessary. In the
sections below, each category is discussed in more detail.

Although the transformation of a software architecture is necessary to fulfil its
quality requirements, there are two important disadvantages of changing the func-
tionality-based architectural design. First, the transformed architecture will not be
as close to the shared understanding of the domain, requiring software architects
and engineers to spend more time to understand the ‘philosophy’ underlying the
architecture. For instance, the functionality-based architectural design of the mea-
surement system consists of four components. The object-oriented framework that
we designed for the measurement system domain consists of more than 30 compo-
nents. These components have been added through architecture transformations
improving the quality attributes, but not changing the domain functionality repre-
sented by the architecture. Second, the design tends to blow up in the number of
components. Most transformations will take one or a few components and reorga-
nize the functionality by dividing it over more components. To use the aforemen-
tioned Strategy design pattern as an example, the pattern transforms one (class) into
at least three classes, i.e. the original class without the factored out behavior, the
abstract strategy class defining the interface and, at least, one concrete strategy
class providing one variety of the factored out behavior. Since most transformations
increase the number of components in the architecture, it easily becomes the case
that an elegant and simple functionality-based architectural design is transformed
into a large and complex set of components that bears no visible relation to the ini-
tial architecture. During the complete architecture design process, it is of crucial
importance to keep things as simple as possible and to search for conceptual integ-
rity, a notion hard to quantify but understood by each software engineer.

Transformation of Software Architectures

86/130 Copyright April 1999 by Jan Bosch (Draft version)

One may wonder whether the architecture design method presented in this book is
not making design overly complicated. It is important to observe that we defined
this method based on a number of architecture design projects that we have been
involved in. Generally, researchers from our research group formed an architecture
design team with software architects from the companies we cooperated with. We
tried to reflect about the way the team and its members performed architectural
design. Based on the experiences from the projects, we have made the implicit
architecture design process as we experienced it explicit.

A second disadvantage that we try to attack in our explicit approach to architecture
design is that ad-hoc architecture design approaches tend to lead to mismatches
between the perceived problems and the actual problems and between problems
and the solutions selected to address those problems. In several industrial architec-
ture designs we have seen the use of styles, patterns or other solution technology
that did not match with the problems, i.e. unfulfilled quality requirements, the
project members were trying to solve. Subsequently, further analysis showed that
the quality requirements the project members tried to solve were not the problem-
atic quality attributes of the architecture. Converting the ad-hoc, implicit architec-
ture design approach into an architecture design method explicitly organizing the
process into a number of well-defined steps will help avoid problems as described
above.

Finally, a note on the level of detail that should be achieved during architectural
design. This is a function of the size of the system, the quality requirements and the
required level of certainty. If the system is very large, architectural design is unable
to penetrate the challenges of the individual parts of the system. The quality
requirements, however, are the most important factor deciding on the level of
detail. The goal of architectural design is to develop a software architecture that,
with a sufficient level of certainty, will fulfil all its requirements, including the
quality requirements. Thus, if the quality requirements are very challenging and
close to the boundary of the technical capabilities, architectural design needs to go
into considerable detail for the critical parts of the system, e.g. down to the behav-
ior of individual classes. The important issue is not to avoid performing design
tasks normally considered to be part of detailed design, but to make sure that the
final system will fulfils its quality requirements in addition to its functional require-
ments.

The remainder of this chapter is organized as follows. The next section discusses
the process of transforming a software architecture. Section 3 and onward discuss
the categories of architecture transformations that we have identified. Section 7 dis-
cusses the balancing of requirements for the software architecture and the require-

Copyright April 1999 by Jan Bosch (Draft version) 87/130

The Architecture Transformation Process

ments for the components that are part of the architecture. The chapter is concluded
in section 8 followed by a section discussing interesting material on the topic.

2. The Architecture Transformation Process

Before presenting the categories of architecture transformation techniques that we
have identified, we present a process of architecture transformation that intends to
put these categories into a context. Transforming the architecture according to an
architectural style or a design pattern is not an independent event, but occurs as part
of a larger process of problem identification, solution selection and solution appli-
cation.

The first step of the process is to identify what quality requirements are not fulfilled
by the current version of the software architecture. In addition, information about
the discrepancy between the assessed level for the quality attribute and the require-
ment is collected. Based on difference between assessed level and the requirement
for each quality attribute and their relative importance, we define a ranking of the
quality attributes. The ranking indicates what quality attributes should be addressed
first. Note that, as mentioned earlier, only those quality attributes are part of the
assessment and transformation process that have explicitly been selected by the
software architect as having crucial importance for the success of the system, nor-
mally up to about five attributes. Finally, the assessed and required levels for the
quality attributes that are fulfilled are also noted. This information is used later on
in the selection of transformations.

The following steps of the process are, in principle, repeated for each quality
attribute. However, since transformations affect more than one quality attribute,
decisions concerning the selection of transformation will be based on all the rele-
vant quality attributes.

The second step is to identify, for the quality attribute currently addressed, at what
components or locations in the architecture the quality attribute is inhibited. The
assessment performed in the previous phase has lead to a quantitative prediction,
but while assessing the architecture the software architect normally get several
hints on what components represent bottlenecks for the quality attribute. For
instance, when performing impact analysis during scenario-based maintainability
assessment, there often is one (or a few components) that play a role in multiple
scenarios. For some reason, the functionality captured by that component is sensi-

Transformation of Software Architectures

88/130 Copyright April 1999 by Jan Bosch (Draft version)

tive to requirement changes. Such kinds of indications often give valuable input on
what aspects of the architecture need to be changed.

The third step is the selection of a transformation that will solve the identified prob-
lem spots in the architecture. Generally, several different transformations can be
used, differing in scope and impact, but also on their effects on the other quality
attributes. For the selection of the most appropriate transformation, it is important
to explicitly analyze the effects of the transformation on the other quality attributes.
Based on this analysis, we select the transformation that does not affect any unful-
filled quality attributes in a negative manner, but only quality attributes for which
there is a satisfying (positive) difference between the assessed and required level.
For instance, if the system performance is well satisfied by the current architecture,
it is acceptable to select transformations that improve maintainability at the expense
of performance. However, if both are currently not fulfilled or the assessed level
very close to the required level, one should search for other alternatives.

The fourth and final step in the process is to perform the transformation, meaning
that the functionality is reorganized according to, e.g. the selected style or pattern,
and that the description of the architecture is updated to incorporate the changes. It
is important to keep a record of the versions of the software architecture, the
assessed levels for each of the relevant quality attributes and the rationale for each
transformation. This is both useful when it proves necessary to backtrack to an ear-
lier version since the team reached a dead-end in the design and for future reference
by software engineers doing detailed design, implementation or software mainte-
nance.

The architecture design method presented in this part of the book assumes a fully
objective and quantitative approach. It presents a picture of an idealized software
architecture design process because the technology for several aspects of the
method are currently not available or have not been disseminated to software indus-
try. For instance, for some quality attributes no validated assessment techniques are
available. In addition, for several of the transformations discussed in the remainder
of this chapter, the exact effect on the quality attributes of a software architecture is
not obvious. Part of this is due to the fact that performing a design, basically any
design, is fundamentally a creative process that cannot be formalized and auto-
mated. However, many parts surrounding the creative process can and should be
formalized in order to become objective and, potentially, automated. Thus, the
method presented here is as much a vision on how we would want to perform soft-
ware architecture design as it is a viable way of working today. However, it requires
at times that one resorts to, e.g. qualitative reasoning or experience-based decisions.

Copyright April 1999 by Jan Bosch (Draft version) 89/130

Impose Architectural Style

Concluding, the software architecture transformation process consists of four major
steps:

• Identify the QAs that are not fulfilled

• For each QA, identify the locations where the QA is inhibited

• Select the most appropriate transformation

• Perform the transformation

3. Impose Architectural Style

The first category of architecture transformation is concerned with imposing an
architectural style on the software architecture. Shaw and Garlan [Shaw & Garlan
96] and Buschmann et al. [Buschmann et al. 96] present several architectural

styles1 that improve the possibilities for certain quality attributes for the system the
style is imposed upon and are less supportive for other quality attributes. Certain
styles, e.g. the layered architectural style, increase the flexibility of the system by
defining several levels of abstraction, but generally decrease the performance of the
resulting system. With each architectural style, there is an associated fitness for the
quality attributes. The most appropriate style for a system depends primarily on its
quality requirements.

Transforming an architecture by imposing an architectural style results in a com-
plete reorganization of the architecture. Often virtually all architectural components
are affected and the assignment of functionality to the components is reorganized.
In addition, the original connections between the components are often affected.
Consequently, imposing an architectural style is a transformation with major, archi-
tecture-wide impact.

Although architectural styles can be merged up to some extent, styles are not
orthogonal in the sense that they can be merged arbitrarily. If a second architectural
style is selected for a part of the architecture, it is necessary to make sure that the
constraints of the two styles do not conflict with each other. A typical example of a
software architecture using two styles is the compiler example in [Perry & Wolf 92]
where the standard pipes-and-filters compiler architectural style is complemented
with a black-board style. The blackboard contains data that needs to be accessible

1. Buschmann et al. [Buschmann et al. 96] uses the term architectural patterns, but we use
that term for another category of transformations.

Transformation of Software Architectures

90/130 Copyright April 1999 by Jan Bosch (Draft version)

by multiple filters. Although the resulting software architecture contains both
styles, constraints of both styles are violated.

The more common case is where a subsystem uses an architectural style that is dif-
ferent than the style used at the system level. This use of different architectural
styles leads to less conflicts between styles, provided that the subsystem acts as a
correct component at the system level. However, when considering conceptual
integrity, our experience is that one is able to use the same archetypes and organiz-
ing principles at all levels of the system. Thus, if it is possible to use the same style
throughout the system, this is preferable.

In our approach, we explicitly distinguish between the components that are used to
fulfil the functional requirements and the software architecture of the system that is
used to fulfil the quality requirements. In practice, the distinction is generally not as
explicit, i.e. also the implementation of a component influences most quality
attributes, e.g. reliability, robustness and performance.

3.1 Styles and Quality Attributes

Architectural styles have been discussed at length in other publications, see e.g.
[Buschmann et al. 96] and [Bass et al. 98], although the suitability of styles for the
various quality attributes is not always discussed to the same extent. In this section,
we briefly discuss the most fundamental styles that are generally recognized:

Pipes-and-filters. The pipes and filters of this style can be viewed as analogous to
a chemical plant, in which the filters initiate chemical processes on the material
transported through the pipes. The pipes-and-filters style assumes a data-flow net-
work where data flows through the pipes and is processed by the filters. The most
well-known instance of this style is implemented in the Unix operating system, in
particular the associated command shells. A second example is the standard com-
piler architecture taught in virtually each computer science study program. In a
standard compiler, the scanner, parser, optimizer and code generator form the filters
whereas pipes transport, for instance, character and token data.

There exist many varieties of pipes-and-filter implementations and definitions.
Variations include pipeline (linear), systems without feedback loops (a-cyclic) and
arbitrary (cyclic graph) [ref-shaw-clements]. The common denominator is that the
filters operate asynchronously and have little or no state. However, filters do
exchange data through pipes and, consequently, some synchronization occurs in
that manner. The way data is transported through pipes can be pushing, pulling or
asynchronous. In the first approach, entry of data by the source filter will activate

Copyright April 1999 by Jan Bosch (Draft version) 91/130

Impose Architectural Style

the sink filter. This is typically useful when the system is processing data from an
external source. The opposite occurs for the pulling approach, where the sink filter
activates the source filter. This typically occurs in a compiler where the parser will
ask for tokens from the lexer. Finally, when using the asynchronous approach, the
pipe will store data entered by the source filter until the sink filter requests this,
thereby decreasing the synchronicity in the system.

The application of each style to transform a software architecture has an associated
effect on the quality attributes of the architecture. However, the actual effect is as
much depending on the type of system modeled by the software architecture as the
selected style. Nevertheless, below, we discuss the general effects of the pipes-and-
filters style on the quality attributes:

• Performance: The advantage of the pipes-and-filters style from a performance
perspective is that the filters form excellent units of concurrency, allowing for
parallel processes which generally improves performance, assuming it is used
with care. In addition, since the pipes connect the components, the interface for
each component is very narrow, reducing the number of synchronization points.

The advantage of the pipes-and-filters style discussed above may, however, turn
into a disadvantage for performance as well. If each filter only performs a very
small unit of computation for each unit of data, the style will lead to many con-
text switches and copying of data, which affects performance negatively.

• Maintainability: The maintainability of a pipes and filters system also has two
sides. On the positive side, the configuration of filters is generally very flexible,
allowing for even run-time reorganization of pipes and filters. Thus, as long as
new requirements can be implemented by new filters and reorganization of the
network, maintainability of this style is very good.

The disadvantage is that requirement changes often affect multiple filters. A
typical example are syntax changes or extensions in a compiler. These are gen-
erally orthogonal to the compiler components and, consequently, require
changes to the lexer, parser, optimizer and code generation component. Espe-
cially in larger systems, the disadvantage of this style is that real-world entities
represented by the system are decomposed and part of the functionality of mul-
tiple filters. Our experience is that, for the systems that we have worked with,
the majority of requirement changes affect more than one filter and that, conse-
quently, the pipes-and-filters style is not particularly suitable for maintainabil-
ity.

• Reliability: The reliability of a pipes-and-filters system is dependent on its
topology and, as a result, it is hard to generalize over it. However, since the
pipes-and-filters style assumes that each external event causes computation in a

Transformation of Software Architectures

92/130 Copyright April 1999 by Jan Bosch (Draft version)

series of filters, one may deduce that the reliability may be less than in styles
where most events lead to computation in only one, or perhaps a few compo-
nents. The series of filters requires each filter to deliver the specified result in
order for the system to be successful, i.e. analogous to an ‘and’-function in
boolean logic. In other styles, the primary component handling the event may
still be able to deliver a result even if some of the secondary components used
by the primary component fail.

• Safety: The line of reasoning used for reliability also holds for safety. The fact
that correct computation is dependent on several components, increases the
chance that some failure will occur. Thus, in cases where passiveness of the sys-
tem may cause hazardous situations, this causes decreased safety. On the other
hand, the fact that the output of the system generally will occur through one or a
few filters allows for local verification of reasonable output values.

• Security: Pipes-and-filter system generally have small and explicitly defined
input and output interfaces and a well-defined component topology. This means
that access to the system is only available through the defined interfaces, where
identity verification, authorization and encryption/decryption can be performed.
The same technique can be used at the component level in systems where infor-
mation of different security levels is present.

Layers. The layered architectural style suggests to decompose a system into a set
of horizontal layers where each layer provides an additional level of abstraction
over its lower layer and provides an interface for using the abstraction it represents
to a higher level layer. As a consequence, an atomic task at the highest level of
abstraction is decomposed into a number of tasks at the lower level layer, which in
turn is decomposed into yet lower-level tasks, thus forming a hierarchy of tasks
becoming smaller and simpler lower in the hierarchy.

The probably best known example of a layered architecture is OSI 7-layer model
for communication protocols [ref-tanenbaum?]. In figure 13, the layers of the OSI

Copyright April 1999 by Jan Bosch (Draft version) 93/130

Impose Architectural Style

standard are presented. Each layer deals with one particular aspect of communica-
tion and builds upon the lower-level aspects to be available.

FIGURE 13. The OSI 7-layer model for communication protocols

Several variants of the layered style exist. The pure style allows layers to call only
their immediate subordinate layer. Assuming this fits the application domain, this
leads to the lowest level of dependency between layers. The relaxed style exists in
two forms. In the first, each layer can invoke all lower level layers, rather than just
the layer immediate below it. In the second form, the layer can invoke higher level
layers.

Imposing a layered style involves at least the following steps. First, the identifica-
tion of a number of abstraction levels and representing them as layers. Second, the
assignment of components to the layers and, finally, the remodularization of com-
ponents that contain functionality belonging on different levels. The latter may
result in a real-world entity being represented in multiple layers, which has a nega-
tive effect on maintainability, but this may be outweighed by the advantages. A typ-
ical example is the three-tier architecture in business applications, where the lowest
level provides persistence and atomic transactions, the middle layer provides the
business logic and the top layer provides presentation and user interaction. Despite
its advantages, especially in client-server type applications, it does cause a real-
world entity to be represented in all layers of the architecture.

Below, we discuss the relation between the layered style and the selected quality
attributes:

Layer 1: Physical

Layer 2: Data Link

Layer 3: Network

Layer 4: Transport

Layer 5: Session

Layer 6: Presentation

Layer 7: Application

Transformation of Software Architectures

94/130 Copyright April 1999 by Jan Bosch (Draft version)

• Performance: The layered style organizes computational tasks based on level
of abstraction, rather than their computational relation. This generally causes
functionality related to an external event or request to be divided over multiple
layers. For instance, in the case of communication protocols, over all layers. As
a consequence, the computation in response to the external event covers multi-
ple layers as well, requiring several method context switches. This leads to
decreased performance and experience has shown that the layered architecture
does cause a performance penalty when used. Consequently, communication
protocols are generally not implemented according to the OSI 7-layer model,
but rather in a reorganized fashion avoiding the disadvantages associated with
passing several layer boundaries.

With respect to concurrency, there is an important note to make. The naive
approach to adding concurrency to a system built using the layered style is to
assign each layer its own thread of control. In general, this does not lead to an
increase in performance, but may even lead to decreased performance, due to
the number of task context switches required to react to a single event. The
alternative approach is to assign the events processed by the layer stack their
own thread of control and to implement the layers in a re-entrant fashion. This
generally leads to an increase in performance.

• Maintainability: Maintainability of a system is influenced by the way require-
ment changes affect the system. If most changes can be implemented by chang-
ing one or a small number of components or by adding a new component, then
the maintainability of the system will be high. Assuming the way the functional-
ity of a layered system is assigned to its layers in an appropriate way, the main-
tainability of a layered system is generally relatively high. Layers have few
dependencies on other layers, allowing for replacement of a layer without
changing its superior and subordinate layer. If, however, the functionality of the
system is not organized according to the expected requirement changes, main-
tainability may be compromised since several layers will need to be changed for
requirement changes.

• Reliability: Similar to the pipes-and-filters style, the layered style requires com-
putation in all or most layers for each external event or request. Due to this, fail-
ure of one layer may cause the system as a whole to fail. Consequently, the
reliability may be lower than when using some of the subsequent styles. On the
positive side, a higher-level layer may contain functionality for handling faults
occurring at its lower-level layer. Because the higher-level layer has a better
overview of the ongoing computation, it may be able to deal with failures the
lower-level layer would not have been able to manage on its own.

• Safety: See pipes-and-filters.

Copyright April 1999 by Jan Bosch (Draft version) 95/130

Impose Architectural Style

• Security: The layered style supports security rather well due to the fact that all
computation starts at the top-level or at the bottom-level, as in the case of com-
munication protocols. This allows for the insertion of security layers performing
authorization and, possibly, encryption and decryption of data.

Blackboard. The blackboard style originates in the artificial intelligence domain,
where it was used as a data or knowledge sharing mechanism between a number of
intelligent entities. The computational model used by the blackboard style assumes
a central data repository and a set of active components surrounding the data repos-
itory. The components scan the blackboard for data items that they are able to take
as input, take these items from the blackboard, process them and places the results
on the blackboard. Different from the styles discussed earlier, the control flow of
the system is not explicitly designed, but evolves as the components are able to exe-
cute. Consequently, giving different priorities to the components generally affects
the control flow.

The blackboard style was initially typically used in cases where no overall solutions
to a problem was available, but only elements that addressed on aspect of the prob-
lem. The solution elements are implemented as components that roam the black-
board for problem pieces that they know how to handle. This may result in multiple
components selecting a data element and trying to process it. Often, however, this
results in all but one component failing to process the data. More recently, the
blackboard style is also used in cases where there exist overall solutions, but where
the solution may change so often due to changing requirements that it is more feasi-
ble to use a blackboard and let the components dynamically arrange the composi-
tion of solution elements into an overall solution. For instance, the fire-alarm
system uses a blackboard style to achieve real-time and performance quality
attributes. Finally, even more close to home, systems that employ a database sub-
system make use of the blackboard style at least up to some extent. The database
removes the connections between the components in the system, in that most com-
ponents can work independently towards the database and communicate through
the additions and changes made to the data in the database.

The simplest form of blackboard system employs a single central data repository,
but more complex forms in which multiple repositories exist organized according
to type of data or location in a distributed system. In the more complex cases, some
of the components move data between repositories, possibly after having processed
it.

Finally, in addition to the blackboard and the components processing data elements
on the blackboard, a control component may be present that determines in what

Transformation of Software Architectures

96/130 Copyright April 1999 by Jan Bosch (Draft version)

order the processing components can access the blackboard and compute. The con-
trol component may activate processing components according to a predefined
schedule or inspect the blackboard to determine what processing component would
be most suitable to activate next.

The effect of using the blackboard style on the quality attributes difficult to
describe due to the wide variety of ways this style can be used. However, below we
present some general guidelines:

• Performance: Although one can build blackboard-based systems with high per-
formance, generally performance is not one of the strong points of this style.
One can identify two main reasons for this. First, considerable amounts of com-
putation may be spent on behavior that is not related to the application domain,
such as roaming the blackboard, or behavior that is redundant, e.g. multiple
components trying to process a data element. Second, because there is no
explicitly defined control flow, but, in the best case a control component that
attempts to optimize the flow, computation is generally not performed in an
optimal order, leading to decreased performance for the critical paths in the sys-
tem.

Nevertheless, examples of blackboard-based systems with high performance do
exist. For instance, in [ref-boasson/cherki] an architecture is presented that con-
sists of a highly structured blackboard with a fixed and identifiable set of data
fields, a set of tasks with specified interfaces, in terms of what data fields are
read and what fields are written, and, finally, a control component that contains
an optimized and hard-coded control flow. This architecture is, among others,
used in simulation systems where timing and performance are very important.
The ‘factored-out’ control can be optimized late in the development process to
obtain the highest refresh rates while keeping all simulated entities synchro-
nized. *** search Boasson’s paper on military system/Cherki’s paper on simula-
tors ***

• Maintainability: A considerably stronger aspect of the blackboard style is
maintainability. The blackboard allows for easy, even dynamic, addition and
removal of types of data as well as the number of instances of the type. Since
processing components are independent of each other, components can be
added and removed without having to change other processing components.
Depending on how it is constructed, the control component is the only element
in the system that would need to be changed in order to incorporate changes in
the processing component set. However, one can define the control components
that use meta-models to capture what types of data are present on the black-
board and what data each processing component needs in order to process. In

Copyright April 1999 by Jan Bosch (Draft version) 97/130

Impose Architectural Style

that case, the control component is able to some types of new processing com-
ponent without having to be changed.

However, also for blackboard-based systems it is important to identify that
naive design may lead to systems that are hard to maintain. Likely requirement
changes should be incorporated by changing or adding, preferably, a single
components. In addition, blackboard-based systems that hard-wire many of the
aspects of the system, such as the example simulation system discussed earlier,
will be harder to maintain than very flexible systems.

• Reliability: The reliability of blackboard style systems has two sides to it. On
the one side, the independence of the processing components and the fact that
the control component iteratively activates the various components increases
reliability since it makes the system more tolerant to faults and robust with
respect to invalid data on the blackboard. However, on the other side, there is no
central or explicit specification of the system behavior, which may make it hard
for the system to identify that certain responsibilities are not fulfilled. The con-
trol component plays an important role in addressing this problem.

• Safety: The fact that the system has no central or explicit specification of over-
all system behavior may also compromise safety in safety-critical systems. Pro-
cessing components may write incorrect data on the blackboard that can lead to
potentially dangerous external actions. Since all components, at least in the pure
model, may read and write all data, one component may compromise both
safety and reliability.

• Security: The fact that the blackboard style employs a central data storage that
can be accessed by all components in the system and the ability of the system to
dynamically incorporate new components may lead to security problems if no
precautions are taken. On the other hand, having all classified data in a single
location simplifies the control of access.

Object-Orientation. The object-oriented style organizes the system in terms of
communication objects. Objects are entities that contain some state and operations
to access and change this state. Whereas the state and operations are encapsulated
by the object, the signatures of the operations are accessible on the interface of the
object. Operations can be accessed by sending messages to an object. A message
causes the activation of an operation, which may lead to changes to the internal
object state and messages to other objects. Messages are synchronous in that the
object sending a message waits until it receives a reply and only then continues
with its own computation.

Several models extend the basic object-oriented style with various aspects. The
concurrent object-oriented style, for example, assumes all objects to be potentially

Transformation of Software Architectures

98/130 Copyright April 1999 by Jan Bosch (Draft version)

active and an object sending a message to another object will delay the thread send-
ing the message, but other threads may be active within the object.

Although objects do not need to be aware of the sender of a message, an object is
required to have the identity of an object it intends to send a message to. Since
objects, in the course of their computation, generally need to send messages to sev-
eral other objects, each object is required to maintain references to its acquaintan-
ces. Consequently, an object-oriented system can be viewed as a network of
connected objects.

The object-oriented style, similar to the other styles, affects the quality attributes of
the system. Below, these effects are discussed:

• Performance: The performance of object-oriented programming has received
considerable attention in the literature, especially in comparison to conventional
structured programming. Although new object-oriented languages, at their
introduction, generally are less efficient than traditional languages, this disad-
vantage is generally largely removed at subsequent versions. Typical examples
are C++ and Java. However, using the object-oriented style as an organizing
principle at the architectural level is even less controversial since it is generally
accepted that a system needs to be broken down into components. The question
is just whether these components should be filters, layers, objects or of yet
another type.

The performance of systems based on the object-oriented style is very much
dependent on the principles the designer used to define the objects, but there is
not necessarily a fundamental conflict. For optimal maintainability, objects
should be selected so that the most likely requirement changes affect as few
objects as possible. For optimal performance, objects should be selected so that
the most frequent use scenarios cause computation at as few objects as possible,
since performing context switches between objects is expensive. Since require-
ment changes often affect the use scenarios, the optimal system organization for
maintainability and for performance may actually be very close to each other. In
our experience, we have seen several examples of this.

One important note to make is that, similar to the layered style, the naive way of
adding concurrency to an object-oriented system is to use the homogenous
approach, i.e. each object has its own thread of control. This is generally not
optimal if there are many objects in the system due to the large number of con-
text switches and synchronization points for each use scenario. Instead, threads
should be attached to external events that cause considerable amounts computa-
tion in the system.

Copyright April 1999 by Jan Bosch (Draft version) 99/130

Impose Architectural Style

• Maintainability: The object-oriented programming paradigm became popular
due to claims of increased reusability and maintainability. In our cooperation
with industry, we have seen many examples of cases where these claims were
actually fulfilled. However, the main issue in achieving maintainability in
object-oriented systems is modeling the right objects. As discussed in the previ-
ous section, the likely change scenarios should affect the system as little as pos-
sible, and preferably lead to the definition of a new subclass or a new type of
object aggregation.

One reuse inhibitor is the fact that an object require references to the objects it
sends messages to, i.e. its acquaintances. Since the types and number of
acquaintances is hard-coded in the class specification, changes will always
require class specification to be changed. The implicit invocation style dis-
cussed below addresses this problem.

• Reliability: The object-oriented style is not particularly positive or negative
with respect to reliability. One disadvantage that could be mentioned is that fault
handling generally has to be managed inside the object, due to the encapsula-
tion. This may make it harder to have fault handling at higher levels in the sys-
tem, where more information is available. However, the fact that the system is
modeled in terms of relatively independent entities is positive for reliability,
since no central entity can cause the system to fail.

• Safety: One of the basic organizing principles of the object-oriented style is that
real-world entities should, as much as possible, be represented as objects. As a
consequence, the real-world entities that may compromise or assure safety are
also modeled as objects. The fact that each real-world entity has a one-to-one
correspondence to a system entity, is positive for safety since the system entity
is better suited to identify hazardous situations and react to them than an organi-
zation where the behavior of the system entity is divided over multiple entities.

• Security: The object-oriented style both encapsulates and fragments the data
contained in the system, being positive and negative aspects, respectively.
Authorization of access to the system may be simplified by the fact that system
interfaces generally will be represented by objects.

Implicit Invocation. The fact that an object in the object-oriented style needs to
know the identity of an object it sends a message to increases the dependencies
between objects which leads to a more rigid organization, with consequent negative
effects on maintainability. To address this, a style developed based on the object-
oriented style has recently become more popular: implicit invocation [ref-notkin,
shaw]. The implicit invocation style organizes the system in terms of components
that generate events, possibly containing data, and that consume events. Compo-
nents register their interest in receiving events of certain types and, depending on

Transformation of Software Architectures

100/130 Copyright April 1999 by Jan Bosch (Draft version)

the type of system, publish their ability to generate certain types of events. An event
handling mechanism implicitly present within the system handles all generated
events and delivers the events to interested components. The JavaBeans standard
[ref] is typical example of the implicit invocation style.

Events received by components are bound to operations much in the same way as
messages are bound to operations in the object-oriented style and lead to computa-
tion within the component and, possibly, the generation of new events. The main
difference between events and messages is that events are asynchronous, i.e. the
component generating an event continues its computation immediately after send-
ing the event, and that events are undirected, i.e. the identity of the receiving com-
ponent or components is unknown to the sender of the event.

System build on the implicit invocation style can vary in a number of aspects. The
first is whether an event, in the case of multiple consumers, should be sent to one or
to all components. In the case of observing components, all components should
receive the event, but in other cases only one component should consume the event,
that is receive it and remove it from the system. A second aspect is whether events
of certain types generated by different components should be treated equal. For
example, assume two button components in a graphical user interface environment.
Both buttons can be clicked, leading to the generation of a ‘clicked’ event. How-
ever, the system behavior in the case of a clicked event from button 1 should be dif-
ferent from that in response to a clicked event from button 2. Three alternative
solutions can be chosen. First, rather than using the clicked event, one defines two
events, i.e. ‘button1_clicked’ and ‘button2_clicked’. This solution allows one to
treat events similar independent of generator of the event, but forces components to
incorporate system specifics, e.g. the name of system specific events. The second
solution is to generate a ‘clicked’ event, but to attach the identity of the generating
component to the event. This solution also allows the system to treat all events of a
certain type as equal, but the components need to contain system specifics, e.g.
component identities to be able to exhibit different behavior, dependent on the com-
ponent generating the event. Finally, one may choose to not broadcast events in a
system-wide manner, but to explicitly configure the system in terms of what com-
ponents will receive events generated by what other components. This solution
allows components to be generic since they need not incorporate system specifics,
but an explicit system configuration is required to connect components.

One can identify a relation between the implicit invocation style and the blackboard
style in that both avoid explicit specification of the control and data flow. The con-
trol component may exhibit some influence on the control flow, which is similar to
the implicit event handler that may prioritize certain event types over others. Con-

Copyright April 1999 by Jan Bosch (Draft version) 101/130

Impose Architectural Style

sequently, the quality attributes are, up to some extent, affected similar by both
styles.

• Performance: The event handling mechanism requires a certain amount of
computation that is unrelated to the actual domain functionality, thus negatively
affecting performance. In addition, component communication where an answer
is required from another component requires two events to be sent and pro-
cessed and may lead to fragmentation of logical operations into multiple imple-
mented operations, which is negative both for performance and for
maintainability. These negative effects can be addressed up to some extent
through explicit system configuration, since it removes the, implicit, central
event handler required otherwise.

• Maintainability: The implicit invocation style allows for run-time addition,
removal and replacement of components, in addition to easy compile time flexi-
bility. Whether this is leads to high maintainability is dependent on the model-
ing of components, similar to the object-oriented style. Likely change scenarios
should lead to changes in one or only a few components.

• Reliability: The reasoning with respect to reliability is similar to the object-ori-
ented and blackboard styles. One advantage with respect to the object-oriented
style, however, is that the implicit invocation mechanism can also be used for
broadcasting events indicating faults, which may be used for system-wide fault
handling.

• Safety: See the object-oriented style.

• Security: See the object-oriented style.

Concluding remarks. In this section, we have presented five architectural styles
that can be imposed on a software architecture. We have discussed the effects of
using these styles on the quality attributes of the software architecture. It is impor-
tant to observe that the actual effect is dependent not only on the style, but also on
the type of system and on the way the style is imposed on the architecture. Our
intention in the discussion was to avoid making absolute statements, but instead to
clarify how different uses of the style may affect the quality attributes. Finally, even
if an architectural style generally affects a particular quality attribute in a positive
or negative manner, it is very well possible to address this using different transfor-
mations or by careful detailed design. For instance, some studies performed by
members of our research group [refs] have shown that performance problems in
object-oriented systems are largely due to the excessive use of dynamic memory for
object creation and deletion (in C++). These problems, however, can be easily han-
dled by either selecting a smarter memory handling library or by adding memory
pools to the system and requesting objects from the memory pool rather than creat-

Transformation of Software Architectures

102/130 Copyright April 1999 by Jan Bosch (Draft version)

ing them. This can lead to up to an order of magnitude difference in performance
when compared to a naive implementation. Thus, software architects should not
avoid selecting styles that affect some of the driving quality attributes negatively,
but select the style based on its positive effect on quality attributes that are hardest
to achieve and its negative effect on quality attributes that are easiest to affect later
in the design. Finally, many systems uses more than one style. Although one can
argue that this reduces intuitiveness, using more than one style may be the best way
to achieving the quality requirements.

3.2 Example

To illustrate the imposition of an architectural style on the system, we use the fire-
alarm system presented in chapter 2. The functional architecture of the fire alarm
system can be represented as shown in figure 14. During the architecture assess-
ment phase, the performance and real-time characteristics of the system were eval-
uated. Since each output is depending on a potentially large collection of inputs, the
output will request the status at each sensor it is depending on. This involves send-
ing a request to the sensor via the communication loop, waiting for the answer and
processing the answer to determine whether the output should activate. The result
of the evaluation was that the response time of the system in case of a fire would be
far above the maximum required in international standards. Obviously, this
assumed the use of the intended hardware, i.e. a small 8-bit processor and a very
low bandwidth network.

FIGURE 14. Functional view of the fire-alarm system

To address the evaluation results and to improve the performance and real-time
attributes of the architecture, it was decided to impose a blackboard style on the
software architecture. The blackboard would not contain sensor values, but rather
deviations. Deviations are put on the blackboard only by those Inputs that are in a

Input

Input

Input

Input

Input

Output

Output

Input

Output

Copyright April 1999 by Jan Bosch (Draft version) 103/130

Impose Architectural Pattern

state different from normal. An output only needs to investigate the blackboard in
order to establish its behavior. The resulting software architecture is shown in fig-
ure 15. The consequence of this transformation was that the response time of the
system was well below the required levels, as well as the performance, in terms of
refresh rates for the inputs.

FIGURE 15. Fire alarm system architecture based on the blackboard style

4. Impose Architectural Pattern

In the previous section, imposing an architectural style was presented as a way to
transform a software architecture and improve its quality attributes. A second cate-

gory of transformations is the imposition of an architectural pattern1. An architec-
tural pattern is different from an architectural style in that it is not pre-dominant and
can be merged with architectural styles without problems. It is also different from a
design pattern, discussed in the next section, since it affects the complete architec-
ture, or at least the larger part of it. Architectural patterns generally impose a rule
[Richardson & Wolf 96] on the architecture that specifies how the system will deal
with one aspect of its functionality, e.g. concurrency or persistence.

An architectural pattern does, generally, not reorganize the fundamental compo-
nents of the architecture, but rather extends and changes their behavior, as well as
adds one or a few components that contain functionality needed by the pattern. The
architectural pattern, however, constrains the behavior of the components in the
software architecture, or at least those components that are affected by it, and does,

1. Note that our use of the term “architectural pattern” is different from the use in [Bus-
chmann et al. 96].

Input

Input

Input

Input

Input

Output

Output

Input

Output

Deviation

Deviation

Transformation of Software Architectures

104/130 Copyright April 1999 by Jan Bosch (Draft version)

generally, not allow the use of another architectural pattern that addresses the same
aspect.

As mentioned, architectural patterns deal with one aspect of the behavior of the sys-
tem. Generally this aspect is not in the application domain, but rather in the ‘com-
puter science’ domain. Examples of aspects the way the system deals with
concurrency, persistence, synchronization, transactions, distribution, run-time bind-
ing, real-time behavior and graphical user interfaces. However, these are just exam-
ples of aspects and other aspects may be relevant for particular systems.

For each aspect, several architectural patterns exist that can be used to deal with the
aspect. For instance, in the case of concurrency, one can decide to use a concurrent
operating system with preemptive tasks, a real-time kernel with non-preemptive
tasks or one can implement an application-level scheduler as part of the system and
integrate handling of concurrency in the software architecture. Each solution has its
advantages and disadvantages and the optimal choice depends on the system
requirements.

In the next section, we discuss architectural patterns for the aspects that we men-
tioned earlier in this section. In section 4.2, we present an example of the imposi-
tion of an architecture pattern.

4.1 Architectural patterns and quality attributes

Architectural patterns impose a rule on the system that requires one aspect to be
handled as specified in the architectural pattern. In this section, we describe some
examples of architectural patterns for the primary aspects that most systems have to
deal with. The effect of each architectural pattern on the quality attributes is also
briefly described.

Concurrency. Many applications have a need for simulating parallelism even on a
single processor system. But even in distributed systems, generally more threads
are required than available processors. This has to be incorporated into the architec-
ture by adding an architectural pattern for handling concurrency. Several solutions
are available for achieving this, and the most suitable one depends on the require-
ments and type of system. The use of a particular architectural pattern imposes a
rule on the system, since each pattern requires the components to behave in a par-
ticular way in order to create, synchronize and remove units of concurrency. Below,
we briefly describe the most common approaches to incorporating concurrency into
a software architecture

Copyright April 1999 by Jan Bosch (Draft version) 105/130

Impose Architectural Pattern

• Operating system processes: Assuming the system will execute on top of a
general-purpose operating system, processes will be available that allow com-
ponents to run in separate address spaces and concurrently. The use of processes
to contain components requires additional functionality, or even components, to
handle the communication between components. Several models for communi-
cation between processes are available, including streams, shared memory areas
and message passing.

• Although concurrency will generally increase performance for systems that
are I/O-bound, the use of processes has disadvantages for components that
exchange much data as a result of the necessary copying of data between
processes. Even if shared memory areas are used, this often requires addi-
tional specific code to handle the shared memory which is different from the
implicit use of local memory.

• Maintainability is influenced positively by the increased separation of com-
ponents. Modeling components as processes requires the components to be
more autonomous. On the other hand, additional functionality and, possibly,
additional components are required for the communication and synchroniza-
tion between components. This increases both the distance to the conceptual,
domain-based model and the size of the system. Since maintenance cost are
directly related to system size, this leads to decreased maintainability.
Finally, if groups of objects are modeled as processes, the difference in intra-
process communication and inter-process communication will make the
organization of components more rigid since moving a component from one
process to another will require changes to the way the component communi-
cates with its related components.

• The fact that the system is organized as independent processes is positive for
reliability since the failure of one component and its associated process,
leaves the other components in operation. A disadvantage is that communi-
cation between components is more complicated, increasing the likelihood
of communication failures.

• The fact that the failure of one component generally leaves other processes
unaffected is positive for safety as well. In addition, the ability to restart pro-
cesses that have failed allows for relatively quick recovery of the system in
response to failures.

• Security is influenced positively since achieving access to one process will
not automatically lead to access to the other parts of the system. On the other
side is the fact that classified data may be fragmented throughout the pro-
cesses.

Transformation of Software Architectures

106/130 Copyright April 1999 by Jan Bosch (Draft version)

• Operating system threads: In addition to processes that are relatively heavy-
weight and create separate address spaces, most general-purpose operating sys-
tems support threads. A thread, or light-weight process, does not create a sepa-
rate address space, but executes in the same address space as the other threads.
If the handling of external events should be the source of concurrency, rather
than the components, threads are a more suitable model than processes. Also, if
the level of concurrency should vary dynamically, threads provide a more flexi-
ble solution than processes. However, threads can access components simulta-
neously, leading to racing conditions, if not controlled by appropriate
synchronization mechanisms.

• Compared to a single threaded solution, the use of threads generally
increases performance. Also, when compared to processes, threads require
no additional overhead for communication between components, since the
components remain in the same address space. However, in the case of
multi-processor machines, studies have shown, e.g. [ref-Lars], that the per-
formance of thread-based systems is less than process-based systems, due to
the fact that the threads operate in the same address space and processors are
delayed by conflicts due to simultaneous access of memory locations in the
same proximity.

• Threads may access components simultaneously and to avoid race condi-
tions, synchronization mechanisms have to added to the components. This is
negative for maintainability not only because of the additional code that is
required, but also due to the additional complexity of multiple threads in a
single address space. To optimally employ concurrency, synchronization is
only added where it is absolutely necessary, which may lead to complex
schemes that are defined based on knowledge of the control flow. Incorpo-
rating new requirements in the system may invalidate these schemes, but
since the assumptions are very much implicit and often not well docu-
mented, this easily leads to incorrect synchronization. This is further compli-
cated by the fact that concurrent applications are notoriously difficult to
debug, leading to increased maintenance cost, since testing and corrective
maintenance are part of maintenance.

• Threads that fail will generally not affect other threads directly, which is
positive for reliability, but failed threads may leave parts of the system in an
inconsistent state. In addition, the aforementioned increased complexity of
the system due to synchronization will affect reliability negatively.

• The use of threads allows for concurrent monitoring threads that may iden-
tify, e.g. the failure of important threads controlling safety-critical parts.
Since the monitoring thread, upon identification of a failure, can control the
system in order to reach a safe state, safety is improved, compared to the

Copyright April 1999 by Jan Bosch (Draft version) 107/130

Impose Architectural Pattern

single-threaded solution, where the complete system would become passive.
However, the increased complexity of using threads affects reliability, and
consequently, safety negatively.

• The use of threads has no major effects on security.

• Non-preemptive threads: Processes and threads in general-purpose operating
systems are often preemptive, i.e. the system may pre-empt tasks at any point,
based on clock interrupts. The disadvantage, especially in embedded and time-
critical systems, is that synchronization mechanisms are required and that it is
hard to make any statements about the timing of system behavior. An alternative
approach is the use of non-preemptive threads, i.e. threads that give up the pro-
cessor through an explicit statement. This gives more control to the software
engineer since it is known what behavior is executed as an atomic unit. How-
ever, it also requires more responsibility since not giving up the processor due
to, e.g. an infinite loop, will stall the system.

• One single processor systems, non-preemptive threads may provide the
highest performance in terms of, especially, throughput, since the delays at
synchronization points are not present. The response time to high-priority
events is determined by the size of the atomic units of computation defined
by the software engineers. A high-priority event will be scheduled immedi-
ately after the current task gives up the processor, whereas the preemptive
thread model would allow for immediate execution.

• Although no explicit synchronization mechanisms are put into the code that
affect maintainability negatively, the design of the code, and sometimes
even the architecture, is influenced by the fact that tasks have to release the
processor at frequent, but safe locations in the code. This may lead to less
intuitive code, affecting maintainability negatively since it becomes harder
to understand.

• The main negative influence on reliability is the fact that one task failing to
release the processor may stall the complete system. Embedded systems
often employ watchdog mechanisms in hardware, but these will just reboot
the system, not handle the failure.

• Also safety is affected negatively by the ability of one task to stall the sys-
tem. In cases where passiveness from the system may lead to hazardous situ-
ations, non-preemptive threads are generally less suitable.

• Security is not affected substantially.

• Application-level scheduler: The last architectural pattern that we will discuss
with respect to concurrency is the use of an application-level scheduler. This
approach is typically used in embedded systems with very tight resources in
terms of memory and CPU cycles. Rather than incorporating a real-time kernel

Transformation of Software Architectures

108/130 Copyright April 1999 by Jan Bosch (Draft version)

or other operating system, the management and scheduling of tasks is performed
at the application level, as part of the system. Whereas non-preemptive threads
give the software engineer control on when to reschedule, but not on what task
to run next, this pattern allows the software engineer to control the scheduling
of tasks as well. This, obviously, also leads to increased responsibility for the
software architects and engineers since both aspects are now handled by the
software architecture.

A typical instance of this pattern is described in [Molin and Ohlsson 97?]. In
their model, the system contains a scheduler and a set of active objects that have
a tick() method on their interface. The tick method of each active object is
invoked periodically by the scheduler. The method performs the necessary tasks
it requires and subsequently returns to the caller, i.e. the scheduler. The cycle
time for the system is the sum of the execution time of all tick methods plus
some minor overhead by the scheduler. If the cycle time is too long for some
active objects, these objects can be put twice into the list, so that they are
invoked twice during each cycle, although the total cycle length, obviously,
increases. An application-level scheduler allows for the highest level of control
by the software engineer, but also imposes the responsibility for the correct
operation of the system with respect to concurrency fully on the shoulders of the
engineer.

• Since there is no overhead from the operating system or kernel, except for
some minor overhead for the application-level scheduler, performance is
generally very high using this model. Resource efficiency is maximized at
the expense of additional development time, since the software architect and
engineers are responsible for task management and scheduling. A disadvan-
tage may be, similar to non-preemptive threads, that the response time of the
system to high-priority events is not optimal, although this can partially be
handled by using interrupt routines.

• As mentioned above, this pattern maximizes resource efficiency at the
expense of development time, system size (in terms of system-specific code)
and system complexity. This has a negative impact on maintainability. Oth-
erwise, the disadvantages are the same as for non-preemptive threads.

• See the above section concerning non-preemptive threads for the effects on
reliability, safety and security.

Concluding, although not more than one of the architectural patterns discussed
above can be applied to a component, it is possible use different patterns for differ-
ent levels of the system. For instance, the system can be decomposed at the top-
level into a small number of processes, but, within the processes, concurrency is
achieved by using, e.g. non-preemptive threads. In addition, one can identify a

Copyright April 1999 by Jan Bosch (Draft version) 109/130

Impose Architectural Pattern

direct relation between control over the behavior of the system and the responsibil-
ity that is put on the software architect.

Persistence. The second aspect for which we will discuss architectural patterns is
persistence. In addition, we will also discuss a topic of mentioned in direct connec-
tion to persistence, i.e. transactions. Persistence is the ability of data to survive the
process in which it was created. This allows data to be stored on permanent storage
and read from this storage by other processes, at later points in time. With the mer-
gence of object-oriented systems, the ambition expanded from persistent data to
include persistent objects as well. This creates a number of challenging problems,
especially with respect to object references. The first problem is that it is not always
clear whether an object reference points to a part object, that should be saved
together with the object containing the reference, or that the reference points to an
acquaintance and thus should be rebound when the object is recreated from storage.
The second issue is how to bind object references when recreating objects from per-
manent storage. This requires objects to have permanent identities, if the reference
should be bound to the same object. However, in several cases, it is not the identity,
but rather the capabilities of an object that determine whether it can be bound as an
acquaintance of a recreated object. In that case, other rules for rebinding object ref-
erences apply. Two architectural patterns for achieving persistence will be dis-
cussed, i.e. the use of a database management system and application-level
persistence handling.

Transactions describe operations covering multiple data elements or objects that
should be handled atomically. Generally, transactions should fulfil the ACID prop-
erties, i.e. atomicity, consistency, isolation and durability. These properties are pri-
marily useful for the traditional database applications, such as banking and
accounting systems. However, for several of the new types of systems, such as sys-
tems for computer-aided design or internet-based systems, not all properties are rel-
evant or even useful. For instance, in computer-aided design systems often object-
oriented databases are used that allow for versioning of objects. In such systems,
even objects that are part of ongoing ‘transactions’, i.e. that are under design, can
be accessed for reading, new versions of the object can be created and multiple ver-
sions of an object can be merged at later occasions. Some computer-supported soft-
ware engineering environments support such approaches as well. In the
aforementioned systems, the isolation property is not just useless, but even counter-
productive. As an alternative, in real-time systems, rather than the isolation prop-
erty, the durability property may be irrelevant. Transactions may be used to
coordinate actions on two or more devices, e.g. two valves that need to close or
open synchronously for correct system behavior. Concluding, although transactions
provide important functionality for achieving correct system behavior, it is impor-

Transformation of Software Architectures

110/130 Copyright April 1999 by Jan Bosch (Draft version)

tant to understand what properties one aims to achieve using the transaction mecha-
nism. We describe two architectural patterns for achieving transaction-like
functionality, i.e. a database management system application-level transaction man-
agement.

Before we discuss the architectural patterns and their relation to quality attributes, it
is important to note that persistence and transactions are really two independent
aspects of a system and can be used independent of each other.

• Database management system: A database management system (DBMS)
extends the system with an additional component, but also imposes rules on the
original architecture components. Both for persistence and for transactions, the
entities that should be persistent and/or part of transactions need to be extended
with additional functionality to support these aspect. In addition, components
need handle requests from other components in accordance to the rules imposed
by the DBMS. We leave this section relatively short since most readers will be
rather familiar with DBMSs.

• Despite the fact that a DMBS requires considerable resources in terms on
primary and secondary memory is performance of these systems often very
high. For instance, ObjectStore [ObjectStore 93] claims to be able to provide
access rates to persistent data that are as high as data access to transient data,
while providing the advantages of databases, i.e. persistence and transaction
semantics. Obviously, when conflicts between, e.g. concurrent threads, arise,
the response time for individual threads will be affected. However, in gen-
eral, the many years of effort spent in optimizing the internals of DBMSs has
removed much of the overhead that was present early systems, although this
is primarily the case for larger systems in which much data is moved around.
The primary disadvantage of using a DBMS, especially in embedded and
real-time systems, is the amount of resources required by the subsystem. In
addition, since DBMSs generally are optimized for large amounts of data,
considerable overhead may be incorporated in handling small amounts of
data under real-time constraints.

Transaction management is, obviously, incorporated in database manage-
ment systems. However, transaction semantics have to be specified explic-
itly in the system and the quality of the implementation influences
performance considerably. Transaction conflicts cause restarts of transac-
tions, which invalidate, possible considerable amounts of computation.

• The effect of using a DBMS on maintainability depends up to a large extent
on the types of changes that have to be incorporated into the system and on
the type of database, i.e. relational or object-oriented, that is used in the sys-
tem. Assuming that most applications are at least object-based, the use of a

Copyright April 1999 by Jan Bosch (Draft version) 111/130

Impose Architectural Pattern

relational database requires a transformation process to take place each time
data is stored and retrieved. The manual transformation is sensitive to
changes in the structure of the objects, thus requiring considerable effort.
Changes to transaction semantics are also costly, especially since the trans-
action code is embedded in the code of the various system entities.

• Writing database interaction code is not trivial and often rather complex,
which is negative for reliability. On the other hand, DBMS functionality has
generally rather high reliability since it is extensively tested and used by
many users.

• Safety is not affected significantly by the use of a database management sys-
tem.

• Most database management systems have means for authorization as part of
their functionality, which is a positive aspect with respect to security.

• Application level persistence and transaction handling: The use of a data-
base management system requires, as mentioned earlier, considerable amounts
of resources in terms of primarily memory management, but also other
resources, such as performance, for certain systems. For embedded and other
systems with small resources, this overhead may be unacceptable. Secondly, a
system may only need some of the functionality provided by a database man-
agement system, e.g. persistence, but no transactions, or coordinated action
through the use of transactions, but no roll-back. Using only a part of a full-
fledged DBMS with associated resource requirements may not be a feasible
solution in such situations.

The alternative approach is to incorporate the required persistence and transac-
tion functionality as part of the system, rather than by using a third party DBMS
product. To achieve this, the software architect and engineer may make use of
language and operating system features, such as serialization of objects in the
Java language and semaphores or some other synchronization mechanism that is
part of most operating systems. The advantage of this approach is that only the
functionality required for the system is implemented.

• It is difficult to make statements about the performance of systems using
application level persistence and/or transaction implementation, since it
heavily depends on the amount of functionality required by the system, the
quality of the implementation and the characteristics of the system usage.
However, assuming a reasonable implementation, performance should not
be worse than when using a DBMS, while avoiding the resource require-
ments.

• Similar to performance, the effect of using application-level persistence and
transaction handling on maintainability depends on the implementation.

Transformation of Software Architectures

112/130 Copyright April 1999 by Jan Bosch (Draft version)

However, assuming that the amount of code required to implement the func-
tionality is larger than the DBMS interaction code and the fact that this code
is distributed over all components requiring persistence or transaction
semantics, it is reasonable to assume that this has a negative effect on main-
tainability.

• For reliability, a similar line of reasoning holds: a larger amount of system-
specific code distributed over the system results in lower reliability, due to
the increased complexity of the software.

• The negative effect of this architectural pattern on reliability, has negative
effects on safety as well. However, the fact that the persistence and transac-
tion functionality is present at the system level, allows for application-spe-
cific failure handling, which may well improve safety.

• Since persistence and transaction semantics have no explicit relation to
authorization and other security issues, no major effects of this architectural
pattern on security are expected.

Distribution. One of the observations with respect to the current state of practice in
systems development is that distribution is becoming ubiquitous. Most systems
consist of parts distributed over multiple nodes or need to communicate with other
systems via networks. Consequently, distribution is an integrative part of most sys-
tems.

The problem of distribution consists of two major aspects. The first is the way in
which entities connect to each other. This can be achieved through predefined
addresses and connections or, more flexible, through a central broker. The second
aspect is the actual communication between remote entities. Again, several solu-
tions exist including remote procedure calls and remote method invocation, distrib-
uted streams, a web interface, etc. Finally, one way to deal with distribution is by
making it transparent, that is the system entities are unaware of their acquaintances
being remote or local. Although much of the functionality related to distribution is
transparent in today’s approaches to distribution, components are often aware of
acquaintances being distributed or not, both when binding and when communicat-
ing.

The solutions used to achieve distribution in a system are typically architectural
patterns since they require all entities in the system that are concerned with commu-
nication over address spaces to follow the same set of rules and constraints. Below,
we discuss some architectural patterns that are typically used in the context of dis-
tributed systems, i.e. brokers, remote method invocation and HTTP.

Copyright April 1999 by Jan Bosch (Draft version) 113/130

Impose Architectural Pattern

• Broker: Brokers provide functionality for distributed components to find each
other. A client component sends a message to the broker requesting a reference
to a server component that fulfils certain requirements. These requirements
include the component name and its interface, but possibly also other aspects,
such as the state or the location of the component. CORBA [ref] is one of the
best known broker architectures, but other alternatives exist, such as DCOM/
AxtiveX [ref]. However, as presented in [Buschmann et al. 96], one can even
implement the broker as an architectural pattern at the system level, meaning
that the broker is part of the system rather than of the layer supporting the sys-
tem.

It is important to note is that not using a broker requires the system to hard-code
the remote references and port addresses to at least each distributed part of the
system in order to be able to communicate between the distributed parts.

• The broker is used to connect distributed entities at run-time. Typically, a
broker provides a reference which is then used for during the life of the com-
ponent requesting the reference. Exceptional situations, i.e. the reference
losing validity due to, e.g. a system crash, may require the component to
invoke the broker again for a reference, but generally this happens only
occasionally. Consequently, performance is not affected in any major way
by using a broker architecture, assuming that references are requested rela-
tively infrequent.

• As mentioned above, the alternative to using a broker in a distributed system
is to hard-code references between machines in the code or configuration
files. This is negative for maintainability since relocation of services in the
system requires an explicit effort for each client depending on that service,
whereas in a broker architecture no effort would be required.

• The broker architecture affects reliability both positively and negatively. On
the positive side, the broker disconnects logical services from physical loca-
tions. This allows for clients to connect to a service has failed and restarts on
a different node in the network. On the negative side, the broker itself is a
central entity in the network and when it fails, the complete system may
seize to function. However, generally brokers have backups that take over
when the primary broker fails, thus eliminating this weakness.

• A general property necessary for achieving safety is that it is easy to deter-
mine the behavior of the system in critical situations. The broker architec-
tural pattern breaks a large system down into a set of smaller, but
communicating systems, thus complicating the prediction of system behav-
ior. However, the broker does allow the system to dynamically reconfigure
itself, which may improve safety since clients of a failing service may
dynamically connect to a new service, thus maintaining system behavior.

Transformation of Software Architectures

114/130 Copyright April 1999 by Jan Bosch (Draft version)

• The broker is a central point for handing out references to system services.
This allows for authorization at that point which is positive for security.
Secondly, services need to register at the broker before they can be found by
the clients. The broker can perform security checks for registering services
so that trusted clients do not use untrusted services. However, once refer-
ences have been exchanged, the broker is not involved in the continued com-
munication between system entities, thus security is not influenced by the
broker architectural pattern.

• Remote method invocation: Distribution has two primary aspects, i.e. finding
remote entities and communicating with these entities. The broker architectural
pattern is concerned with the first aspect, but for the latter aspect a remote com-
munication mechanism is required. Traditionally, remote procedure calls were a
typical communication mechanism between address spaces, but with the emer-
gence of object-oriented programming languages, remote method invocation as
in Java [ref] become more relevant alternatives. However, it is possible to make
use of, e.g. sockets, for communication. The disadvantage is that this requires
application-level ‘interpreters’ of the data that perform the work typically done
in, for instance, the Java RMI layer. The latter depends, however, on the type of
architectural style used for the system. For instance, a stream-based connection
mechanism as sockets fits the pipes&filters style very well, making it the pre-
ferred approach.

• Naturally, the performance of a remote method invocation compared to a
local invocation is much lower. However, the use of distribution may be nec-
essary for the system at hand or has advantages that outweigh the perfor-
mance loss on a (small) subset of the method invocations. Even compared to
other distributed communication mechanisms, remote method invocations
may slow, due to the overhead associated with, among others, marshalling
and demarshalling of the arguments. Therefore, it is important to explicitly
investigate the type of distribution mechanism needed for the system. For
instance, if a natural flow of data exists in the system, a stream-based solu-
tion, with less overhead for ‘flattening’ data, may be preferable from a per-
formance perspective.

• Assuming the acquaintance handling, i.e. selection and binding, is separated
from the actual functionality, the maintainability of a system using remote
method invocation is likely to be good. This is because no distinction has to
be made between communicating with remote and local entities, allowing
for flexible reallocation of objects. Generally, it has to be noted, the use of
distribution is negative for maintainability since it increases the system size
and because the code associated with distribution tends to be mixed with

Copyright April 1999 by Jan Bosch (Draft version) 115/130

Impose Architectural Pattern

other code which complicates changing either the distribution code or the
other code related to, e.g. domain functionality.

• The use of remote method invocation has, compared to other distribution
mechanisms, no major effects on reliability, safety or security.

• HTTP and HTML: The third, and last, architectural pattern related to distribu-
tion that we briefly intend to discuss is the use of the HyperText Transfer Proto-
col (HTTP) as a means of both finding and communicating with remote entities.
Lately, we have seen an increasing use of the HTTP protocol as a means for net-
worked embedded systems to communicate with the outside world and, up to
some extent, communicate among system components. Especially for systems
with very loosely coupled components, the use of the HTTP protocol minimizes
dependencies and allows for easy observation from the outside using normal
web browsers. However, selecting the HTTP protocol as a means for distributed
communication imposes, as any architectural pattern, considerable constraints
and design rules on the system. Generally, a considerable amount of translation
between the internal representation of the domain model and the HTML format
is required.

• Due to the amount of translation required for using HTTP and the HTML
format, performance is generally affected negatively by using this
approach.

• On the server side, the translation of the internal representation to HTTP and
HTML formats causes lower maintainability due to increased code size and
to the complexity of the translation. Although the domain functionality and
HTTP translation usually are modeled as separate parts, considerable depen-
dencies exist since extensions to the domain functionality often need to be
accessed by distributed entities. On the client side, however, a standardized
and relatively simple interface allows to communicate with all service-pro-
viding components in the same way, which greatly reduces interaction com-
plexity.

• Reliability and safety are not affected by using this architectural pattern.

• The HTTP protocol and the HTML format have no or little means for han-
dling security. Thus in systems where high security is required, this archi-
tectural pattern should not be used unless it is extended with functionality
that guarantees sufficient security levels.

Graphical user interface. It may be surprising to the reader to find the topic of
graphical user interfaces (GUIs) on the list of architectural patterns. The interface
of the system to its users may as well be considered a functional requirement and,
up to a considerable extent, it is. However, the GUI is concerned with presenting

Transformation of Software Architectures

116/130 Copyright April 1999 by Jan Bosch (Draft version)

and controlling the domain functionality which requires the entities representing
the domain functionality to provide interfaces that support this. Thus, deciding
upon a particular approach to incorporating means to obtain domain data and con-
trolling behavior imposes constraints.

One can identify two main approaches to incorporating interactivity in systems, i.e.
model-view-controller (MVC) and the presentation-abstraction-control (PAC)
[Buschmann et al. 96]. Both consist of a model (abstraction), a view (presentation)
and a controller (control), but the way these components are organized is different.
The MVC architectural pattern adds a view and a controller component to the cur-
rent architecture, which is considered to be the model since it contains the domain
functionality. Both the view and the controller interact with the model and the con-
troller governs with the view as well. The PAC pattern organizes the architecture
into a hierarchy of cooperating agents that internally consist of a presentation, an
abstraction and a control component. The control component is the primary exter-
nal contact for the agent as well as the internal coordinator that interacts with both
the abstraction and the presentation component. However, these components do not
directly interact with each other. Below, we briefly describe the effect of using
these patterns on the quality attributes.

• Although it depends on the type of system and the implementation, perfor-
mance is affected negatively by using either of these patterns. The MVC
pattern tends to result in large numbers of update messages between the
model and the view components. In addition, the access of data in a view
may require several messages to different parts of the model component.
The control component in the PAC pattern tends to be the bottleneck for
communication since all messages need to pass this component. Especially
requests that travel up and down the hierarchy often experience considerable
overhead.

• The primary reason for using these patterns is to improve maintainability.
The intention is that by separating the domain model from the presentation
of the domain model and from the control of the system, each component
can evolve independently, thus simplifying maintenance. Although this is
the case, there are a few negative aspects to consider as well. Both patterns
increase the complexity of the system since functionality related to domain
concepts is divided over different components. In addition, the view and the
controller in the MVC pattern often are connected rather intimately, which
complicates changing one component without affecting the other. Finally,
the PAC pattern tends to result in a complex control component that is hard
to change.

Copyright April 1999 by Jan Bosch (Draft version) 117/130

Impose Architectural Pattern

• Compared to a traditional approach in which GUI functionality is mixed
with domain functionality, the advantage of the MVC and PAC architectural
patterns is that computation related to the application domain, to a large
extent, takes place independent of other types of computation. This is posi-
tive for reliability since failures in one part of the system do not automati-
cally affect other parts. A negative aspect is that the increased complexity of
the system tends to decrease reliability.

• The relative independence of the system components is also positive for
safety. The central role of the control component in the PAC pattern, how-
ever, partially neutralizes this.

• The controller in the MVC pattern can, relatively easy, be extended with
authorization functionality, which is positive for security. Due to its organi-
zation, this is slightly less easy in the PAC pattern, but if all access to the
system starts at the top agent, the control component of that agent can be
extended with authorization functionality.

4.2 Example

An example from the fire alarm system domain is related to concurrency. In the
functional architecture in figure 15, it is assumed that reading of inputs and poten-
tially generating corresponding outputs take place concurrently. Assuming that
light-weight pre-emptive threads are used, this solution can be evaluated with
respect to efficiency and reliability. The cost of threads and the fact that pre-emp-
tive threads are error-prone since they may cause racing conditions when accessing
shared data, necessitates investigation of other solutions.

To address this, we decide to make use of an application-level scheduler and the
notion of a periodic object. A periodic object is an interface containing a Tick
method and that is regularly activated by the scheduler. Concrete subclasses imple-
ment their own Tick method that defines one slice of the periodic execution of an
active object. The degree of concurrency achieved by this solution depends on the
“thinness” of the largest slice. This design rule is an example of an architectural

Transformation of Software Architectures

118/130 Copyright April 1999 by Jan Bosch (Draft version)

pattern that influences the complete architecture since all inputs and outputs are
affected. In figure 16, the result of the transformation is presented.

FIGURE 16. Application-level scheduler for the fire-alarm system

5. Apply design pattern

In the previous sections, we have discussed architecture transformation techniques
that have an architecture-wide impact, i.e. the imposition of a style or architectural
pattern.

A less dramatic transformation is the application of a design pattern on a part of the
architecture. For instance, an abstract factory pattern [Gamma et al. 94] might be
introduced to abstract the instantiation process for its clients. The abstract factory
pattern increases maintainability, flexibility and extensibility of the system since it
encapsulates the actual class type(s) that are instantiated, but decreases the effi-
ciency of creating new instances due to the additional computation, thereby reduc-
ing performance and predictability. Different from imposing an architectural style,
causing the complete architecture to be reorganized, the application of a design pat-
tern generally affects only a limited number of components in the architecture. In
addition, a component can generally be involved in multiple design patterns with-
out creating inconsistencies.

Input

Input

Input

Input

Input

Input

Deviation

Deviation
Ouput

Ouput

Ouput

Scheduler

Copyright April 1999 by Jan Bosch (Draft version) 119/130

Apply design pattern

Design patterns have received considerable amounts of attention in the literature
both in books, e.g. [Gamma et al. 94] and [Buschmann et al. 96], and conference
proceedings, e.g. the PLOP conferences [Coplien & Schmidt 95], [Vlissides et al.
96] and [Martin et al. 98]. Patterns have been described for a variety of problems,
including persistence, distribution, user-interfaces, reactive systems and processes,
but also for specific domains, such as business objects, hypermedia and transport
systems. These patterns, generally, describe a solution that improves reuse and
maintainability, while, up to some extent, sacrificing operational quality attributes,
such as performance and real-time behavior, and understandability, i.e. patterns
often make the design of a system more complex.

Design patterns can be categorized in many different ways. [Gamma et al. 94] use a
two dimensional classification, where one dimension is class and object patterns
and the second dimension addresses creational, structural and behavioral patterns.
[Buschmann et al. 96] uses a different classification and defines the following cate-
gories: structural decomposition, organization of work, access control, manage-
ment and communication.

In the next section, we present a few general-purpose design patterns and discuss
the effect of these patterns on the quality attributes. Since design patterns make
local rather than architecture-wide transformations, the quality attributes are not
affected as much by a design pattern either. An example of applying a design pat-
tern is presented in section 5.2.

5.1 Design Patterns and Quality Attributes

Design patterns are used to improve quality attributes. Patterns do not change the
functionality of the system; only the organization or structure of that functionality.
Consequently, when applying a design pattern, it is important to consider the effects
on the quality attributes. An impressive number of design patterns has been pro-
posed during recent years, published in, among others, the proceedings of the afore-
mentioned PLOP conferences. In this section, we briefly discuss three of the
classical design patterns presented in the Gang of Four (GoF) book [Gamma et al.
94], i.e. Facade, Observer and Abstract Factory. The primary difference between
the presentation of design patterns in the GoF book and other publications and in
this book is the fact that we explicitly treat the use of design patterns as transforma-
tions taking an architectural design from one version to the next, rather than pre-
senting patterns as static structures.

Facade. he Facade design pattern is used to provide a single, integrated interface to a
set of interfaces in a subsystem. Facade defines a higher-level interface that simpli-

Transformation of Software Architectures

120/130 Copyright April 1999 by Jan Bosch (Draft version)

fies the use of the subsystem. The structure of a subsystem incorporating the Facade
design pattern often looks as in figure 17. The subsystem is defined as a component
containing the entities that are part of the subsystem. The function of the subsystem
component is basically twofold. The first is the coordination between the entities in
the subsystem, whereas the second function is to provide an integrated interface to
clients of the subsystem. Below, the effects of the Facade pattern on the quality
attributes are discussed.

FIGURE 17. Structure of the Facade design pattern

• The performance of the architecture employing the facade pattern is
reduced due to the indirection in the communication between external and
internal components, but also due to the coordinator role the facade plays
within the subsystem.

• The facade decreases the coupling between external components and com-
ponents inside the facade. The decreased dependency is positive for main-
tainability. However, the evolution of the internal components often leads to
many changes at the facade interface.

• The reduced complexity of interaction between subsystems may be positive
for reliability, i.e. rather than n-to-n, the connections are reduced to n-to-1.
However, the facade interface may easily grow complex, which affect reli-
ability negatively.

• The facade pattern has no major effects on safety.

• The fact that the facade pattern provides a single point of access to the sub-
system functionality is positive for security since, among others, authoriza-
tion can be performed more easily.

Observer. The Observer design pattern deals with the situation where several com-
ponents are depending on state changes in another component; when the compo-
nent changes state, all its dependants are notified. The Observer pattern is a widely
used in object-oriented systems since is significantly decreases the dependency

facade

Copyright April 1999 by Jan Bosch (Draft version) 121/130

Apply design pattern

between an object and its dependent objects. The structure of the Observer pattern
is shown in figure 18.The quality attributes are affected as discussed below by the
pattern.

FIGURE 18. Structure of the Observer pattern

• The observer pattern avoids the situation where dependent components poll
the component for state changes, which is positive for performance. How-
ever, the pattern does by default updates all dependent components, possibly
leading to unnecessary computation. The situation where the subject would
send the data that the dependent component requires whenever a relevant
state change took place and the dependent component currently was inter-
ested in state changes would be more efficient, but also increase the depen-
dencies between the subject and the observers.

• Compared to alternative approaches, such as discussed above, the maintain-
ability of the observer pattern is positively influenced. Observing compo-
nents can be dynamically added and received without changes to the system.

• The decreased dependencies between the subject and the observers is gener-
ally positive to reliability since a failure at one of the observing components
does not affect the other components, assuming the failure is handled appro-
priately.

• Safety and security are not affected noteworthy by the pattern.

Abstract Factory. The abstract factory pattern provides an interface to creating a
family of related objects without specifying their concrete classes. Often when
using reusable software, such as object-oriented frameworks, selecting one type of
component in part of the framework restricts the selection of component types in
other parts of the framework. The typical example are user-interface frameworks.
When one selects an X-windows component such as a window, one is required to

Subject
attach(Observer)
detach(Observer)
notify

ConcreteSubject
getState

for all o in observers
o->update

subjectState
return subjectState

Observer
update

ConcreteObserver
update
observerState

observerState :=
subject->getState

subject

observers

Transformation of Software Architectures

122/130 Copyright April 1999 by Jan Bosch (Draft version)

select all component types from the X-windows sub-hierarchies. If one would
explicitly use the names of the component types, this would complicate the use of
the software for different platforms or the evolution of the software since changing
replacing a component type with an updated one will require the software engineer
to replace the name of the component type at all points of usage. When the abstract
factory pattern is used, the name of the component type is only used in the factory.
In figure 19, the structure of the pattern is shown. Since the abstract factory pattern
is only used when instantiating objects, it affects the quality attributes even less
than the design patterns discussed earlier. Below, this is discussed in more detail.

FIGURE 19. Abstract Factory design pattern

• The abstract factory pattern requires more computation for the creation of
new components, which affects performance negatively. However, once the
component is created, the pattern does not play a role, so the impact on per-
formance is minimal in most systems.

• Since explicit references to component types are avoided in the majority of
the code and concentrated in the factory components, maintainability is
improved. Evolving the system by adding new component types will result
in a single point of change, rather than many changed distributed throughout
the code.

• Reliability, safety and security are not affected by the pattern.

5.2 Example

To illustrate the use of design patterns, an example from the measurement system
architecture is used. Sensor components represent physical entities that measure
some aspect of the real-world. The relation between the physical entity and the soft-
ware representation in the form of the sensor component needs to be maintained. In

Abstract Factory
createProductA()
createProductB()

ConcreteFactory1
createProductA()
createProductB()

ConcreteFactory2
createProductA()
createProductB()

<To be finished>

Copyright April 1999 by Jan Bosch (Draft version) 123/130

Convert quality requirements to functionality

general, one can identify three alternative approaches to achieving this. The first is
to wait for a client to ask for the value of the sensor. At that point the sensor com-
municates with its real-world counterpart, calculates the value and returns it to the
caller. The second approach is for the sensor to periodically request the current
value from the real-world sensor and store the calculated value. Clients requesting
the value will then receive the stored value, that may be slightly outdated. Finally,
the real-world entity may notify its software representation whenever it changes
state, e.g. through an interrupt. When notified, the sensor component retrieves the
new data and calculates the new value, which is stored and send to a client when-
ever it requests the value.

The problem is that the approach to use depends on the situation and the approach
may vary independently of the domain functionality of the sensor. To avoid main-
tainability problems, we made use of the Strategy design pattern that factors out the
different update approaches as separate update strategies. Upon instantiation, but
even at run-time, the sensor is configured with a particular update strategy that is
used by the sensor. The resulting structure is shown in figure 20.

FIGURE 20. The Strategy pattern applied to the Sensor component

6. Convert quality requirements to functionality

The three types of architecture transformation techniques discussed in the sections
above are primarily concerned with reorganizing the functionality already present
in the architecture. By reorganizing the functionality in new structures, the quality
attributes of the architecture are improved. However, this is not always sufficient.
Often, it is necessary to add additional functionality to the system not concerned
with the application domain but primarily with improving the quality attributes.

sensor

concrete sensorabstract sensor

strategy

update strategy

trigger

periodic update

on change update

client update

Transformation of Software Architectures

124/130 Copyright April 1999 by Jan Bosch (Draft version)

The fourth and final type of transformation is the conversion of a quality require-
ment into a functional solution that consequently extends the architecture with
functionality not related to the problem domain but used to fulfil the requirement.
Although this type may require minor reorganizations of the existing architecture,
the primary effect is the addition of new components and functionality. Exception
handling is a well-known example that adds functionality to a component to
increase the fault-tolerance of the component.

Many examples of this type of transformation exist, although we have traditionally
not necessarily considered these examples as quality attribute-improving transfor-
mations. In the next section, two examples are discussed, i.e. self-monitoring and
redundancy. Section 6.2 presents an example of this type of transformation.

6.1 Converted quality requirements and quality attributes

The type of transformation discussed in this section is different from the types dis-
cussed earlier since it adds functionality to the architecture, rather than reorganizes
the already present functionality. In this section, we discuss two examples of this
type of transformation.

Self-monitoring. Although an architecture may provide the required functionality
under ideal circumstances, it often is unclear how well it handles unexpected situa-
tions, such as failing components, hardware that breaks and external systems that
go down. To address this, one solution is to add self-monitoring to the system.
Analogous to the architectural patterns for GUI, i.e. MVC and PAC, two alterna-
tives exist. One can add a layer on top of the system that monitors the behavior of
the system, similar to the base-layer of the system that monitors relevant behavior
in the real-world. Alternatively, the self-monitoring behavior is modeled as a hier-
archy that mirrors the existing component hierarchy. Independent of the alternative
chosen, the behavior of the monitoring includes not just identifying and reporting
problems, but generally also actions to solve the problems. Below, the effect of add-
ing self-monitoring functionality to the architecture on the quality attributes is dis-
cussed.

• Self-monitoring adds an additional subsystem (either logical of virtually) to
the architecture that requires computational resources, but is unrelated to the
application domain. Consequently, there is a, sometimes considerable, per-
formance impact.

• The subsystem for self monitoring increases the system size which has an
immediate negative effect on maintainability. However, there is an addi-
tional effect as well: the code related to the application domain has to be

Copyright April 1999 by Jan Bosch (Draft version) 125/130

Convert quality requirements to functionality

mixed with the code for monitoring in order to detect erroneous situations.
This increases the complexity of existing architecture, with corresponding
effects on maintainability.

• Although this transformation has a negative impact on both performance and
maintainability, reliability is definitely improved. The ability of the system
to detect problems and take countermeasures is increased.

• The same line of reasoning holds for safety. The ability to detect potentially
hazardous situations, increases the likelihood that the system, or part of it,
can be brought to a fail-safe state.

• Self monitoring can be used to identify errors, but also to detect suspicious
patterns of behavior, which could be used for improving security. However,
this type of application is less frequent than the earlier two.

Redundancy. To increase the fault-tolerance of software, the notion of redundancy,
originating from hardware, has also been applied to software. Since it serves little
use to use multiple copies of the same software module, different implementations
of the same requirement specification are required, i.e. N-version programming
[Storey 96]. N-version programming is often complemented with recovery blocks,
allowing the system or a module, upon the detection of an error, to abort and return
to a system or module state saved earlier at a recovery point. Typical computation
consists of creating a recovery point, for each version of a module, compute the
results and test the values for acceptance, and finally accept the values as correct
data, allowing the module to create the next recovery point. An alternative
approach is to order the implementations as primary, secondary, etc. and to only
execute the, e.g. secondary, version if the acceptance test for the, e.g. primary, ver-
sion failed.

• The performance of the system is seriously decreased using N-version pro-
gramming, especially when using the first approach. However, this can, at
least partially, be addressed by using a multi-processor system and executing
the versions in parallel on different processors.

• Obviously, N versions of the same module will also need to be changed
when the requirements change, thus having a considerable impact on main-
tainability. In addition, the use of recovery points complicates the code con-
siderably.

• Obviously, the primary reason for using redundancy is to increase the reli-
ability and the safety of the system. The risk for the system failing due to
software errors is decreased considerably.

• Redundancy has no major effects on security.

Transformation of Software Architectures

126/130 Copyright April 1999 by Jan Bosch (Draft version)

6.2 Example

In the example fire alarm system, there are quality requirements related to self-
monitoring and availability. In certain cases, detected faults should be handled
using hardware redundancy, whereas in other cases problems should be indicated to
the fire brigade or the persons responsible for system maintenance. These require-
ments are, at least, partially fulfilled by transforming them to functional require-
ments similar to the basic alarm requirements. The corresponding architecture
extended with entities dealing with self-monitoring is presented in figure 21.

FIGURE 21. Self-monitoring in the fire-alarm system architecture

The above solution is a typical case where a logical additional layer is added to the
system for self-monitoring. In the dialysis system, we used an alternative approach.
As discussed in chapter 3, the primary archetype in the dialysis system architecture
is the Device. As shown in figure 22, each domain device may have one or more
alarm detector devices associated with it that monitor for potentially hazardous sit-
uations. Once an alarm has been detected, the alarm detector device activates an
appropriate alarm handler by sending an alarm event.

7. Distribute requirements

In the previous sections, we have discussed four types of architecture transforma-
tion that improve, or at least affect, the quality attributes of the architecture, while
leaving the domain functionality in tact. However, the architecture can only facili-
tate the fulfillment of quality requirements. The design and implementation of the
components are of crucial importance for the quality attributes of the final system.

Output

Output

Deviation

Deviation

Output

Output

Deviation

Deviation

Alarm
Input

Alarm
Input

Alarm
Input

Alarm
Input

Fault Input

Fault Input

Fault Input

Copyright April 1999 by Jan Bosch (Draft version) 127/130

Distribute requirements

The increased awareness of the importance of an explicit design of the architecture
of a software system has not decreased the importance of the components that make
up the architecture.

FIGURE 22. Self-monitoring in the dialysis system architecture

Consequently, the final activity of each architecture transformation deals with qual-
ity requirements using the divide-and-conquer principle: a quality requirement at
the system level is distributed to the subsystems or components that make up the
system. Thus, a quality requirement X is distributed over the n components that
make up the system by assigning a quality requirement xi to each component ci

such that X=x1+ ... +xn. A second approach to distribute requirements is by divid-

ing the quality requirement into two or more functionality-related quality require-
ments. For example, in a distributed system, fault-tolerance can be divided into
fault-tolerant computation and fault-tolerant communication.

Fire alarm systems are often implemented as a distributed system where one CPU-
based system controls one building. Several such systems communicate with each
other and the basic requirement is that an alarm detected on one system should be
indicated on all other systems. This requirement can be achieved by enforcing a
copy of the ”blackboard” to be available on all systems. This distribution can be
effectuated by means of communication software operating at a lower layer and
assuring that consistent copies of the blackboard are distributed throughout the sys-
tem. The resulting architecture is shown in figure 23.

AlarmHandler

activate()
reset()

*

0

AlarmDetectorDevice

reset() Sends alarm events

1 ControllingAlgortihm

calculate()
0

Normaliser

normalise()
denormalise()

Device

getValue()
setValue()

*

0

hazard surveillance

10

Transformation of Software Architectures

128/130 Copyright April 1999 by Jan Bosch (Draft version)

The quality requirements stating how well the fire alarm system should cope with
communication problems is assigned to the communication software, effectively
distributing a system requirement to a system component.

FIGURE 23. Dividing fault-tolerance over computation and communication

8. Conclusion

The design of software architectures as proposed in this book consists of three main
phases, i.e. functionality-based architectural design, assessment of the quality
attributes of the software architecture and transformation of the architecture to
improve the quality attributes that do not fulfil the requirement specification. In this
chapter, we have discussed the final phase, i.e. architecture transformation.

Architecture transformation is concerned rearranging the software architecture
designed based on the domain model and the functional requirements and to extend
this architecture with additional components that address quality attributes rather
than functional requirements. In this chapter, we have discussed four categories of
architecture transformation. The first category is the imposition of an architectural
style, such as a pipes&filters or layered architectural structure. Although architec-
tural styles can be merged, styles tend to be predominant in the architecture and
merging should be performed with care. The second category is the imposition of
an architectural pattern. An architectural pattern is different from a style in that it is
not predominant, but can be merged with most styles and other architectural pat-
terns. An architectural pattern declares design rules on how an aspect of the soft-
ware architecture is solved, such as concurrency or persistence. The third category
of architecture transformation is the use of a design pattern. Design patterns do not
have an architecture-wide impact, but tend to have more local effects. Although

Deviation

Deviation

Input
Device

Input
Point

Input
Device

Input
Point

Input
Device

Input
Point

Input
Device

Input
Point

Output
Device

Output
Point

Output
Device

Output
Point

Output
Device

Output
Point

Input
Device

Input
Point

Communication
Software

Copyright April 1999 by Jan Bosch (Draft version) 129/130

Further Reading

many design patterns have been proposed, most patterns improve reusability and
maintainability while sacrificing the performance and real-time attributes. The final
category of architecture transformation is the conversion of a quality requirement
into functionality. Different from earlier categories that primarily focus on rear-
ranging the existing functionality, this category mainly extends the software archi-
tecture with new functionality. Examples of the category include self-monitoring
and redundancy.

Finally, it is important to understand that the discussed architecture transformations
are part of a larger process that starts with identifying what quality requirements are
not fulfilled. Subsequently, for each quality attribute, the inhibiting factors and
locations in the architecture are identified. Thirdly, the most appropriate transfor-
mation is selected and, finally, the transformation is performed. Generally, the soft-
ware architecture is subject to multiple transformations that need to be combined to
lead to an integrated result. As a last step, the quality requirements for the software
architecture need to be distributed to the architecture components. The system as a
whole will only function as predicted if the components provide their required qual-
ity levels as well as the architecture.

9. Further Reading

<to be written>

Transformation of Software Architectures

130/130 Copyright April 1999 by Jan Bosch (Draft version)

Copyright April 1999 by Jan Bosch (Draft version) 131/136

CHAPTER 6 References

[Allen & Garlan 97]. R. Allen, D. Garlan, ‘The Wright Architectural Specification
Language,’ Draft paper, CMU, 1997.

[Argyris et al 85]. C. Argyris, R. Putnam, D. Smith, Action Science: Concepts,
methods, and skills for research and intervention, Jossey-Bass, San Fran-
sisco, 1985.

[Bass et al. 98]. L. Bass, P. Clements, R. Kazman, ‘Software Architecture In Prac-
tise’, Addison Wesley, 1998.

[Bengtsson & Bosch 99a]. PO Bentsson, J. Bosch, ‘Haemo Dialysis Software
Architecture Design Experiences’, Proceedings of the 21st International
Conference on Software Engineering (ICSE’99), 1999.

[Bengtsson & Bosch 99b]. PO Bentsson, J. Bosch, ‘Architecture Level Prediction
of Software Maintenance’, The 3rd European Conference on Software
Maintenance and Reengineering (CSMR'99), 1999.

[Binns et al. 94]. P. Binns, Matt Englehart, M. Jackson, S. Vestal, ‘Domain-Spe-
cific Software Architectures for Guidance, Navigation and Control,’ Honey-
well Technical Report, 1994.

[Bengtsson & Bosch 99]. PO Bengtsson, J. Bosch, ‘Architecture Level Prediction
of Software Maintenance,’ Proceedings of the Third EuroMicro Conference
on Software Maintenance and Reengineering, pp. xx-xx, 1999.

References

132/136 Copyright April 1999 by Jan Bosch (Draft version)

[Boehm 96]. B. Boehm, ‘Aids for Identifying Conflicts Among Quality Require-
ments,’ International Conference on Requirements Engineering (ICRE’96),
Colorado, April 1996, and IEEE Software, March 1996.

[Booch 94]. G. Booch, Object-Oriented Analysis and Design with Applications
(2nd edition), Benjamin/Cummings Publishing Company, 1994.

[Bosch & Molin 99]. J. Bosch, P. Molin, ‘Software Architecture Design: Evalua-
tion and Transformation,’ Proceedings of the Engineering of Computer-
Based Systems Conference, August 1999.

[Bosch 98a]. J. Bosch, ‘Design Patterns as Language Constructs,’ Journal of
Object-Oriented Programming, Vol. 11, No. 2, pp. 18-32, May 1998.

[Bosch 98b]. J. Bosch, ‘Object Acquaintance Selection and Binding,’ accepted for
publication in Theory and Practice of Object Systems, February 1998.

[Bosch 98c]. J. Bosch, ‘Product-Line Architectures in Industry: A Case Study,’
submitted, June 1998.

[Bosch 99]. J. Bosch, ‘Design of an Object-Oriented Framework for Measurement
Systems,’accepted for publication in Object-Oriented Application Frame-
works, M. Fayad, D. Schmidt, R. Johnson (eds.), John Wiley, (forthcoming)
1999.

[Brooks 95]. F.P. Brooks, The Mythical Man-Month: Essays on Software Engineer-
ing, Addison Wesley Longman, 1995.

[Buschmann et al. 96]. F. Buschmann, C. Jäkel, R. Meunier, H. Rohnert, M.Stahl,
Pattern-Oriented Software Architecture - A System of Patterns, John Wiley
& Sons, 1996.

[CEI/IEC 601-2]. CEI/IEC 601-2 Safety requirements standard for dialysis
machines *** complete ***

[Coplien & Schmidt 95]. J.O. Coplien, D.C. Schmidt, Pattern Languages of Pro-
gram Design, Addison-Wesley, 1995.

[Dijkstra 76]. E.W. Dijkstra, A Discipline of Programming, Prentice-Hall Interna-
tional, 1976.

[Dikel et al. 97]. D. Dikel, D. Kane, S. Ornburn, W. Loftus, J. Wilson, ‘Applying
Software Product-Line Architecture,’ IEEE Computer, pp. 49-55, August
1997.

[Fenton 96]. N.E. Fenton, S.L. Pfleeger, Software Metrics - A Rigorous & Practical
Approach (2nd edition), International Thomson Computer Press, 1996

Copyright April 1999 by Jan Bosch (Draft version) 133/136

[Gamma et al. 94]. E. Gamma, R. Helm, R. Johnson, J.O. Vlissides, Design Pat-
terns - Elements of Reusable Object-Oriented Software, Addison-Wesley,
1994.

[Garlan et al. 94]. D. Garlan, R. Allen, J. Ockerbloom, ‘Exploiting Style in Archi-
tectural Design Environments,’ Proceedings of SIGSOFT ‘94 Symposium on
the Foundations of Software Engineering, December 1994.

[Gilb 88]. T. Gilb, Principles of Software Engineering Management, Addison-
Wesley, 1988.

[Jacobsen et al. 92]. I. Jacobson, M. Christerson, P. Jonsson, G. Övergaard, Object-
oriented software engineering. A use case approach, Addison-Wesley,
1992.

[Jacobsen et al. 97]. I. Jacobsen, M. Griss, P. Jönsson, Software Reuse - Architec-
ture, Process and Organization for Business Success, Addison-Wesley,
1997.

[Johnson & Foote 88]. R. Johnson, B. Foote, ‘Designing Reusable Classes,’ Jour-
nal of Object-Oriented Programming, Vol. 1 (2), pp. 22-25, 1988.

[Jones 86]. C.B. Jones, Systematic Software Development using VDM, Prentice-
Hall Series in Computer Science. Prentice-Hall International, 1986.

[Kazman et al. 94]. R. Kazman, L. Bass, G. Abowd, M. Webb, ‘SAAM: A Method
for Analyzing the Properties of Software Architectures,’ Proceedings of the
16th International Conference on Software Engineering, pp. 81-90, 1994.

[Kazman et al. 98]. R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, J.
Carriere, ‘The Architecture Tradeoff Analysis Method,’ Proceedings of
ICECCS’98, (Monterey, CA), August 1998.

[Kiczales et al. 97]. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,
J-M. Loingtier, J. Irwin, ‘Aspect-Oriented Programming,’ Proceedings of
ECOOP’97 (invited paper), pp. 220-242, LNCS 1241, 1997.

[Kruchten 95]. P.B. Kruchten, 'The 4+1 View Model of Architecture,' IEEE Soft-
ware, pp. 42-50, November 1995.

[Liu & Ha 95]. J.W.S. Liu, R. Ha, ‘Efficient Methods of Validating Timing Con-
straints,’ in Advanced in Real-Time Systems, S.H. Son (ed.), Prentice Hall,
pp. 199-223, 1995.

[Luckham et al. 95]. D.C. Luckham, J.J. Kenney, L.M. Augustin, J. Vera, D.
Bryan, W. Mann, ‘Specification and Analysis of System Architecture Using
Rapide,’ IEEE Transactions on Software Engineering, Special Issue on
Software Architecture, 21(4):336-355, April 1995.

References

134/136 Copyright April 1999 by Jan Bosch (Draft version)

[Macala et al. 96]. R.R. Macala, L.D. Stuckey, D.C. Gross, ‘Managing Domain-
Specific Product-Line Development,’ IEEE Software, pp. 57-67, 1996.

[Martin et al. 98]. R.C. Martin, D. Riehle, F. Buschmann, Pattern Languages of
Program Design 3, Addison-Wesley, 1998.

[Molin and Ohlsson 97?]. P. Molin, L. Ohlsson, ‘Points & Deviations - A pattern
language for fire alarm systems,’ in Pattern Languages of Program Design
3, Addison-Wesley, 1997?.

[Molin 97]. P. Molin, ‘Towards Local Certifiability in Software Design,’ Licentiate
Thesis, Lund University, ISSN 1101-3931, 1997.

[Neufelder 93]. Ann Marie Neufelder, Ensuring Software reliability, Marcel
Dekker, inc., 1993.

[ObjectStore 93]. ObjectStore, Documentation ObjectStore Release 3.0 for Unix
Systems, December 1993.

[Ogden et al. 94]. W.F. Ogden, M. Sitaraman, B.W. Weide, S.H. Zweben, ‘Part I:
The RESOLVE Framework and Discipline - A Research Synopsis,’ Soft-
ware Engineering Notes 19, 4, pp. 23-28, October 1994.

[Perry & Wolf 92]. D.E. Perry, A.L.Wolf, ‘Foundations for the Study of Software
Architecture,’ Software Engineering Notes, Vol. 17, No. 4, pp. 40-52, Octo-
ber 1992.

[Raise 95]. The RAISE Method Group, The RAISE Development Method, Prentice
Hall, 1995.

[Richardson & Wolf 96]. D.J. Richardson, A.L. Wolf, ‘Software Testing at the
Architectural Level,’ Proceedings of the Second International Software
Architecture Workshop, pp. 68-71, San Francisco, USA, October 1996.

[Rumbaugh et al. 91]. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W.
Lorensen, Object-oriented modeling and design, Prentice Hall, 1991.

[SEI 97]. L. Bass, P. Clements, S. Cohen, L. Northrop, J. Withey, ‘Product Line
Practice Workshop Report, Technical Report CMU/SEI-97-TR-003, Soft-
ware Engineering Institute, June 1997.

[Shaw & Garlan 94]. M. Shaw, D. Garlan, ‘Characteristics of Higher-level Lan-
guages for Software Architecture,’ CMU-CS-94-210, December 1994.

[Shaw et al. 95]. M. Shaw, R. DeLine, D.V. Klein, T.L. Ross, D.M. Young, G.
Zelesnik, ‘Abstractions for software architecture and tools to support them,’
IEEE Transactions on Software Engineering, April 1995.

[Shaw & Garlan 96]. M Shaw, D. Garlan, Software Architecture - Perspectives on
an Emerging Discipline, Prentice-Hall, 1996.

Copyright April 1999 by Jan Bosch (Draft version) 135/136

[Shlaer & Mellor 97]. S. Shlaer, S.J. Mellor, 'Recursive Design of an Application-
Independent Architecture,' IEEE Software, pp. 61-72, January/February
1997.

[Simos 97]. M.A. Simos, ‘Lateral Domains: Beyond Product-Line Thinking,’ Pro-
ceedings Workshop on Institutionalizing Software Reuse (WISR-8), 1997.

[Smith 90]. C. U. Smith, Performance Engineering of Software Systems, Addison-
Wesley, 1990.

[Storey 96]. N. Storey, Safety-Critical Computer Systems, Addison-Wesley, 1996.

[Szyperski 97]. C. Szyperski, Component Software - Beyond Object-Oriented Pro-
gramming, Addison-Wesley, 1997.

[Taligent 95]. Taligent, The Power of Frameworks, Addison-Wesley, 1995.

[Telelarm 96]. TeleLarm, Framework Design Document U00269, 1996.

[Terry et al. 94]. A. Terry, F. Hayes-Roth, Erman, Coleman, Devito, ‘Overview of
Teknowledge’s DSSA Program,’ ACM SIGSOFT Software Engineering
Notes, October 1994.

[Vlissides et al. 96]. J.M. Vlissides, J.O. Coplien, N.L. Kerth, Pattern Languages of
Program Design 2, Addison-Wesley, 1996.

[Wirfs-Brock et al. 90]. R. Wirfs-Brock, B. Wilkerson, L. Wiener, Designing
Object-Oriented Software, Prentice Hall, 1990.

[Wirth 71]. N. Wirth, ‘Program Development by Stepwise Refinement,’ Communi-
cations of the ACM, (14):221 - 227, 1971.

References

136/136 Copyright April 1999 by Jan Bosch (Draft version)

