
96 Computer

B
in

a
ry

 C
ri

ti
c

I
kicked off this department in Feb-
ruary by examining the gap between
what we say and what we do in soft-
ware projects (“The Hard Road
From Methods to Practice,” Feb.

1997, pp. 129-130). In any given project,
our publicly declared methodologies
often bear little resemblance to our
actual practices. In this article, I’d like to
examine one actual practice that is finally
emerging as a describable method: Good
Enough Software.

A few months ago, at a software devel-
opment conference, I heard Larry
Constantine declare that he doesn’t
believe in the idea of good enough soft-
ware quality. Constantine’s disdain was
so clear, I asked him why he even both-
ered to dignify the idea with a critique.
His reply: “Because everybody’s talking
about it.”

I too hear talk about Good Enough,
but it comes almost exclusively from
people on software projects, rather than
from people who write or consult about
software processes. It’s hard to find much
of anything about Good Enough in soft-
ware engineering literature, or at the con-
ferences. There was an article in the
Communications of the ACM a few
years ago (W. Robert Collins et al.,
“How Good Is Good Enough?: An
Ethical Analysis of Software Constru-
ction and Use,” Jan. 1994, pp. 81-91).
I’ve written one obscure article on the
subject (“The Challenge of Good

Enough Software,” American Program-
mer, Oct. 1995) and spoken about it here
and there. Ed Yourdon has written about
it, too, mostly in reference to my work
and to his experiences interviewing
developers at Microsoft. Although the
basic ideas can be found in the work of
Gerald Weinberg, Robert Glass, Fred
Brooks, and many others, I believe it was
Yourdon who first elevated the notion
from plain old English phrase to full-
fledged technical buzzword.

A new buzzword! Like a new island
rising out of the Pacific, another long-
neglected bit of software reality is burst-
ing into the canon of software eng-
ineering methodology. But as with any
volcanic event, this new idea is subject to
chaos and confusion.

CHAOS AND CONFUSION
For example, Capers Jones devoted

five pages of his recent book (Software
Quality: Analysis and Guidelines for
Success, International Thomson Press,
1993) to debunking what he called the
“good enough quality fallacy.” As Jones
put it, “from the observed fact that most
commercial software contains bugs at
delivery, the ‘good enough’ enthusiasts
have formed the hypothesis that leaving
bugs is a deliberate and even clever strat-
egy on the part of commercial software
houses, which might advantageously be
imitated by other software developers.”
He also stated, “Companies such as

Microsoft do not deliberately ship soft-
ware that contains bugs.”

I believe this reveals a poor under-
standing of what I consider to be the
Good Enough approach. And how do I
know what Good Enough Software is?
Because Good Enough Software—as 
I define it—is just a refinement of what I
experienced virtually every day for 12
years as a developer and test manager in
major commercial software companies.
My model is not based on some armchair
hypothesis—it describes my real experi-
ence. Furthermore, my company, ST Labs,
has run testing projects for hundreds of
companies, and we find that it is routine
for our clients to ship with known bugs.

Cem Kaner, in Testing Computer
Software (International Thomson Press,
1993)—standard issue to Microsoft’s
testers—also refers to bug fix deferral as
a routine practice. I know this is true at
Microsoft because my company runs a

dedicated test lab there. I speak and teach
there on a regular basis. My brother is
even a test lead there. Take it from me,
Microsoft begins every project with the
certain knowledge that they will choose
to ship with known bugs. This strategy
works for Microsoft because it knows
how to ship with the right bugs.

GOOD ENOUGH AS A PARADIGM
Confusion about Good Enough

Software is understandable and forgive-
able, since no one has published an actual
detailed description of what Good
Enough means. Jones seems to define it
as the practice of deliberately leaving
bugs in the code so as to shorten the
schedule. I’ve heard other people define it
as providing the minimum quality that
you can get away with.

Good Enough
Quality: Beyond

the Buzzword
James Bach, ST Labs Inc.

S
o

ft
w

a
re

 R
e

a
li

ti
e

s
Editor: James Bach, ST Labs Inc., 3535 128th Ave., SE, 3rd Fl., Bellevue, WA 98006; jamesb@stlabs.com

Take it from me, Microsoft
begins every project with

the certain knowledge that
they will choose to ship

with known bugs. 

.



August 1997 97

One reason why Good Enough is not
better described may be that it is so much
a part of our experience that it seems too
obvious to mention. Only when con-
trasted with idealistic, normative mod-
els of software engineering does Good
Enough stand out as a separate para-
digm—a different pattern of assumptions
about the way the world works.
Methods for achieving Good Enough
quality are of interest mainly within the

larger context of the Good Enough par-
adigm.

Here are some of the basic assump-
tions that I believe are part of the Good
Enough paradigm:

• We are obliged to cope with a world
full of complexity, unknowns, lim-
itations, mistakes, and general
imperfection.

• People are by far the most variable

and vital components of software
projects. 

• Everything has a cost, and what we
want always exceeds what we can
afford.

• Quality is ultimately situational and
subjective. 

• To achieve excellence in something
as complex as software, we have to
solve a lot of difficult problems, make
a lot of trade-offs, and resolve con-

A Framework for Good Enough Quality
Taken together, these four GEQ factors and six GEQ perspec-

tives comprise a robust set of reminders that can help frame a con-
versation or make a convincing case about shipping a product,
improving it, or implementing some better practice. For instance,
when someone tells me that “good enough is not good enough,”
I remember the stakeholder and critical purpose perspectives and
translate that apparently paradoxical statement into something I
can question, such as “good enough for you is not good enough
for me” or “good enough to survive is not good enough to suc-
ceed.” Then the dialogue becomes one of examining whose val-
ues matter or what purpose we are really trying to achieve.

GEQ Factors
This four-part process expands upon the GEQ definition. It’s

not a rigorous formula, by any means. These factors are
designed to help busy, stressed-out software people remember
what to think about when weighing product quality.

1. Assess the benefits of the product.
• Identification. What are the known benefits or potential

benefits for stakeholders of the product?
• Likelihood. Assuming the product works as designed,

how likely are stakeholders to realize each benefit?
• Impact. How desirable is each benefit to stakeholders?
• Individual criticality. Which benefits, all by themselves,

are completely indispensable?
• Overall benefit. Taken as a whole, and assuming no prob-

lems, are there sufficient benefits for stakeholders?

2. Assess the problems of the product.
• Identification. What are the problems or potential prob-

lems for stakeholders of the product?
• Likelihood. How likely are stakeholders to experience

each problem? 
• Impact. How damaging is each problem to stakeholders?

Are there workarounds?
• Individual criticality. Which problems, all by themselves,

are completely unacceptable?
• Overall problems. How do all the problems add up? Are

there too many noncritical problems?

3. Assess product quality.
• Overall quality. With respect to the GEQ perspective, do

benefits appear to outweigh problems?
• Margin of safety/excellence. By how much do we need

or want benefits to outweigh problems?

4. Assess the logistics of improving the product (or holding out for
something better).

• Strategies. What strategies can we use to improve the
product?

• Capabilities. How able are we to implement those strate-
gies? Do we know how?

• Costs. How much cost or trouble will improvement
entail? Is that the best use of resources?

• Schedule. Can we ship now and improve later? Can we
achieve improvement in an acceptable time frame?

• Benefits. How specifically will it improve? Are there any
side benefits to improving it (for example, better morale)? 

• Problems. How might improvement backfire (for exam-
ple, introduce bugs, hurt morale, starve other projects)?

GEQ Perspectives
The GEQ factors just listed are necessary but not sufficient.

In order to perform a responsible assessment, you must also
examine each of the factors from six vital perspectives.
1. Stakeholders. Whose opinion about quality matters? (For

example, project team, customers, trade press, courts of
law.)

2. Critical purpose. What do we have to achieve? (Is it imme-
diate survival, profitability, market share, market growth,
customer satisfaction?)

3. Time frame. What is the time-sensitivity of quality per-
ception? (Is it immediate, near-term, long-term, after crit-
ical events?)

4. Alternatives. How does this product compare to alter-
natives, such as competing products, services, or solu-
tions?

5. Consequences of failure. What if quality is a bit worse
than good enough? Do we need a contingency plan?

6. Quality of assessment. How confident are we in our
assessment? Is it good enough?

.



98 Computer

tradictory values. Excellence does not
come easily or mechanically.

• Software engineering methods are use-
ful to the extent that they are designed
with these assumptions in mind.

Bear in mind that the real essence of
Good Enough lies in the minds of practi-
tioners, not in any practice. The paradigm
is one of learning on the job, learning from
failure, coping with complexity, and cop-
ing with humanity. It encourages healthy
skepticism by building in the idea that
benefits always come with problems. Our
task is not to blindly eliminate all prob-
lems, but to understand the problems and
benefits of a situation well enough to elim-
inate (or prevent) the right problems and
also deliver the right benefits.

As a consultant, I see the Good
Enough approach mostly as a way to
drive ongoing improvement, whereby
we approach excellence by progressively
achieving, challenging, and raising our
standard of Good Enough, as opposed
to driving toward some abstract, apoc-
ryphal metric like six sigma, or a defect
removal ratio of 99 percent, or a CMM
level of 4. It’s also useful as a Rosetta
stone that helps quality specialists dis-
cuss quality with people in other spe-
cialties.

GOOD ENOUGH QUALITY
ANALYSIS FRAMEWORK

There are a few of us in the industry
who are quietly toiling away to develop
and teach this as a discipline. Here I pro-
pose a framework for evaluating Good
Enough Quality (GEQ). Let’s start with
a definition of what’s GEQ. Here’s my
whack at it. To claim that any given thing
is Good Enough is to agree with all of the
following propositions:

• It has sufficient benefits.
• It has no critical problems.
• The benefits sufficiently outweigh

the problems.
• In the present situation, and all

things considered, further improve-
ment would be more harmful than
helpful.

Each point is critical. If any one of them
is not satisfied, then the product, although

perhaps good, cannot be good enough.
The first two seem fairly obvious, but

note that they are not exact opposites.
The complete absence of problems can-
not guarantee infinite benefits, nor can
infinite benefits guarantee the absence of
problems. Benefits and problems do off-
set each other, but it’s important to con-
sider the product from both perspectives.

The third proposition reminds us that
benefits must not merely outweigh prob-
lems, they must do so to a sufficient
degree. It also reminds us that even in the
absence of any individual critical prob-
lem, there may be a pattern of noncriti-
cal problems that essentially negate the
benefits of the product.

The fourth proposition introduces the
important matter of logistics and side
effects. If high quality is too expensive to
achieve, or if achieving it would cause
other unacceptable problems, then we
either must accept lower quality as being
good enough or we must accept that 
a good enough product is beyond our
reach.

These propositions can be expanded
into a framework of GEQ factors that
support a process of structured reason-
ing and dialog about quality, as summa-
rized in the sidebar “A Framework for
Good Enough Quality.”

RATIONAL, NOT COMPULSIVE
I hope the framework makes it clear

that Good Enough has nothing to do
with mediocrity. It has to do with ratio-
nal choices, as opposed to compulsive
behavior. If something really is good
enough, in terms of this framework, then
further improvement means making an
investment that has an inadequate
return. When we find ourselves in that
situation, we should look for hidden
compulsions.

Is there anything new with the Good
Enough approach? Not really. Maybe
just its name. Henry Petroski has been
writing about the role of failure in suc-
cessful design for years. Herbert Simon
coined the term “satisficing” in his
book, The Sciences of the Artificial
(MIT Press, 1992). Two excellent books
on Good Enough software engineering
(although neither book bills itself as
such) are Gerald Weinberg’s Rethinking
Systems Analysis and Design (Dorset
House, 1988), and Robert Glass’ Soft-
ware Creativity (Prentice Hall, 1995). A
few years ago, I couldn’t find any books
about software risk management; now
there are more than a dozen in print.

The big new force that is propelling
the Good Enough idea is the explo-
sion of market-driven software.

With a passion roughly proportional to
the price of Microsoft stock, companies
are looking for the shortest path to bet-
ter software, faster, and cheaper. They are
willing to take risks, and they have little
patience for the traditional moralistic
arguments in favor of so-called good
practices.

Much of the traditional lore of soft-
ware project management seems irrele-
vant or stilted when applied to market-
driven projects.

It’s time that we developed approaches
and methodologies that apply to the
whole craft, not just to space missions,
medical devices, or academic experiments.
Good Enough is a model that encom-
passes high-reliability products as well as
high-entertainment products. Whether
you call the idea Good Enough, or choose
another buzzword like economical, prag-
matic, or utilitarian, the basic idea remains
the same: Our behavior should be guided
by reason, not compulsion.

Beyond the notion of “best practices”
is a more fundamental idea: best think-
ing. As the Good Enough idea continues
to emerge, the quality of our thinking,
rather than our conformance to formal-
ities, will become the issue. Formalities,
and the authority behind them, will be
reexamined. No wonder so many au-
thorities consider Good Enough to be a
dangerous idea. ❖

Good Enough has 
nothing to do with 

mediocrity. It has to do
with rational choices, as
opposed to compulsive

behavior.

.


