GemsStone

GemStone
Programming
Guide

July 1996

GemStone

Version 5.0

GemStone Programming Guide

IMPORTANT NOTICE

This manual and the information contained in it are furnished for informational use only
and are subject to change without notice. GemStone Systems, Inc. assumes no responsibility
or liability for any errors or inaccuracies that may appear in this manual or in the
information contained in it. The manual, or any part of it, may not be reproduced,
displayed, photocopied, transmitted or otherwise copied in any form or by any means now
known or later developed, such as electronic, optical or mechanical means, without written
authorization from GemStone Systems, Inc. Any unauthorized copying may be a violation
of law.

The software installed in accordance with this manual is copyrighted and licensed by
GemStone Systems, Inc. under separate license agreement. This software may only be used
pursuant to the terms and conditions of such license agreement. Any other use may be a
violation of law.

Limitations

The software described in this manual is a customer-supported product. Due to the
customer’s ability to change any part of a Smalltalk image, GemStone Systems, Inc. cannot
guarantee that the GemStone programming environment will function with all Smalltalk
images.

Copyright by GemStone Systems, Inc. 1988-1995. All rights reserved.

Use, duplication, or disclosure by the Government is subject to restrictions set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013.

Trademarks

GemsStone is a registered trademark of GemStone Systems, Inc.
Objectworks and Smalltalk-80 are trademarks of ParcPlace Systems, Inc.
Smalltalk/V is a registered trademark of Digitalk, Inc.

Sun, Sun Microsystems, Solaris and SunOS are trademarks or registered trademarks of
Sun Microsystems, Inc. All SPARC trademarks, including SPARCstation, are trademarks
or registered trademarks of SPARC International, Inc. SPARCstation is licensed exclusively
to Sun Microsystems, Inc.

UNIX is a registered trademark in the United States and other countries, licensed
exclusively through X/Open Company Limited.

GemStone Systems, Inc. July 1996

Preface

About This Manual

This manual describes the GemStone Smalltalk language and programming
environment — a bridge between your application’s Smalltalk code running on a
UNIX workstation and the GemStone database running on the host computer.
Along with one of the interfaces for the programming environment, you can build
comprehensive applications.

Intended Audience

This manual is intended for users familiar with the basic concepts of computer
programming. It explains GemStone Smalltalk in terms of traditional
programming concepts. Therefore, you’ll benefit most from the material presented
here if you have a solid understanding of a conventional language such as C.

It would also be helpful to be familiar with a Smalltalk language and its
programming environment. In addition to your Smalltalk product manuals, we
recommend Smalltalk-80: The Language and its Implementation and Smalltalk-80: The
Interactive Programming Environment (both published by Addison-Wesley).

This manual assumes that the GemStone system has been correctly installed on
your host computer as described in the GemStone System Administration Guide, and

July 1996

GemStone Systems, Inc. i

Preface GemsStone Programming Guide

that your system meets the requirements listed in the Installation section of the
Release Notes.

How This Manual Is Organized

The GemStone Programming Guide is a narrative introduction to the major topics in
GemStone Smalltalk programming. A companion volume, the GemStone Kernel
Reference, lists, in alphabetical order, each of the classes supplied for your use in
Smalltalk programming and describes their complete functionality. We
recommend that you use the GemStone Kernel Reference as a reference when
necessary.

Documentation Conventions

Smalltalk code is printed in a monospace font throughout this manual. It looks like
this:

numericArray add: (myVariable + 1)
When the result of executing an example is shown, it is underlined:

numericArray at: 1
12486

Executing the Examples

This manual includes a many examples. Because we cannot be certain which
interface you are using, and because the interface affects the way you execute the
examples, here are a few words about the mechanics of the situation may be useful
here.

There are two simple ways to write and compile a method:

= If you are using the GemStone Smalltalk Interface, you can use the structured
editing and execution facilities provided by a GemStone Browser or
Workspace. A browser makes it easier to define classes and methods by
presenting templates for these operations. Once you’ve filled out the
templates, a browser internally builds and executes Smalltalk expressions to
compile the classes and methods. A browser organizes your work and
presents it in a pleasing and easily understood format.

A workspace makes it easier to compile and execute fragments of Smalltalk
code interactively, and see the results immediately using the GemStone print
it command.

iv GemStone Systems, Inc. July 1996

GemStone Programming Guide Preface

= You can also enter your Smalltalk method code through the Topaz version of
the programming environment. Topaz requires a few extra commands to
begin and end an example. To identify code as constituting a method, for
instance, you’ll add a couple of simple non-Smalltalk directives such as
“METHOD:.” These tell Topaz to treat the indicated text as a method to be
compiled and installed in a class.

This is in some ways less convenient than using the GemStone Browser to
create methods, but it has one important advantage: method definitions in this
format are easily represented and inspected on the printed page.

This manual presents examples in Topaz format, with Topaz commands presented
in boldface type. Those commands probably need little explanation when you see
them in context; however, you may need to turn to the Topaz user manual for
instructions about entering and executing the text of the upcoming examples.

If you are using the GemStone Smalltalk Interface, you may instead choose to read
the introductions to the browser and workspace, and then use those tools to enter
the examples in this manual. The text of the examples themselves (excluding the
boldface Topaz commands) is the same whichever way you choose to enter it.

Other Useful Documents

You will find it useful to look at documents that describe other components of the
GemStone data management system:

= A complete description of the behavior of each GemStone Smalltalk kernel
class is available in the GemStone Kernel Reference.

= The Topaz interface allows you to process data and move it between the
GemStone system and a terminal or workstation, when your Smalltalk
program needs to read terminal input or send data to a workstation for local
processing and display. The GemBuilder for Smalltalk and GemBuilder for C
interfaces provide function libraries to access the repository. Each interface is
described in its own user manual.

= Inaddition, if you will be acting as a system administrator, or developing
software for someone else who must play those roles, read the GemStone
System Administration Guide.

July 1996

GemStone Systems, Inc. \Y%

Preface GemsStone Programming Guide

Technical Support

GemStone provides several sources for product information and support.
GemStone product manuals provide extensive documentation, and should always
be your first source of information. GemStone Technical Support engineers will
refer you to these documents when applicable. However, you may need to contact
Technical Support for the following reasons:

= Your technical question is not answered in the documentation.

= You receive an error message that directs you to contact GemStone Technical
Support.

= You want to report a bug.
= You want to submit a feature request.

Questions concerning product availability, pricing, keyfiles, or future features
should be directed to your GemStone account manager.

When contacting GemStone Technical Support, please be prepared to provide the
following information:

= Your hame, company name, and GemsStone license number,
= the GemStone product and version you are using,

= the hardware platform and operating system you are using,
= adescription of the problem or request,

= exact error message(s) received, if any.

Your GemStone support agreement may identify specific individuals who are
responsible for submitting all support requests to GemStone. If so, please submit
your information through those individuals. All responses will be sent to
authorized contacts only.

For non-emergency requests, you should contact Technical Support by email, Web
form, or facsimile. You will receive confirmation of your request, and a request
assignment number for tracking. Replies will be sent by email whenever possible,
regardless of how they were received.

Email: support@gemstone.com
The preferred method of contact. Please do not send files larger than 100K (for
example, core dumps) to this address. A special address for large files will be
provided on request.

Vi GemStone Systems, Inc. July 1996

GemStone Programming Guide Preface

World Wide Web: http://lwww.gemstone.com
Technical Support is located under Services. A Help Request Form is available
for request submissions. This form requires a password, which is free of
charge but must be requested by completing the Registration Form, found in
the same location. Allow 24 hours for your registration to be recorded and a
password assigned.

Facsimile: (503) 629-8556
When you send a fax to Technical Support, you should also leave a voicemail
message to make sure your fax will be picked up as soon as possible.

We recommend you use telephone contact only for more serious requests that
require immediate evaluation, such as a production database that is non-
operational.

Telephone: (800) 243-4772 or (503) 690-3503
Emergency requests will be handled by the first available engineer. If you are
reporting an emergency and you receive a recorded message, do not use the
voicemail option. Transfer your call to the operator, who will take a message
and immediately contact an engineer.

Non-emergency requests received by telephone will be placed in the normal
support queue for evaluation and response.

24x7 Emergency Technical Support

GemStone offers, at an additional charge, 24x7 emergency technical support. This
support entitles customers to contact GemStone 24 hours a day, 7 days a week, 365
days a year, if they encounter problems that cause their production application to
go down, or that have the potential to bring their production application down.
Contact your GemStone account manager for more details.

July 1996

GemStone Systems, Inc. vii

Preface GemsStone Programming Guide

vili GemStone Systems, Inc. July 1996

Contents

Chapter 1. Introduction to GemStone

1.1 Overview of the GemStone System. 1-2
1.2 Multi-User Object Server. 1-2
1.3 Programmable Server Object System. 1-2
1.4 Partitioning of Applications Between Clientand Server 1-3
1.5 Large-Scale Repository. 1-4
l6Queriesand Indexes 1-4
1.7 Transactions and Concurrency Control 1-5
1.8 Connections to Outside Data Sources 1-6
1.9 Object Security and Account Management 1-6
1.10 Services to Manage the GemStone Repository 1-7

Chapter 2. Programming With GemStone

2.1 The GemStone Programming Model 2-2
Server-based classes, methods, and objects. 2-2
Clientand Server Interfaces 2-2
Gemstone SessioNS 2-4

July 1996 GemStone Systems, Inc. iX

Contents GemStone Programming Guide

22GemStone Smalltalk 2-5
Language Extensions. 2-5
Constraining Variables, 2-5

Query Syntax 2-7
Auto-Growing Collections 2-7

Class Library Differences 2-7
NoUserInterface 2-7
DifferentFile Access 2-7
DifferentCCallouts. 2-8

Class Library Extensions. 2-8
More CollectionClasses 2-8
RCCIlasses v o it e 2-8

User Account and Security Classes 2-8

System Management Classes. 2-9
FilelnandFileOut 2-9
Inter-Application Communications. 2-9
2.3 Process Architecture L 2-10
GemProcess. 2-10
StONe Process e 2-10
Shared ObjectCache 2-10
Scavenger Process.o 2-11
Extents and Repositories. L. 2-11
Transaction Log. 2-11
NetLDI e 2-12
Login Dynamics. 2-12
.................................... 2-12

Chapter 3. Name Resolution and Object Sharing

3.1SharingObjects 3-2
3.2 UserProfile and Session-based Symbol Lists 3-2
What's In Your Symbol List? 3-3
Examining Your Symbol List, 3-4
Inserting and Removing Dictionaries From Your Symbol List 3-6
Updating Symbol Lists. 3-8
Finding Out Which Dictionary Names an Object 3-11
3.3Sharing Objects 3-12
Publishers, Subscribers and the Published Dictionary 3-12

X GemStone Systems, Inc. July 1996

GemStone Programming Guide Contents

Chapter 4. Collection and Stream Classes

4.1 An Introduction to Collections 4-2
Protocol Common To All Collections 4-4
CreatingInstances., 4-4
AddingElements, 4-5
Enumerating 4-6
Selecting and Rejecting Elements 4-7
Constraining The Elements Of A Collection 4-8

4.2 Collection Subclasses. 4-10
AbstractDictionary 4-10
AbstractDictionary Protocol 4-10
Internal Dictionary Structure. 4-10
KeyValueDictionary. 4-11
SymbolDictionary 4-12
SequenceableCollection. o 4-13
Accessing and Updating Protocol 4-14
Adding Objects to SequenceableCollection. 4-15
Removing Objects From A SequenceableCollection. 4-16
Comparing SequenceableCollection. 4-17
Copying SequenceableCollection 4-17
Enumeration and Searching Protocol 4-18

ATaYS. . o o e 4-19

Strings. e 4-24
Symbols. 4-29
DoubleByteString and DoubleByteSymbol. 4-30
UnorderedCollection 4-30
Bag. 4-30
IdentityBag 4-30
ClassldentitySet. 4-37

Set . . 4-42
4.3Stream Classes. 4-42
Stream Protocol 4-44
Creating Printable Strings with Streams 4-46

Chapter 5. Querying

5.ARelations. 5-2

July 1996 GemStone Systems, Inc. Xi

Contents GemStone Programming Guide

What You Need TOKnow 5-3

5.2 Selection Blocks and Selection. 5-4
Selection Block Predicates and Free Variables. 5-5
Predicate Terms. 5-6
Predicate Operands 5-6

Predicate Operators. 5-7

Conjunction of Predicate Terms 5-9

Limits on String Comparisons. 5-10
Redefined Comparison Messages in Selection Blocks 5-10
Changing the Ordering of Instances 5-15

Collections Returned by Selection. 5-16
Streams Returned by Selection 5-16

5.3 Additional Query Protocol 5-19
5.4 Indexing For Faster ACCESS v v v i i 5-20
Identity Indexes. 5-20
Creating Identity Indexes. 5-21

Equality Indexeso 5-22
Creating Equality Indexes 5-22

Creating Indexes on Very Large Collections 5-23

Automatic Identity Indexing., 5-24
ImplicitIndexes 5-24

Indexes and Transactions 5-24
Inquiring AboutIndexes. 5-25
Removing Indexes 5-26
Implicit IndexRemoval. 5-26
TransferringIndexes 5-26

Removing and Re-creating Indexes 5-27

Indexing and Authorization. 5-28
Indexing and Performance. 5-28
INdexXing Errors e 5-29

55Nil Valuesand Selection. 5-30
5.6 Paths Containing Collections 5-31
57 Sortingand Indexing. 5-34

Chapter 6. Transactions and Concurrency Control

6.1 Gemstone’s Conflict Management 6-2

Xii GemStone Systems, Inc. July 1996

GemStone Programming Guide Contents

Transactions 6-2
When Should You Commit a Transaction?. 6-2
Reading and Writing in Transactions. 6-3
Reading and Writing Outside of Transactions. 6-4
6.2 How GemStone Detects Conflict 6-5
Concurrency Management. o 6-6
TransactionModes oL o 6-7
Changing Transaction Mode. 6-7
Beginning New Manual Transactions. 6-8
Committing Transactions. 6-8
Handling Commit Failure In A Transaction 6-10
Indexes and Concurrency Control. 6-10
Aborting Transactions, 6-11
Updating the View Without Committing or Aborting 6-12

6.3 Controlling Concurrent Access WithLocks 6-13
Locking and Manual TransactionMode 6-14
Lock Types. o o 6-14
ReadLocks 6-14
WriteLocks. 6-15
ExclusiveLocks 6-15
AcquiringlLocks. 6-16
LockDenial. 6-17

Dead Locks. 6-18

Dirty Locks 6-18
Locking Collections Of Objects Efficiently 6-19
UpgradinglLocks 6-21
Locking and Indexed Collections 6-22
Removingor ReleasinglLocks 6-22
Releasing Locks Upon Aborting or Committing. 6-23
Inquiring About Locks o oo 6-24
6.4 Classes That Reduce the Chance of Conflict. 6-26
RcCounter 6-27
ReldentityBag 6-29
RcQueue e 6-29
RcKeyValueDictionary 6-31

July 1996 GemStone Systems, Inc. xiii

Contents GemStone Programming Guide

Chapter 7. Object Security and Authorization

7.1 How GemStone Security Works 7-2
Login Authorization 7-2

The UserProfile 7-3

System Privileges 7-3

Object Level Security 7-3
Segments. 7-4

Default Segment and Current Segment. 7-6

Objectsand Segments 7-7

Read and Write Authorization and Segments. 7-9

How GemStone Responds to Unauthorized Access. 7-9

Owner Authorization. 7-10
Segmentsinthe Repository 7-12
Changing the Segment foran Object 7-13

Revoking Your Own Authorization—a Side Effect 7-16

7.2 An Application Example. 7-16
7.3 ADevelopmentExample 7-19
Planning Segments for User Access. 7-21
Protecting the ApplicationClasses 7-21

Planning Authorization for Data Objects. 7-21

Planning Groups e 7-23
PlanningSegments 7-25

Developing the Application 7-25

Setting Up Segments for Joint Development. 7-26

Making the Application Accessible for Testing 7-28

Moving the Application into a Production Environment. . . 7-28

Segment Assignment for User-created Objects 7-29

7.4 Assigning Objectsto Segments 7-29
Segments for New Objects. 7-29
Removing Segments 7-30

7.5 Privileged Protocol for ClassSegment 7-31
7.6 Segment-related Methods 7-32

Chapter 8. Class Versions and Instance Migration

8.1Versionsof Classes. 8-2
DefiningaNew Version 8-3

Xiv GemStone Systems, Inc. July 1996

GemStone Programming Guide Contents

8.2ClassHistory. e 8-3
Defining a Class witha Class History. 8-3
AccessingaClassHistory 8-5
AssigningaClass History o 8-6
Class Historiesand Constraints 8-6

8.3 Migrating Objects. 8-7
Migration Destinations 8-7
Migrating Instances.o 8-8

Finding Instances and References 8-8
Using the Migration Destination. 8-9
Bypassing the Migration Destination 8-10
MigrationErrors. 8-11
Instance Variable Mappings L. 8-13
Default Instance Variable Mappings 8-14
Customizing Instance Variable Mappings 8-16
Migrating Collection Class Objects 8-24

Chapter 9. File I/0 and Operating System Access

9.1 AccessingFiles 9-2
Specifying Files 9-2
CreatingaFile. 9-3
Openingand ClosingaFile 9-4
WritingtoaFile 9-5
Reading FromaFile. 9-5

Positioning 9-6
TestingFiles 9-7
RemovingFiles 9-7
Examining A Directory 9-8

9.2 Executing Operating System Commands 9-9

9.3 File In, File Out, and Passive Object 9-10

9.4 Creatingand Using Sockets 9-12

Chapter 10. Signals and Notifiers

10.1 Communicating Between Sessions L. 10-2
10.2 Object Change Notification. 10-3

July 1996 GemStone Systems, Inc. XV

Contents GemStone Programming Guide

How the Object Server Notifiesa Session 10-3
SettingUpaNotifySet. 10-5
Adding Objectstoa Notify Set. 10-5
Collections 10-7

Listing Your Notify Set. 10-8
Removing Objects From Your Notify Set. 10-8
Notificationof New Objects 10-9
Receiving Object Change Notification 10-10

System | signaledObjects. 10-11

Polling for Changesto Objects. 10-12
Troubleshooting. 10-13
Indexes 10-13
Frequently Changing Objects 10-13

Special Classes. 10-13
Methods for Object Notification. 10-15
10.3Gem-to-Gem Signaling 10-15
SendingaSignal. 10-17
ReceivingaSignal. 10-19

10.4 Performance Considerations. 10-21
Increasing Speed. 10-21

Dealing With Signal Overflow. 10-22
Using Signals and Notifiers with RPC Applications 10-23
Sending Large AmountsofData. 10-23
Maintaining Signals and Notification When Users Log Out. 10-23

Chapter 11. Error Handling

11.1Signaling ErrorstotheUser, 11-1
11.2 Handling Errors in Your Application. 11-5
Activation Exceptions 11-6

Static EXceptions 11-6
Defining Exceptions 11-9
Categoriesand Error Numbers 11-9

Handling Exceptions 11-14

Raising Exceptionso 11-15
FlowofControl 11-17
Signaling Other Exception Handlers 11-21

Removing Exception Handlers 11-23

XVi GemStone Systems, Inc. July 1996

GemStone Programming Guide Contents

Recursive Errors. e 11-24
Uncontinuable Errors. 11-24

Chapter 12. Tuning Performance

12.1 Clustering Obijects for Faster Retrieval 12-2
Will Clustering Solve the Problem?. 12-2
ClusterBuckets 12-3

Cluster Bucketsand Extents 12-4
Using Existing Cluster Buckets. 12-5
Creating New ClusterBuckets 12-6
Cluster Buckets and Concurrency 12-7
Cluster Bucketsand Indexing 12-8
Clustering Objects. 12-8
The Basic ClusteringMessage 12-8
Depth-firstClustering. 12-11
Assigning ClusterBuckets 12-11
Clustering vs. WritingtoDisk 12-11
Using Several ClusterBuckets 12-11
Clustering ClassObjects 12-12
Maintaining Clusters 12-14
Determining an Object’s Location 12-14
Why Do ObjectsMove?. 12-15

12.2 Optimizing for Faster Execution. 12-15
The Class ProfMonitor 12-15
Profiling YourCode. 12-16
TheProfileReport. 12-19
Optimization Hints 12-21

12.3 Modifying Cache Sizes for Better Performance 12-24
Configuration File Cache Size Parameters 12-24
Tuning CacheSizes 12-25

Tuning the Temporary ObjectSpace 12-25
Tuning the Gem Private Page Cache 12-26
Tuning the Stone Private Page Cache 12-26
Tuning the Shared Page Cache. 12-27

12.4 Generating NativeCode 12-28
Enabling NativeCode 12-28
Limitations of NativeCode. 12-29

July 1996 GemStone Systems, Inc. XVii

Contents

GemStone Programming Guide

Chapter 13. Advanced Class Protocol

13.1 Adding and Removing Methods 13-2
Defining Simple Accessing and Updating Methods 13-2
Removing Selectors., 13-4
Modifying Classes 13-4
The Basic Compiler Interface 13-5

13.2 Examining a Class’s Method Dictionary 13-6

13.3 Examining, Adding, and Removing Categories 13-10

13.4 Accessing Variable Names and Pool Dictionaries. 13-13

13.5 Testing a Class’s Storage Format 13-16

Appendix A. Basic Smalltalk Syntax

The Smalltalk Class Hierarchy A-1
HowtoCreateaNewClass A-2
Case-Sensitivity A-2
Statements L A-2
Comments A-3
EXpressions A-3

Kindsof Expressions A-4

Literals A-4
Numeric Literals. A-4
Character Literals A-5

String Literals, A-6

Symbol Literals A-6

Array Literals A-7
Variables and Variable Names A-7
Declaring Temporary Variables A-8
Pseudovariables, A-8
Assignment L e A-9
Message Expressions A-9
MesSages A-10
Reserved Selectors A-10
Optimized Selectors A-10
Messages as Expressions A-11
Combining Message Expressions A-13
Summary of PrecedenceRules. A-14

XViii GemStone Systems, Inc. July 1996

GemStone Programming Guide Contents

Cascaded MesSsagesS. v v v v i i e e A-14

Array Constructors A-15

Path Expressions A-17
ReturningValues A-18

Blocks. A-19
Blocks with Arguments. A-20

Blocks and Conditional Execution. A-22
Conditional Selection A-22

Two-way Conditional Selection A-23

Conditional Repetition A-23
CodeFormatting A-25
AlSmalltalk BNF A-27

Appendix B. GemStone Error Messages

July 1996 GemStone Systems, Inc. XiX

Contents GemStone Programming Guide

XX GemStone Systems, Inc. July 1996

List of
Figures

Figure 3.1. The GsSession Symbol List is a Copy of the UserProfile Symbol List .
3-3
Figure 3.2. Self-Referencing Symbol Dictionary 3-6
Figure 4.1. Simplified Collection Class Hierarchy 4-3
Figure 4.2. SequenceableCollection Class Hierarchy 4-13
Figure 4.3. Employee Relations. 4-38
Figure 4.4. Stream Class Hierarchy. 4-43
Figure5.1. EmployeeRelation 5-2
Figure 5.2. Anatomy of a SelectionBlock 5-5
Figure 5.3. Anatomy of a Selection Block Predicate Term. 5-6
Figure 6.1. View States. 6-3
Figure 7.1. User Access to Application Segmentl 7-5
Figure 7.2. Multiple Segment Assignments for a Compound Object. 7-8
Figure 7.3. User Access to a Segment’s Objects 7-10
Figure 7.4. Segments in a GemStone repository. 7-13
Figure 7.5. Application Objects Assigned to Three Segments. 7-17
Figure 7.6. User Access to Application Segmentl 7-18
Figure 7.7. User Access to Application Segment2 7-19
Figure 7.8. Access Requirements During an Application’s Life Cycle 7-20

July 1996 GemStone Systems, Inc. XXi

Figures GemStone Programming Guide
Figure 7.9. Segments Required for User Access to Application Objects 7-27
Figure 10.1. The Object Server Tracks Object Changes 10-4
Figure 10.2. Communicating from SessiontoSession 10-16
Figure 11.1. Method Contexts and Associated Exceptions 11-6
Figure 11.2. Defining Error Dictionaries. 11-10
Figure 11.3. Default Flow of Control in Exception Handlers 11-18
Figure 11.4. Activation Exception Handler With Explicit Return 11-20
Figure 11.5. Activation Exception Handler Passing Control to Another Handler .
11-23
Figure 12.1. 12-19
Figure A.l. Smalltalk BNF A-28
Figure A.2. Smalltalk Lexical Tokens A-29

podll GemStone Systems, Inc. July 1996

List of

Tables
Table 4.1. String’s Case-Insensitive Search Protocol 4-25
Table 4.2. String’s Case-Sensitive Search Protocol 4-25
Table 5.1. Comparison Operators Allowed in a SelectionBlock 5-7
Table 6.1. Transaction ConflictKeys. 6-9
Table 7.1. Access for Application Objects Required by Users. 7-22
Table 7.2. Access to the First Five Objects Through Owner and World
Authorization 7-23
Table 7.3. Access to the Last Six Objects Through Owner and World
Authorization 7-24
Table 7.4. Access to the Last Six Objects Through the Personnel Group 7-24

Table 7.5. Access to the Last Six Objects Through the Payroll and Sales Groups .
7-25

Table 9.1. GsFile Method Summary 9-4
Table 11.1. GemStone EventErrors. 11-8
Table 11.2. Uncontinuable Errors. 11-25
Table 12.1. Clustering Protocol 12-13
Table 12.2. GemNativeCodeMax Values. 12-28
Table 12.3. GemNativeCodeThreshold Values 12-28
Table 13.1. Method Dictionary AcCess. oo v vt 13-7
July 1996 GemStone Systems, Inc. XXili

Tables GemStone Programming Guide
Table 13.2. Category Manipulation 13-10
Table 13.3. AccesstoVariableNames 13-13
Table 13.4. Storage Format Protocol 13-16
Table 0.1. Optimized Selectors A-11

XXV GemStone Systems, Inc. July 1996

Chapter

Introduction to
GemStone

This chapter introduces you to the GemStone system. GemStone provides a distributed,
server-based, multiuser, transactional Smalltalk runtime system, Smalltalk application
partitioning technology, access to relational data, and production-quality scalability and
availability. The GemStone object server allows you to bring together object-based
applications and existing enterprise and business information in a three-tier, distributed
client/server environment.

July 1996 GemStone Systems, Inc. 1-1

Overview of the GemStone System GemStone Programming Guide

1.1 Overview of the GemStone System

GemsStone provides a wide range of services to help you build objects-based information
systems. GemStone:

* is a multi-user object server

e is a programmable server object system

¢ manages a large-scale repository of objects

e supports partitioning of applications between client and server

e supports queries and indexes for large-scale object processing

e supports transactions and concurrency control in the object repository
e supports connections to outside data sources

e provides object security and account management

e provides services to manage the object repository.

Each of these features is described in greater detail in the following sections.

1.2 Multi-User Object Server

GemsStone can support over 1,000 concurrent users, object repositories of up to 100
gigabytes, and sustained object transaction rates of over 100 transactions per second.
Server processes manage the system, while user sessions support individual user activities.
Repository and server processes can be distributed among multiple machines, and shared
memory and SMP can be leveraged.

Multiple user sessions can be active at the same time, and each user may have multiple
sessions open. A flexible naming scheme allows separate or shared namespaces for
individual users. Coherent groups of objects can be distributed through replication.
Changes users make to objects are committed in transactions, with concurrency controls
and locks ensuring that multi-user changes to objects are coordinated. Security is provided
at several levels, from login authorization to object access privileges.

1.3 Programmable Server Object System

GemsStone provides data definition, data manipulation, and query facilities in a single,
computationally complete language — GemsStone Smalltalk. The GemStone Smalltalk
language offers built-in data types (classes), operators, and control structures comparable
in scope and power to those provided by languages such as C, C++, or Pascal, in addition

1-2

GemStone Systems, Inc. July 1996

Introduction to GemStone Partitioning of Applications Between Client and Server

to multi-user concurrency and repository management services. All system-level facilities,
such as transaction control, user authorization, and so on, are accessible from GemStone
Smalltalk.

This manual discusses the use of GemStone Smalltalk for system and application
development, particularly those aspects of GemStone Smalltalk that are unique to running
in a multi-user, secure, transactional system. Se@¢nhgStone System Administration
Guidefor more information about system administration functions.

1.4 Partitioning of Applications Between Client and

Server

GemsStone applications can access objects and run their methods from a number of
languages, including Smalltalk, C, C++, or any language that makes C calls (such as
COBOL or Fortran). Objects created from any of these languages are interoperable with
objects created from the other languages, and can run their methods within GemStone.

To provide this functionality, GemStone provides interface libraries of Smalltalk classes,
C++ classes and functions, and C functions. These language interfaces, known collectively
as GemBuilder, allow you to move objects between an application program and the
GemsStone repository, and to connect client objects to GemStone objects. GemBuilder also
provides remote messaging capabilities, client replicates, and synchronization of changes.

GemBuilder for Smalltalk is a set of classes installed in a client Smalltalk image that
provides access to objects in the GemStone repository. The client Smalltalk application
can use these classes to gain access to all of GemStone’s production capabilities.
GemBuilder for Smalltalk also suppottansparentGemStone access from a Smalltalk
application — client Smalltalk and GemStone objects are related to each other, and
GemBuilder maintains the relationship and propagates changes between these client
Smalltalk and GemStone objects, not the application.

GemBuilder for C is a library of C functions that provide a bridge between an application’s
C code and the GemStone object repository. You can work with GemStone objects by
importing them into the C program using structural access or by sending messages to
objects in the repository through GemStone Smalltalk. You can also call C routines from
within GemStone Smalltalk methods.

GemBuilder for C++ provides both persistent storage for C++ applications and access to
persistent GemStone objects from applications written in C++. Because C++ objects stored
in GemStone take on identity and exist independently of the program that created them,
they can be used by other applications, including those written in other programming
languages.

July 1996

GemStone Systems, Inc. 1-3

Large-Scale Repository GemStone Programming Guide

Your GemStone system includes one or more of these interfaces. Separate manuals
available for each of the GemBuilder products provide full documentation of the
functionality and use of these products.

1.5 Large-Scale Repository

Object programming languages such as Smalltalk have proven to be highly efficient
development tools. Smalltalk exploits inheritance and code reuse and provides the
flexibility of modeling real world objects with self-contained software modules. Most
Smalltalk implementations, however, are memory based. Objects are either not saved
between executions, or they are saved in a primitive manner that does not lend itself to
concurrent usage or sharing. Smalltalk programmers save their work in an "image," which
is a file that stores their development environment on a workstation. The image holds the
application's classes and instances, the compiled code for all executable methods, and the
values of the variables defined in the product.

GemsStone is based on the Smalltalk object model—like a single-user Smalltalk image, it
consists of classes, methods, instances and meta objects. Persistence is established by
attaching new objects to other persistent objects. All objects are derived from a named root
(AllUsers). Obijects that have been attached and committed to the repository are visible to
all other users. However, unlike client Smalltalks with memory-based images, the
GemsStone repository is accessed through disk caches, so it is not limited in size by
available memory. A GemsStone repository can contain over a billion objects. Repositories
can be distributed among many different machines and files. Because each objectin a
repository has a unique object identifier (known as an OOP—object-oriented pointer),
GemsStone applications can access any object without having to know its physical location.

1.6 Queries and Indexes

GemStone lets you model information in structures as simple as the data permits, and no
more complex than the data demands. You can represent data objects in tables, hierarchies,
networks, queues, or any other structure that is appropriate. Each of these objects may also
be indexable. Complex data structures can be built by nesting objects of various formats.

The power and flexibility of GemStone Smalltalk allow you to perform regular and
associative access queries against very large collections. Because you can represent
information in forms that mirror the information’s natural structure, the translation of user
requests into executable queries can be much easier in GemStone. You do not need to
translate users’ keystrokes or menu selections into relational algebra formulas, calculus
expressions and procedural statements before the query can be executed. See Chapter 5,

"Querying.".

1-4

GemStone Systems, Inc. July 1996

Introduction to GemStone Transactions and Concurrency Control

1.7 Transactions and Concurrency Control

Each GemStone session defines and maintains a consistent working environment for its
application program, presenting the user with a consistent view of the object repository.
The user works in an environment in which only his or her changes to objects are visible.
These changes are private to the user until the transaction is committed. The effects of
updates to the object repository by other users are minimized or invisible during the
transaction. GemsStone then checks for consistency with other users’ changes before
committing the transaction.

GemsStone provides two approaches to managing concurrent transactions:

* Using theoptimisticapproach, you read and write objects as if you were the only user,
letting GemStone manage conflicts with other sessions only when you try to commit a
transaction. This approach is easy to implement in an application, but you run the risk
of discarding the work you've done if GemStone detects conflicts and does not permit
you to commit your transaction. When GemStone looks for conflicts only at your
commit time, your chances of being in conflict with other users increase both with the
time between your commits and the number of objects being read and written.

* Using thepessimisti@pproach, you prevent conflicts as early as possible by explicitly
requesting locks on objects before you modify them. When an object is locked, other
users are unable to lock that object or to commit any changes they have made to the
object. When you encounter an object that another user has locked, you can wait, or
abort your transaction immediately, instead of wasting time doing work that can’t be
committed. If there is a lot of competition for shared information in your application,
or your application can't tolerate even an occasional inability to commit, using locks
may be your best choice.

GemsStone is designed to prevent conflicts when two users are modifying the same object
at the same time. However, some concurrent operations that modify an object, but in
consistent ways, should be allowed to proceed. For example, it might not cause any
concern if two users concurrently added objects to the same Bag in a particular application.

For such cases, GemStone provides reduced-conflict (Rc) classes that can be used instead
of the regular classes in those applications that might otherwise experience too many
unnecessary conflicts:

* RcCountercan be used instead of a simple number for keeping track of amounts when
it isn’t crucial that you know the results right away.

* RcldentityBagprovides the same functionality as IdentityBag, except that no conflict
occurs if a number of users read objects in the bag or add objects to the bag at the same
time.

July 1996

GemStone Systems, Inc. 1-5

Connections to Outside Data Sources GemStone Programming Guide

¢ RcQueusrovides a first-in, first-out queue in which no conflict occurs when other
users read objects in the queue or add objects to the queue at the same time.

¢ RcKeyValueDictionarprovides the same functionality as KeyValueDictionary,
except that no conflict occurs when users read values in the dictionary or add keys and
values to the dictionary at the same time.

See Chapter 6, "Transactions and Concurrency Control."

1.8 Connections to Outside Data Sources

While GemStone methods are all written in Smalltalk (except for a few primitives), you
may often want to call out to other logic written in C. GemStone provides a way to attach
external code, called userActions, to a GemStone session. With userActions, you can
access or generate external information and bring it into GemStone as objects, which can
then be committed and made available to other users. GemBuilder for C is used to write
userActions in C and add them to GemStone Smalltalk, according to rules described in the
GemBuilder for Gnanual. The description of class System inGeenStone Kernel
Referencelescribes the messages you can send to invoke these userActions.

GemsStone uses this mechanism to build its GemConnect product, which provides access
to relational database information from GemStone objects. GemConnect also provides
automatic tracking of object modifications for synchronizing the relational database, and
supports the generation of SQL to update the relational database with changes.
GemConnect is fully encapsulated and maintained in the GemStone object server. Refer to
the GemConnect Programming Guifte more information about GemConnect and its
capabilities.

1.9 Object Security and Account Management

Compared to a single-user Smalltalk system, GemStone requires substantially more
security mechanisms and controls. As a tool for server implementation, multi-user
Smalltalk must handle requests from many users running a variety of applications, each of
which can require different accessibility of objects. Authentication and authorization are
the cornerstones of GemStone Smalltalk security.

A server must reliably identify the people attempting to use a system resource. This
identification process is known as authentication. Authentication requires a valid user 1D
and password. Preventing unauthorized users from entering the system by requiring user
names and passwords is generally effective against casual intrusion. GemStone Smalltalk
supports its own authentication protocol, as well as the Kerberos scheme.

1-6

GemStone Systems, Inc. July 1996

Introduction to GemStone Services to Manage the GemStone Repository

The next type of security, known as authorization, exists within GemStone and controls
individual object access. Authorization enforcement is implemented at the lowest level of
basic object access to prevent users from circumventing the authorization checking. No
object can be accessed from any language without suitable authorization. GemStone
provides a number of classes to define and manage object authorization policies. These
classes are discussed in greater detail in this manual.

Finally, GemStone defines a setpivileges for controlling the use of certain system
services. Privileges determine whether the user is allowed to execute certain system
functions usually only performed by the system administrator. Privileges are more
powerful than authorization. A privileged user can override authorization protection by
sending privileged messages to change the authorization scheme.

In GemStone Smalltalk, a user is represented by an instance of class UserProfile. A
UserProfile contains the following information about a user:

e unique userlD,

e password (encrypted),

« default authorization information,
e privileges,

e group memberships.

Only users who have a UserProfile can log on to the system. For more information on
UserProfile, see theemStone System Administration Guide

See Chapter 7, "Object Security and Authorization."

1.10 Services to Manage the GemStone Repository

GemsStone objects are often an enterprise resource. They must be shared among all users
and applications to fill their role as repositories of critical business information and logic.
Their role goes beyond individual applications, requiring permanence and availability to all
parts of the system. GemStone is capable of managing large numbers of objects shared by
hundreds of users, running methods that access millions of objects, and handling queries
over large collections of objects by using indexes and query optimization. It can support
large-scale deployments on multiple machines in a variety of network configurations. All

of this functionality requires a wide array of services for management of the repository, the
system processes, and user sessions.

July 1996

GemStone Systems, Inc. 1-7

Services to Manage the GemStone Repository GemStone Programming Guide

GemsStone provides services that can:

support flexible backup and restore procedures,
recover from hardware and network failures,
perform object recovery when needed,

tune the object server to provide high transaction rates by using shared memory
and asynchronous I/O processes,

accommodate the addition of new machines and processors without recoding the
system,

make controlled changes to the definition of the business and application objects
in the system.

This manual provides information about programmatical techniques that can be used to
optimize your GemStone environment for system administration. Actual system
administration and management processes are discussedsart&tone System
Administration Guide

1-8

GemStone Systems, Inc. July 1996

Chapter

Programming
With GemStone

This chapter provides an overview of the programming environment provided by
GemStone.

The GemStone Programming Model
describes how programming in GemStone differs from programming in a
client Smalltalk development environment.

GemStone Smalltalk
explains the unique aspects of GemStone Smalltalk that affect programming
and application design.

GemStone Architecture
describes GemStone’s development and runtime process architecture, and
how that architecture influences your programming design and techniques.

July 1996 GemStone Systems, Inc. 2-1

The GemStone Programming Model GemsStone Programming Guide

2.1 The GemStone Programming Model

GemStone is an object server, so programming with GemStone is somewhat
different than programming with a client Smalltalk development environment.
However, there is a great deal that GemStone has in common with client Smalltalk
development, so many of the programming concepts will be quite familiar to you
if you have previously worked with a client Smalltalk system.

Server-based classes, methods, and objects

One key characteristic of GemStone programming is that GemStone Smalltalk
runs in a server, not in a client. Running in a server means that GemStone classes
and methods are stored in a server-based repository (image), and activated by
processes which run on a server, often without a keyboard or screen present. The
developer writing GemStone classes and methods is usually working at a client
machine, communicating with the GemStone environment remotely.

Running in a server also means that the services provided by GemStone’s own
class library are oriented toward server activity. GemStone’s class library provides
functionality for:

« data handling

= collection processing and query processing
= system management

= user account management

The GemStone class library does not provide functionality for screen presentation
and user interface issues. User interface functionality is provided in client
Smalltalk products.

Because GemStone is an object server, it provides a large number of mechanisms
for communicating with GemStone objects from remote machines for
development purposes, application support, and system management. Remote
machines often host a programming environment that communicates with
GemStone through a GemStone interface. A significant part of programming with
GemsStone is designing the interactions between various client and server-based
runtime systems and the GemStone classes, methods, and objects created by the
developer.

2-2

GemStone Systems, Inc. July 1996

Programming With GemStone The GemStone Programming Model

Client and Server Interfaces

GemStone provides a number of client and server interfaces to make it easy for
developers to write applications which make use of GemStone objects, and to write
GemStone classes and methods which make use of external data. While an entire
application can be built in GemStone Smalltalk and run in the GemStone server,
most applications include either a user interface or interaction of some kind with
other systems. In addition, management of a running GemStone system involves
using GemsStone tools and interfaces to program control activities tailored to
specific system environments.

GemStone’s interfaces are numerous. They include:

GemBuilder for Smalltalk
GemBuilder for Smalltalk consists of two parts: a set of GemStone
programming tools, and a programming interface between the client
application code and GemStone. GemBuilder for Smalltalk contains a set of
classes installed in a client Smalltalk image that provides access to objects in a
GemStone repository. Many of the client Smalltalk kernel classes are mapped
to equivalent GemStone classes, and additional class mappings can be created
by the application developer.

GemBuilder for C++
GemBuilder for C++ provides both shared storage for C++ applications and
access to shared objects stored in GemStone by applications written in other
languages. GemBuilder for C++ is implemented as a preprocessor based on
standard C++ syntax. A class library is provided, giving the programmer a
standard set of definitions for commonly used data structures such as sets,
arrays, and bags, as well as functions for managing and manipulating
GemStone objects with C++ code.

GemBuilder for C
GemBuilder for C is a library of C functions that provide a bridge between an
application’s C code and the GemStone repository. This interface allows
programmers to work with GemStone objects by importing them into the C
program using structural access, or by sending messages to objects in the
repository through GemStone Smalltalk. C routines can also be called from
within GemStone Smalltalk methods.

Topaz
Topaz is a GemStone programming environment that provides keyboard
command access to the GemStone object server. Topaz is especially useful for
repository administration tasks and batch mode procedures. Because it is
command driven and generates ASCII output on standard output channels,

July 1996

GemStone Systems, Inc. 2-3

The GemStone Programming Model GemsStone Programming Guide

Topaz offers access to GemStone without requiring a window manager or
additional language interfaces. You can use Topaz in conjunction with other
GemStone development tools such as GemBuilder for C to build
comprehensive applications.

UserActions (C callouts from GemStone Smalltalk)
UserActions are similar to user-defined primitives in other Smalltalks.
GemBuilder for C can be used to write these user actions, and add them to and
execute them from GemStone Smalltalk.

More information about the GemBuilder and Topaz products are found in their
respective reference manuals. UserActions are discussed in the GemBuilder for C
manual.

Gemstone Sessions

All of the GemStone interfaces provide access to GemStone objects and
mechanisms for running GemsStone methods in the server. This access is
accomplished by establishing a session with the GemStone object server. The
process for establishing a session is tailored to the language or user of each
interface. In all cases, however, this process requires identification of the
GemStone object server to be used, the user ID for the login, and other information
required for authenticating the login request.

Once a session is established, all GemStone activity is carried out in the context of
that session, be it low-level object access and creation, or invocation of GemStone
Smalltalk methods.

Sessions allow multiple users to share objects. In fact, different sessions can access
the same repository in different ways, depending on the needs of the applications
or users they are supporting. For example, an employee may only be able to access
employee names, telephone extensions and department names through the
human resources application, while a manager may be able to access and change
salary information as well.

Sessions also control transactions, which are the only way changes to the
repository can be committed. However, a passive session can run outside a
transaction for better performance and lower overhead. For example, a stock
portfolio application that reports the current value of a collection of stocks may run
in a session outside a transaction until notified that a price has changed in a stock
object. The application would then start a transaction, commit the change, and
recalculate the portfolio value. It would then return to a passive session state until
the next change notification.

2-4

GemStone Systems, Inc. July 1996

Programming With GemStone GemStone Smalltalk

On both UNIX and NT platforms, a session can be integrated with the application
into a single process, called a linked application. Each session can have only one
linked application.

Alternatively, the session can run as a separate process and respond to remote
procedure calls (RPCs) from the application. These sessions are called RPC
applications. PC-based platforms (VisualAge and Visual Smalltalk Enterprise)
must run in RPC mode. Sessions may have multiple RPC applications running
simultaneously with each other and a linked application.

2.2 GemStone Smalltalk

All Smalltalk languages share common characteristics. GemStone Smalltalk, while
providing basic Smalltalk functionality, also provides features that are unique to
multi-user, server-based programming.

GemStone Smalltalk provides data definition, data manipulation, and query
facilities in a single, computationally complete language. It is tailored to operate
in a multi-user environment, providing a model of transactions and concurrency
control, and a class library designed for multi-user access to objects. GemStone
Smalltalk operates on server-class machines to take advantage of shared memory,
asynchronous 1/0, and disk partitions. It was built with transaction throughput
and client communication as chief considerations.

At the same time, its common characteristics with other Smalltalks allow you to
implement shared business objects with the same language you use to build client
applications. Since the same code can execute either on the client or on the object
server, you can easily move behavior from the client to the server for application
partitioning.

GemStone Smalltalk extends standard Smalltalk in several ways.

Language Extensions

Constraining Variables

GemsStone Smalltalk allows you to constrain instance variables to hold only certain
kinds of objects. The keyword constraints: in a class creation message takes an
argument that specifies the classes the instance variable will accept. Specifying a
constraint is optional.

Constraining a variable ensures that the variable will contain either nil or instances
of the specified class or that class’s subclasses. When you constrain an instance

July 1996

GemStone Systems, Inc. 2-5

GemStone Smalltalk GemStone Programming Guide

variable to be a kind of Array, you guarantee that it will always be an Array, an
instance of some subclass of Array (such as InvariantArray), or nil.
Constraining Named Instance Variables

You specify constraints on a class’s named instance variables when you create the
class. The keyword constraints: , a part of the standard subclass creation
message, takes an Array of constraints as its argument.

The following example creates a new subclass of Object with three instance
variables constrained to be Strings and one to be an Integer.

Example 2.1

Object subclass: 'Employee’
instVarNames: #('name' 'job' 'age' 'address')
inDictionary: UserGlobals
constraints: #[
#[#name, String], #[#job, String],
#[#age, Integer], #[#address, String]].

In this example, constraints: takes as its argument an Array of two-element
Arrays. The first element is a symbol naming one of the class’s instance variables
and the second element is a class to which the variable is constrained.

Array constructors (enclosed in brackets) are used here instead of literal arrays
(enclosed in parentheses) to build the constraint.

The details of constraint specification differ for named and unordered instance
variables. Chapter 4, "Collection and Stream Classes,” explains how to constrain
unordered instance variables.

Inherited Constraints

Each class inherits instance variables and any constraints on them from its
superclass. You can make inherited constraints more restrictive in the subclass by
naming the inherited instance variables in the argument to constraints: in the
creation statement.

2-6 GemStone Systems, Inc. July 1996

Programming With GemStone GemStone Smalltalk

The following example creates a subclass of Employee in which the constraint on
the instance variable age is Smalllnteger instead of Integer:

Example 2.2

Employee subclass: "YoungEmployee'
instVarNames: #()
classVars: #()
poolDictionaries: #()
inDictionary: UserGlobals
constraints: #[#[#age, Smallinteger]]
isInvariant: false.

YoungEmployee’s other inherited instance variables, which are not listed in the
constraints: argument, retain their original constraints.

You can only restrict an inherited instance variable to a subclass of the inherited
constraint. So, in the previous example, you could not have constrained age to be
of class Number or Array, since neither Array nor Number is a subclass of Integer.

Circular Constraints

A circular constraint occurs when an instance variable of a class is constrained to
hold instances of its own class, or when each of two classes is constrained to hold
instances of the other’s class.

Query Syntax

Enterprise applications need to support efficient searching over collections to find
all objects that match some specified criteria. Each collection class in GemStone
Smalltalk provides methods for iterating over its contents and allowing any kind
of complex operation to be performed on each element. All collection classes
understand the messages select: | reject: , and detect:

In GemStone Smalltalk, an index provides a way to traverse backwards along a
path of instance variables for every object in the collection for which the index was
created. This traversal process is usually much faster than iterating through an
entire collection to find the objects that match the selection criteria.

A special query syntax lets you use GemStone Smalltalk’s extended mechanism for
guerying collections with indexes. In addition, the special syntax for select blocks
lets you specify a path of named instance variables to traverse during a query.

July 1996

GemStone Systems, Inc. 2-7

GemStone Smalltalk GemStone Programming Guide

Auto-Growing Collections

GemStone Smalltalk allows you to create collections of variable length, allowing
you to add and delete elements without manually readjusting the collection size.
GemStone handles the memory management necessary for this process.

Class Library Differences

No User Interface

GemStone Smalltalk does not provide any classes for screen presentation or user
interface development. These aspects of development are handled in your client
Smalltalk.

Different File Access

GemStone class GsFile provides a way to create and access hon-GemsStone files.
Many of the methods in GsFile distinguish between files stored on the client
machine and files stored on the server machine. GsFile allows the use of full
pathnames or environment variables to specify location. If environment variables
are used, how the variable is expanded depends on whether the process is running
on the client or the server.

Different C Callouts

GemStone Smalltalk uses a mechanism called user actions to invoke C functions
from within methods. User actions must be written and installed according to
special rules, which are described in the GemBuilder for C manual.

Class Library Extensions

You can subclass all GemStone-supplied classes, and applications will inherit all
their predefined structure and behavior. This manual discusses some of these
classes and methods. Your GemBuilder interface provides an excellent means for
becoming familiar with the GemStone class hierarchy. A complete description of
all GemStone Smalltalk classes is found in the GemStone Kernel Reference.

More Collection Classes

GemStone Smalltalk provides a number of specialized Collection classes, such as
the KeyValueDictionary classes, that have been optimized to improve application
speed and support scaling capability. A full discussion of these classes is found in
the Collections chapter of this manual.

2-8 GemStone Systems, Inc. July 1996

Programming With GemStone GemStone Smalltalk

RC Classes

Reduced-conflict (RC) classes minimize spurious conflicts that can occur in a
multiuser environment. RC classes are used in place of their regular counterpart
classes in those applications that you determine may otherwise encounter too
many of these conflicts. RC classes do not circumvent normal conflict
mechanisms, but they have been specially designed to eliminate or minimize
commit errors on operations that analysis has determined are not true conflicts.

User Account and Security Classes

UserProfile is used by GemStone in conjunction with information GemStone
gathers during each session to provide a range of security and authorization
services, including login authorization, memory and file protection, secondary
storage management, location transparency, logical name translation, and
coordination of resource use by concurrent users. This manual contains a
discussion of how UserProfile is used by GemStone during a session. The System
Administration Guide contains procedures for creating and maintaining
UserProfiles.

Segment is used to control ownership of and access to objects. With Segment, you
can abstractly group objects, specify who owns the objects, specify who can read
them, and specify who can write them. Each repository is composed of segments.
This manual provides a full discussion of segments in the Security chapter.

Both classes are described in detail in the GemStone Kernel Reference.

System Management Classes

GemStone Smalltalk provides a number of classes that offer system management
functionality. Most of the actions that directly call on the data management kernel
can be invoked by sending messages to System, an abstract class that has no
instances. All disk space used by GemStone to store data is represented as a single
instance of class Repository, and all data management functions, such as extent
creation and access, backup and restoration, and garbage collection are performed
against this class. The class ProfMonitor allows you to monitor and capture
statistics about your application performance that can then be used to optimize
and tune your Smalltalk code for maximum performance. The class ClusterBucket
can be used to cluster objects across transactions, meaning their receivers will be
placed, as far as possible, in contiguous locations on the same disk page or in
contiguous locations on several pages.

Implementation of these classes is discussed in this manual. All of these classes are
described in detail in the GemStone Kernel Reference.

July 1996

GemStone Systems, Inc. 2-9

Process Architecture GemStone Programming Guide

File In and File Out

Smalltalk allows you to file out source code for classes and methods, save the
resulting text file, and file it in to another repository. The GemStone class
PassiveObiject also allows you to file out objects and file them in to another
repository. This functionality is similar to that provided by VisualWorks’ Binary
Object Streaming Service (BOSS) and Visual Smalltalk Enterprise’s Object Filer.
More information about the process is provided in this manual. A description of
the PassiveObject class is provided in the GemStone Kernel Reference.

Inter-Application Communications

GemStone Smalltalk provides two ways to send information from one currently
logged-in session to another:

GemStone can tell an application when an object has changed by sending the
application a notifier at the time of commit. Notifiers eliminate the need for the
application to repeatedly query the Gem for this information. Notification is
optional, and can be enabled for only those objects in which you are interested.

Applications can send messages directly to one another by using Gem-to-Gem
signals. Sending a signal requires a specific action by the receiving Gem.

2.3 Process Architecture

GemStone provides the technology to build and execute applications that are
designed to be partitioned for execution over a distributed network. GemsStone’s
architecture provides both scalability and maintainability. Sections describing the
main aspects of GemStone architecture follow.

Gem Process

GemStone creates a Gem process for each session. The Gem runs GemStone
Smalltalk and processes messages from the client session. It provides the user with
a consistent view of the repository, and it manages the user’s GemStone session,
keeping track of the objects the users has accessed, paging objects in and out of
memory as needed, and performing dynamic garbage collection of temporary
objects. The Gem performs the bulk of commit processing. A user application is
always connected to at least one Gem, and may have connections to many Gem.
Gems can be distributed on multiple, heterogeneous servers, which provides
distribution of processing and SMP support. The Gem also offers users the ability
to link in user primitives for customization.

2-10

GemStone Systems, Inc. July 1996

Programming With GemStone Process Architecture

Stone Process

The Stone process is the resource coordinator. One Stone process manages one
repository. It synchronizes activities and ensures consistency as it processes
requests to commit transactions. Individual Gem processes communicate with the
Stone through interprocess channels. The Stone:

= coordinates commit processing,
= coordinates lock acquisition,

= allocates object 1Ds,

= allocates object Pages,

= writes transaction logs.

Shared Object Cache

The shared object cache provides efficient retrieval of objects from disk, and the
ability for multiple Gems to access the same object. When modified, an object is
written to a new location in the cache. Memory is managed and allocated on a
page basis. The cache also contains buffers for communications between Gems
and the Stone. The shared cache monitor initializes the shared memory cache,
manages cache allocation to the sessions, and dynamically adjusts this allocation
to fit the workload. It also makes sure that frequently accessed objects remain in
memory, and that large objects queries do not flush data from the cache. These
controls allow complex applications to be run on the same repository by multiple
users with no degradation in performance.

Scavenger Process

The scavenger process dynamically reclaims space used by unreferenced objects.
This process is sometimes called dynamic garbage collection, and in GemStone,
may be referred to as the GC Gem. The scavenger process also dynamically

defragments the repository while maintaining requested object clustering. It has a
multi-level collection architecture, consisting of:

= Dynamic cleanup of temporary objects,
= Epoch cleanup of shared objects, and
= Full sweep of the repository.

July 1996 GemStone Systems, Inc. 2-11

Process Architecture GemStone Programming Guide

Extents and Repositories

Extents are composed of multiple disk files or raw partitions. A repository, which
is the logical storage unit in which GemStone stores objects, is actually an ordered
file of one or more extents. Extents can be distributed to heterogeneous servers.
Obijects can be clustered on an extent for efficient storage and access.

Extents can be mirrored for improved fault tolerance. By mirroring extents, you
store each object in two places to reduce the chance of data loss. GemStone
automatically stores each newly committed object in both locations. Any damage
to one extent leaves all the objects intact in the mirrored extent, allowing GemStone
to automatically switch over to the active mirrored extent on an extent fault. Using
mirrored extents can also improve distributed query performance. GemsStone
allows the creation of one mirrored extent for each extent in the repository.

Transaction Log

NetLDl

GemStone’s transaction log provides complete point-in-time roll-forward
recovery. The tranlog contents are composed by the Gem, and the Stone writes the
tranlog using asynchronous I/0. Commit performance is improved through 1/0
reduction, since only log records need to be written, not many object pages. In
addition, the object pages stay in memory to be reused. Log files may also be
mirrored for fault tolerance. GemStone supports both file based and raw device
configuration of tranlogs.

In a distributed system, each machine that runs a Stone monitor, Gem session
process, or linked application, or on which an extent resides, must have its own
network server process, known as a NetLDI (Network Long Distance
Information). A NetLDI reports the location of GemStone services on its machine
to remote processes that must connect to those services. The NetLDI also spawns
other GemStone processes on request.

Login Dynamics

When you log in to GemStone, GemStone establishes for you a logical entity called
a GsSession, which is comparable to an operating system session, job, or process.
GemStone creates a separate instance of GsSession each time a user logs in, and it
monitors, serves, and protects each session independently.

You can log into GemStone through any of its interfaces. Whichever interface you
use, GemsStone requires the presentation of a user 1D (a hame or some other

2-12

GemStone Systems, Inc. July 1996

Programming With GemStone Process Architecture

identifying string) and a password. If the user ID and password pair match the
user 1D and password pair of someone authorized to use the system, GemStone
permits interaction to proceed; if not, GemStone severs the logical connection.

The system administrator (or a user with equivalent privileges) assigns each
GemsStone user an instance of class UserProfile, which contains, among other
information, the user ID and password. GemStone uses the UserProfile to establish
logical names and default locations, resolve references to system objects, and
perform similar tasks. The system administrator gives each new UserProfile
appropriate customized rights, and stores it with a set of all other UserProfiles in
the set AllUsers.

You can obtain your own UserProfile by sending a message to System. Class
UserProfile defines protocol for obtaining information about default names,
privileges, and so forth. More information about UserProfile is provided in this
manual. Class UserProfile is described in the GemStone Kernel Reference, while
procedures for creating and maintaining UserProfile are found in the GemStone
System Administration Guide.

The GemStone system administrator can also configure a GemStone system to
monitor failures to log in, to note repeated login attempts, and to disable a user’s
account after a number of failed attempts to log into the system through that
account. The GemStone System Administration Guide describes these procedures in
greater detail.

July 1996

GemStone Systems, Inc. 2-13

Process Architecture GemStone Programming Guide

2-14 GemStone Systems, Inc. July 1996

Chapter

Name Resolution
and Object Sharing

This chapter describes how Smalltalk finds the objects to which your programs
refer and explains how you can arrange to share (or not to share) objects with other
GemsStone users.

Sharing Objects
explains how Smalltalk allows users to share objects of any kind.

The Session-based and UserProfile Symbol Lists
describes the mechanism that the Smalltalk compiler uses to find objects
referred to in your programs.

Specifying Who Can Share Which Objects
discusses how you can enable other users of your application to share
information.

July 1996 GemStone Systems, Inc. 3-1

Sharing Objects GemStone Programming Guide

3.1 Sharing Objects

Smalltalk permits concurrent access by many users to the same data objects. For
example, all Smalltalk programmers can make references to the kernel class Object.
These references point directly to the single class Object—not to copies of Object.

GemStone allows shared access to objects without regard for whether those objects
are files, scalar variables, or collections representing entire databases. This ability
to share data facilitates the development of multi-user applications.

To find the object referred to by a variable, GemStone follows a well-defined
search path:

1. The local variable definitions: temporary variables and arguments

2. Those variables defined by the class of the current method definition: instance,
class, class instance, or pool variables

3. The symbol list assigned your current session

If GemStone cannot find a match for a name in one of these areas, you are given an
error message.

3.2 UserProfile and Session-based Symbol Lists

The GemStone system administrator assigns each GemStone user an object of class
UserProfile. Your UserProfile stores such information as your name, your
encrypted password, native language, and access privileges. Your UserProfile also
contains the instance variable symbolList.

When you log in to GemStone, the system creates your current session (which is
an instance of GsSession object) and initializes it with a copy of the UserProfile
SymbolList object. Smalltalk refers to this copy of the symbol list to find objects
you name in your application.

3-2 GemStone Systems, Inc. July 1996

Name Resolution and Object Sharing UserProfile and Session-based Symbol Lists

Figure 3.1 The GsSession Symbol List is a Copy of the UserProfile Symbol List

Persistent UserProfile:

userld: aFriend |

SymbolList

] At Log in, GsSession creates a copy of
Transient data: the symbolList in Your UserProfile

I
GsSession data SymbolList

This instance of GsSession is not copied into any client interface nor committed as
a persistent object. Since the symbolList is transient, changes to it cannot incur
concurrency conflicts. Changes to the current session’s symbolList do not affect the
UserProfile symbolList, allowing the UserProfile symbolList to continue to serve
as a default list for other logins. At the same time, methods are provided to
synchronize your session and UserProfile symbolLists.

What's In Your Symbol List?

The data curator adds to your UserProfile symbol list the SymbolDictionaries
containing associations defining the names of all the objects he or she thinks you
might need. Although the decision about which objects to include is entirely up to
the data curator, your symbol list contains at least:

= A “system globals” dictionary called Globals. This dictionary contains some or
all of the Smalltalk kernel classes (Object, Class, Collection, etc.) and any other
objects to which all of your GemStone users need to refer. Although you can
read the objects in Globals, you are probably not permitted to modify them.

= A private dictionary in which you can store objects for your own use and new
classes you do not need to share with other GemStone users. That private
dictionary is usually named UserGlobals.

The symbol list may also include special-purpose dictionaries that are shared with
other users, so that you can all read and modify the objects they contain. The data

July 1996 GemStone Systems, Inc. 3-3

UserProfile and Session-based Symbol Lists GemStone Programming Guide

curator can arrange for a dictionary to be shared by inserting a reference to that
dictionary in each user’s UserProfile symbol list.

Except for the dictionaries Globals and UserGlobals, the contents of each user’s
SymbolList are likely to be different.

Examining Your Symbol List

Example 3.1

To getallist of the dictionaries in your persistent symbol list, send your UserProfile
the message dictionaryNames . For example:

System myUserProfile dictionaryNames
1 UserGlobals

2 UserClasses

3 ClassesForTesting

4 Globals
5 Published

The SymbolDictionaries listed in the example have the following function:

UserGlobals

Contains application and application service objects. This dictionary is the
default used by GemBuilder for Smalltalk to replicate classes in GemStone.

UserClasses

Contains per-user class definitions, and is created by the GemBuilder for
Smalltalk to replicate classes when necessary. Putting this dictionary before
the Globals dictionary allows an application or user to override Kernel classes
without changing them. Keeping it separate from UserGlobals allows a
distinction between classes and application objects.

ClassesForTesting

A user-defined dictionary.

Globals

Provides access for the GemStone Kernel Classes.
Published

Provides space for globally-visible shared objects created by a user.

3-4

GemStone Systems, Inc. July 1996

Name Resolution and Object Sharing UserProfile and Session-based Symbol Lists

To list the contents of a symbol list Dictionary:

= If you are using Topaz, set your display level to 2, and execute some
expression that returns the Dictionary. “Display level” settings are available
only in Topaz.

= If you are running GemBuilder, select the expression UserGlobals in a
GemStone workspace and execute GS-inspect

Example 3.2
UserGlobals
self
#Nativel anguage
#UserGlobals
#GcUser

If you examine all of your symbol list dictionaries, you’ll see that most of the kernel
classes are listed. In addition, you may notice objects called CompileError,
RuntimeError, FatalError, AbortingError, WeekDayNames, and MonthNames.
These objects provide the text for error messages, days of the week, and months in
your native language.

Finally, you’ll discover that most of the dictionaries refer to themselves. Since the
symbol list must contain all source code symbols that are not defined locally nor
by the class of a method, the symbol list dictionaries need to define names for
themselves so that you can refer to them in your code. Figure 3.2 illustrates that the
dictionary named UserGlobals contains an association for which the key is
UserGlobals and the value is the dictionary itself.

The object server searches symbol lists sequentially, taking the first definition of a
symbol it encounters. Therefore, if a name, say “#BillOfMaterials,” is defined in the
first dictionary and in the last, Smalltalk finds only the first definition.

July 1996 GemStone Systems, Inc. 3-5

UserProfile and Session-based Symbol Lists GemStone Programming Guide

Figure 3.2 Self-Referencing Symbol Dictionary

UserGlobals Dictionary -
#0Object aClass
#Collection aClass

#UserGlobals

Inserting and Removing Dictionaries From Your Symbol List

Creating a dictionary is like creating any other object, as the following example
shows. Once you’ve created the new dictionary, you can add it to your symbol list
by sending your UserProfile the message insertDictionary: aSymbolDictat:
anint.

Example 3.3

| newDict |
newDict := SymbolDictionary new.
newDict at: #NewDict put: newDict.
System myUserProfile insertDictionary: newDict at: 1.

As you might expect, insertDictionary: at: shifts existing symbol list
dictionaries as needed to accommodate the new dictionary. In this example, the
new dictionary is inserted into the UserProfile symbolList and then updated in the
current session.

Because the Smalltalk compiler searches symbol lists sequentially, taking the first
definition of a symbol it encounters, your choice of the index at which to insert a
new dictionary is significant.

The following example places the object myCollection in the user’s private
dictionary named myClassDict . Then it inserts myClassDict in the first position
of the current Session’s symbolList, which causes the object server to search

3-6

GemStone Systems, Inc. July 1996

Name Resolution and Object Sharing UserProfile and Session-based Symbol Lists

myClassDict prior to UserGlobals, meaning the GemStone object server will
always find myCollection in myClassDict.

Example 3.4
| myClassDict |
(System myUserProfile resolveSymbol:#myClassDict) isNil
ifTrue:[
myClassDict := (System myUserProfile createDictionary:
#myClassDict).
]
ifFalse:[

myClassDict := (System myUserProfile resolveSymbol:
#myClassDict) value
1.
Object subclass: 'myCollection’
instVarNames: #('this' 'that' 'theOther")
classVars: #()
poolDictionaries: #()
inDictionary: myClassDict
constraints: #()
islnvariant: false
%

GsSession currentSession userProfile insertDictionary: myClassDict
at: 1.
%

"Create a new object named myCollection,
placed in the UserGlobals dictionary: "

Object subclass: 'myCollection’
instVarNames: #('snakes' 'snails' 'tails’)
classVars: #()
poolDictionaries: #()
inDictionary: UserGlobals
constraints: #()
islnvariant: false

%

July 1996 GemStone Systems, Inc.

UserProfile and Session-based Symbol Lists GemStone Programming Guide

When you refer to myCollection, only the version of the object that is in
myClassDict is returned, because the object server returns the first occurrence
found when searching the dictionaries listed by the current session’s symbol list.
If the UserGlobals dictionary is listed before myClassDict, the object server only
finds the version of myCollection in UserGlobals.

You may redefine any object by creating a new object of the same name and
placing it in a dictionary that is searched before the dictionary in which the
matching object resides. Therefore, inserting, reordering or deleting a dictionary
from the symbol list may cause the GemStone object server to return a different
object than you may expect.

This situation also happens when you create a class with a name identical to one
of the kernel class names.

CAUTION
We strongly recommend that you do not redefine any kernel classes, as
their implementation may change from one version of GemStone to the
next. Creating a subclass of a kernel class to redefine or extend that
functionality is usually more efficient.

To remove a symbol list dictionary, send your UserProfile the message
removeDictionaryAt: anlnteger. For example:

Example 3.5

System myUserProfile removeDictionaryAt: 1

Updating Symbol Lists

There are many ways that the current Session’s symbol list can get out of sync with
the UserProfile symbol list. As some of the examples in this chapter show, updates
can made to the current session symbolList that exist only as long as you are
logged in. By changing only the symbol list for the current session, you can
dynamically change the session namespace without causing concurrency
conflict.For example, if you are developing a new class, you may purposely set
your current session symbol list to include new objects for testing.

3-8 GemStone Systems, Inc. July 1996

Name Resolution and Object Sharing UserProfile and Session-based Symbol Lists

Three UserProfile methods help synchronize the persistent and transient symbol
lists:

= UserProfile | insertDictionary aDictionary at: anlndex

This method inserts a Dictionary into the UserProfile symbol list at the
specified index.

= UserProfile | removeDictionary: aDictionary

This method removes the specified dictionary from the UserProfile
symbolList.

= UserProfile | symbolList: aSymbolList

This method replaces the UserProfile symbol list with the specified symbol
list; However, you cannot execute this method unless you are authorized to
write in certain protected portions of the system.

When any of these methods are used, the method modifies the UserProfile symbol
list. Then, if the receiver is identical to “GsSession currentSession userProfile”, the
current session’s symbolList is updated. If a problem occurs during one of these
methods, the persistent symbol list is updated, but the transient current session
symbol list is left in its old state.

July 1996

GemStone Systems, Inc. 3-9

UserProfile and Session-based Symbol Lists GemStone Programming Guide

The following example provides an instruction for copying the transient symbol
list into the persistent UserProfile symbol list. The example continues with adding
a new dictionary to the current session and finally resets the current session’s
symbol list back to the UserProfile symbol list.

Example 3.6

! Copies the GsSession symbol list to the UserProfile
System myUserProfile symbolList:
(GsSession currentSession symbolList copy)

I Checks that the symbol lists are the same
GsSession currentSession symbolList =

System myUserProfile symbolList
%
! Adds a new dictionary to the currentsession
GsSession currentSession symbolList add: SymbolDictionary new
%
I compares the two symbollists; they should differ
GsSession currentSession symbolList =

System myUserProfile symbolList
%
! Updates the UserProfile symbolList to current session
GsSession currentSession symbolList replaceElementsFrom:
(System myUserProfile symbolList)
%

3-10 GemStone Systems, Inc. July 1996

Name Resolution and Object Sharing UserProfile and Session-based Symbol Lists

Finding Out Which Dictionary Names an Object

To find out which dictionary defines a particular object name, send your
UserProfile the message symbolResolutionOf: aSymbol. If aSymbol is in your
symbol list, the result is a string giving the symbol list position of the dictionary
defining aSymbol, the name of that dictionary, and a description of the association
for which aSymbol is a key. For example;

Example 3.7

"Which symbol list Dictionary defines the object '‘Bag'?"
System myUserProfile symbolResolutionOf: #Bag
3 Clobals

Bag Bag

If aSymbol is defined in more than one dictionary, symbolResolutionOf: finds
only the first reference. Smalltalk considers two symbols with the same name to be
identical.

To find out which dictionary stores a name for an object and what that name is,
send your UserProfile the message dictionaryAndSymbolOf: anObject. This
message returns an array containing the first dictionary in which anObject is
stored, and the symbol which names the object in that dictionary.

Example 3.8 uses dictionaryAndSymbolOf: to find out which dictionary in the
symbol list stores a reference to class DateTime:

Example 3.8

| anArray theDict myUserPro n |

myUserPro := System myUserProfile. "get the UserProfile"
"Find the Dictionary containing DateTime"

anArray := myUserPro dictionaryAndSymbolOf: DateTime.
theDict := anArray at: 1.

aSymbolDictionary (#DateTime->DateTime....)

Note that dictionaryAndSymbolOf: returns the first dictionary in which
anObiject is a value.

July 1996

GemStone Systems, Inc. 3-11

Sharing Objects GemStone Programming Guide

3.3 Sharing Objects

As you know, all GemStone users have access to such objects as the kernel classes
Integer and Collection because those objects are referred to by a dictionary
(usually called Globals) that is present in every user’s symbol list.

If you want GemStone users to share other objects as well, you need to arrange for
references to those objects to be added to the users’ symbol lists. You can add the
references to the Published Dictionary, which is a GemStone provided dictionary
and which has a corresponding segment (PublishedSegment), or you can create
another dictionary and authorization segment using the PublishedSegment as a
model. The Published Dictionary and Published Segment is not currently used by
GemStone classes, but may be utilized by future products.

Your system’s authorization mechanism is probably set up to preclude you from
modifying UserProfiles other than your own, so you probably need the
cooperation of your GemsStone system administrator to place a Dictionary in a set
of UserProfiles.

Publishers, Subscribers and the Published Dictionary

The Published Dictionary, PublishedSegment, and the groups Subscribers and
Publishers together provide an example of how to set up a system for sharing
objects.

The Published Dictionary is an initially empty dictionary referred to by your
UserProfile. It contains symbols that most users need to access. The objects named
in this dictionary are created in the PublishedSegment. The PublishedSegment is
owned by the Data Curator and has World access set to none. Two groups have
access to the Published Segment:

< Subscribers have read-only access to the PublishedSegment, and
< Publishers have read-write access to the PublishedSegment.

Publishers can create objects in the PublishedSegment and enter them in the
Published Dictionary. Then members of the Subscribers group can access the
objects.

3-12

GemStone Systems, Inc. July 1996

Chapter

Collection and
Stream Classes

The Collection classes make up the largest group of classes in Smalltalk. This
chapter describes the common functionality available for Collection classes.

An Introduction to Collections
introduces the Smalltalk objects that store groups of other objects.

Collection Subclasses
describes several kinds of ready-made data structures that are central to
Smalltalk data description and manipulation.

Stream Classes

describes classes that add functionality to access or modify data stored as a
Collection.

July 1996 GemStone Systems, Inc. 4-1

An Introduction to Collections GemsStone Programming Guide

4.1 An Introduction to Collections

Collections can store groups of other objects in indexed or unnamed instance
variables. In addition, most classes in the Collection hierarchy can also have
named instance variables. Collections can be classified by the orders in which they
store elements, the kinds of objects they can store, and the kinds of access methods
they provide. A simplified structure of the Collection class hierarchy is listed in
Figure 4.1.

How you wish to access information determines which subclasses you choose to
create for your objects:

= Access by Key — the Dictionary Classes

Keys can be numbers, strings, symbols, or any objects that respond
meaningfully to the comparison message =. A dictionary is a collection of
values which can be accessed by their associations.

Dictionaries can have named instance variables, if you choose to define them.
= Access by Position — the SequenceableCollection Classes

You can refer to the component objects of a SequenceableCollection with
numeric keys, just as you refer to array elements in C or Pascal by means of
numeric subscripts. This Class includes Arrays, Strings, and the Sorted
Collection.

ByteArray, CharacterCollection, and CharacterCollection subclasses store
byte values only, while the other sequenceable collections can have named
instance variables if you choose to define them.

= Access by Value — the UnorderedCollection Classes

The objects in these collections are accessed by matching an unnamed instance
variable value. These Classes act as black boxes; they hide the internal
ordering of their elements from you and from other objects. Bags and Sets are
included in the UnorderedCollection Class.

You may create index structures for fast access to the contents of these classes.

4-2 GemStone Systems, Inc. July 1996

Collection and Stream Classes An Introduction to Collections

Figure 4.1 Simplified Collection Class Hierarchy

Collection
AbstractDictionary
Dictionary
KeyValueDictionary
IdentityKeyValueDictionary
GsMethodDictionary
IdentityDictionary
SymbolDictionary
SymbolKeyValueDictionary
IntegerKeyValueDictionary
StringKeyValueDictionary
SequenceableCollection
Array
AbstractCollisionBucket
CollisionBucket
IdentityCollisionBucket
RcCollisionBucket
InvariantArray
Repository
SymbolList
ByteArray
CharacterCollection
DoubleByteString
DoubleByteSymbol
String
InvariantString
Symbol
Interval

OrderedCollection
SortedCollection
UnorderedCollection

Bag
IdentityBag
IdentitySet
ClassSet
StringPairSet
SymbolSet
Set

July 1996 GemStone Systems, Inc.

An Introduction to Collections GemsStone Programming Guide

Protocol Common To All Collections

The superclass of the collection classes, Collection, provides some protocol shared
by all collection subclasses. In fact, providing that common protocol is Collection’s
only function; it is an abstract superclass. Instances of Collection itself are not
typically useful.

Collection defines methods that enable you to:
= Create instances of its subclasses

= Add and remove elements in collections

= Convert from one kind of class to another

= Enumerate (loop through), compare, and sort the content of collections

Select or reject certain elements on the collection based on specified criteria.

The GemBuilder interface provides an excellent means for reviewing the purpose
and format for each of the categories of methods available for manipulating
Collection Classes and subclasses. The examples that follow provide a starting
point for using Collections.

All the protocol displayed in the examples is defined in the GemStone Kernel
Reference manual.

Creating Instances

All Collection classes respond to the familiar instance creation message new. When
sent to a Collection class, this message causes a new instance of the class with no
elements (size zero) to be created. Most kinds of collections can expand as you add
additional objects.

Another instance creation message, new: anlnteger, causes any Collection
subclass except IdentityBag or IdentitySet to create an instance with aninteger nil
elements:

Example 4.1

| myArray |

myArray := Array new: 5.
myArray at: 3 put: 'a string'.
myArray size

5

4-4 GemStone Systems, Inc. July 1996

Collection and Stream Classes An Introduction to Collections

It’'s sometimes slightly more efficient to use new: than new, because a Collection
created with new: need not expand repeatedly as you add new elements.

Class Collection defines an additional instance creation message,
withAll: aCollection, that creates a new instance of the receiver containing all of
the objects stored in aCollection. For example:

Example 4.2
| birds |
birds := Array withAll:#('wren' ‘robin’ ‘turkey buzzard").
birds at: 3

turkey buzzard

Adding Elements

Collection defines for its subclasses two basic methods for adding elements:
e the add: method adds one element to the Collection
< the addAll: method adds several elements to the Collection at once.

The following example uses both these methods to add elements to an instance of
Collection’s subclass IdentitySet. (An IdentitySet is an unordered, extensible
collection of objects—you’ll learn about its properties in detail later.)

Example 4.3

| potpourri |
potpourri := lIdentitySet new.
UserGlobals at: #Potpourri put: potpourri.

Potpourri add: 'a string of characters’; add: 0.0035;add: #aSymbol.
Potpourri addAll: #(#flotsam #jetsam #salvage).

Potpourri

%

IdentitySet is a very simple kind of collection, so adding elements is
straightforward. Other Collection classes override these methods in order to
control access to elements or to enforce an ordering scheme. Still other subclasses
of Collection provide additional methods that add elements at numbered positions
or symbolic keys. You’ll read about those specialized methods later.

July 1996

GemStone Systems, Inc. 4-5

An Introduction to Collections GemsStone Programming Guide

Enumerating

Collection defines several methods that enable you to loop through a collection’s
elements. Because iterating or enumerating the elements of a data structure is one
of the most common programming tasks, Collection’s built-in enumeration
facilities are extremely useful; they relieve you of worrying about data structure
size and loop indexes. And because they have been carefully tailored to each of
Collection’s specialized subclasses, you needn’t create a custom iterative control
structure for each enumeration problem.

The most general enumeration message is do: aBlock. When you send a Collection
this message, the receiver evaluates the block repeatedly, using each of its
elements in turn as the block’s argument.

Suppose that you made an instance of IdentitySet in this way:

Example 4.4

| virtues |
virtues = ldentitySet new.
virtues addAll: #(’humility’ 'generosity’ 'veracity’
‘continence’ 'patience’).
((UserGlobals at: #Virtues put: virtues) sortAscending: ")
verifyElementsin: #['continence’, 'generosity’,
'humility', 'patience’, 'veracity' |

To create a single String to which each virtue has been appended, you could use
the message do: aBlock like this:

Example 4.5

| aString |
asString := String new. "Make a new, empty String."
"Append a virtue, followed by a space, to the new String"

(Virtues sortAscending: ")

do: [:aVirtue | aString := aString , ' ', aVirtue].
A aString
continence generosity humility patience veracity

In this example, the method for do: executes the body of the block (aString ,
' aVirtue) repeatedly, substituting each of Virtues’ elements in turn for the

4-6

GemStone Systems, Inc. July 1996

Collection and Stream Classes An Introduction to Collections

block argument aVirtue, until all of the virtues have been appended to aString.
(The String concatenation message (",") is explained later in this chapter.)

In addition to do: aBlock, Collection provides several specialized enumeration
methods.When sent to SequenceableCollections, those messages that return
collections (such as select:) always preserve the ordering of the receiver in the
result. That is, if element a comes before element b in the receiver, then element a
is guaranteed to come before b in the result.

NOTE:
To avoid unpredictable consequences, do not add elements to or remove
them from a collection during enumeration.

Selecting and Rejecting Elements

The messages select: aBlock and reject: aBlock make it easy to pick out those
elements of a collection that meet some condition and to store them in a new
collection of the same kind as the original.

The following examples form two new sets, one containing the virtues ’patience’
and 'continence’, the other containing all of the other virtues.

Example 4.6

lab]|

"Select all of the virtues equal to 'patience’ or ‘continence
a := Virtues select: [:n | (n = 'patience") | (n = ‘continence)].
a.

an ldentitySet

#1 patience

#2 continence

lab]|

"Select all of the virtues NOT equal to 'patience’ or ‘continence
b := Virtues reject: [:n | (n = 'patience") | (n = ‘continence)].
b.

%

an ldentitySet

#1 humility

#2 generosity

#3 veracity

July 1996 GemStone Systems, Inc. 4-7

An Introduction to Collections GemsStone Programming Guide

Constraining The Elements Of A Collection

The unordered or indexed elements of a collection cannot be constrained
individually. They are instead constrained to contain only a single kind of element.

You can specify the kind of elements a collection can hold when you create its
class. If you do not, your subclass inherits only the most general kind of
constraint—every element of a collection must be a kind of Object.

The following example creates a subclass of IdentitySet whose instances must
contain only instances of a version of Employee or a subclass thereof:

Example 4.7

Object subclass: 'Employee’

instVarNames: #('name' 'jobclass' 'address’)

classVars: #()

poolDictionaries: #()

inDictionary: UserGlobals

constraints: #[#[#name,String],
#[#jobclass,Integer],
#[#address,String]]

islnvariant: false

IdentitySet subclass: 'SetOfEmployees'
instVarNames: #()
classVars: #()
poolDictionaries: #()
inDictionary: UserGlobals
constraints: Employee
islnvariant: false.
%

When you create a constrained Collection class that has no named instance
variables, the constraints: keyword takes as its argument a single class name.
Because all elements (unnamed instance variables) in a constrained Collection
must be of a single kind (or nil), no more information is needed. However, a
SetOfEmployees could store a subclass of Employees as well as Employees. A
SetOfEmployees could also contain instances of a previous or future version of
Employee or its subclass, as long as the class of those instances shares a class
history with either class Employee or its subclass.

4-8

GemStone Systems, Inc. July 1996

Collection and Stream Classes An Introduction to Collections

If the class whose variables you are constraining also defines named instance
variables, the argument to the constraints: keyword is an Array of two-
element Arrays followed by a single class name. As with non-Collection classes,
the first element of each two-element Array is a Symbol naming one of the class’s
instance variables, and the last element of each is a class. The final class name
supplies the constraint for the unnamed instance variables.

For example, suppose you want define a SetOfEmployees as an unordered
collection of employees, each with a named instance variable representing a
different division of your company. In that case, the instance creation message
would look like Example 4.8.

Example 4.8

IdentitySet subclass: 'SetOfEmployees'
instVarNames: #('division’)
classVars: #()
poolDictionaries: #()
inDictionary: UserGlobals
constraints: #[#[#division, String], Employee]
islnvariant: false

Inquiring about Constraints

The allConstraints method returns all of the constraints on a class. It returns
an array of classes, with one element in the array for each named instance variable
in the class. If the receiver has constraints on the instance variables, the array
returned by the method appends those constraints as additional elements.

The following example shows how the returned array looks for SetOfEmployees
defined in Example 4.8. The first four elements are the four instance variables for
SetOfEmployees: name, jobclass, address, and division. Then the constraint for
division is listed as an element. The last element in the returned array is the
constraint for SetOfEmployees to contain only instances of Employee.

Example 4.9

SetOfEmployees allConstraints verifyElementsin:
#[Object, Object, Object, Object, String, Employee]
true

July 1996 GemStone Systems, Inc. 4-9

Collection Subclasses GemStone Programming Guide

To determine the constraint on indexed or unordered instance variables of a class,
send it the varyingConstraint message:

Example 4.10

SetOfEmployees varyingConstraint
Employee

Also useful are the methods (inherited from Behavior) constraintOn:
definition , and hierarchy

1

4.2 Collection Subclasses

This chapter describes the properties of Collection’s concrete subclasses, and it
gives you some guidance about choosing places for new classes that you might
want to add to the Collection hierarchy.

Subclasses of Collection can be grouped by the kinds of access methods they
provide and the kinds of objects their instances can store. Let’s first consider those
collection classes that don’t provide access to elements through external numeric
indexes.

AbstractDictionary

AbstractDictionary is a subclass of Collection. AbstractDictionary requires that all
of an instance’s elements must have unique keys.

The subclasses of AbstractDictionary provide access to their elements by means of
keys that can be strings, symbols, integers, or objects of any kind.

AbstractDictionary Protocol

AbstractDictionary defines a large number of methods that enable you to store and
retrieve objects on the basis of either keys or values. Some of the methods return
only single keys or values, while others return entire associations.

Internal Dictionary Structure

Dictionaries provide their special facilities by storing key-value pairs instead of
simple, linear lists of objects. Many of the messages that dictionaries understand

4-10 GemStone Systems, Inc. July 1996

Collection and Stream Classes Collection Subclasses

are specialized for referring to either the key or the value portions of their
component associations.

In the following example, the message includesKey: aKey tests to see whether
the dictionary myDictionary contains the definition of glede:

Example 4.11

run
| myDictionary |
myDictionary := StringKeyValueDictionary new.
myDictionary at: 'glede’ put: ‘a bird of prey".
(myDictionary includesKey: 'glede’) ifTrue:

[myDictionary at: 'glede’].
%
a bird of prey

KeyValueDictionary

KeyValueDictionary has several subclasses, divided according to the type of key
used to access the information:

= IdentityKeyValueDictionary,
= IntegerKeyValueDictionary; and
= StringKeyValueDictionary.

In each case, the hashing function is applied to the key.

July 1996

GemStone Systems, Inc. 4-11

Collection Subclasses GemStone Programming Guide

SymbolDictionary

A subclass of IdentityKeyValueDictionary, SymbolDictionary, constrains all of its
keys to be symbols, which it stores in instances of class SymbolAssociation.

The following example creates a new instance of SymbolDictionary called
“Lizards,” then stores some strings at symbolic keys.

Example 4.12

| Lizards |

Lizards := SymbolDictionary new.

Lizards at: #skink put: ‘a small, berry-eating lizard'.
Lizards at: #gecko put: 'a harmless, nocturnal lizard'.
Lizards at: #komodo put: 'a big, irascible reptile'.
Lizards at: #monitor put: 'a large reptile that lives in
your roommate"s closet and usually doesn"t bite'.

"Access one of the SymbolDictionary elements:"
Lizards at: #skink
a small, berry-eating lizard

The at:put: message in this example took a symbol as its first argument instead
of (as with sequenceable collections) an integer.

To retrieve a value from a dictionary, you need only send it the message at: aKey.
At the end of the previous example, #skink is a key.

It’s important to understand that, just as the entry for “2” is not necessarily the
second item in the dictionary on your bookshelf, the numeral 2 does not signify
anything about position when used as a key in a Smalltalk dictionary. Like strings,
symbols, and other dictionary keys, numerals identify but do not locate dictionary
values.

This simple protocol for storing and retrieving objects on the basis of symbolic
instead of positional keys finds wide use in Smalltalk. In fact, the Smalltalk
compiler and interpreter take advantage of dictionaries to resolve symbols, store
methods, and retrieve error messages, as well as other tasks.

4-12

GemStone Systems, Inc. July 1996

Collection and Stream Classes Collection Subclasses

SequenceableCollection

Unlike the AbstractDictionary collections, the SequenceableCollections let you
refer to their elements with integer indexes, and they understand messages such
asfirst andlast that refer to the order of those indexed elements. The
SequenceableCollection classes differ from one another mainly in their literal
representations, the kinds of elements they store, and the kinds of changes they
permit you to make to their instances.

Figure 4.2 is an abbreviated diagram of the SequenceableCollection family tree. It
depicts the SequenceableCollection classes you are likely to use as general-
purpose data structures.

Figure 4.2 SequenceableCollection Class Hierarchy

SequenceableCollection
Array
ByteArray
CharacterCollection
DoubleByteString
DoubleByteSymbol
String
Symbol
Interval
OrderedCollection
SortedCollection

SequenceableCollection is an abstract superclass. The methods it establishes for its
concrete subclasses let you read, write, copy, and enumerate collections in ways
that depend on ordering.

For example, there are methods that enable you to read or write an element at a
particular index, to ask for an element’s index, to request the first and last elements
of a collection, and to copy specified parts of one collection to another.

July 1996 GemStone Systems, Inc. 4-13

Collection Subclasses GemStone Programming Guide

Accessing and Updating Protocol

Class Object defines the messages at: anlndexand at: anindex put: anObject. The
class SequenceableCollection interprets these messages as referring to elements
whose positions are identified by integer keys.

The following example uses at: and at:put: to read and write elements of an
Array.

Example 4.13

| colors |

colors := Array new.
colors at: 1 put: 'vermilion'.
colors at: 2 put: 'scarlet'.
colors at: 3 put: ‘crimson’.
colors at: 2

scarlet

Most of the time, SequenceableCollection can grow to accommodate new objects.
However, you must store each new item at an index no more than one greater than
the largest index you’ve already used. In the previous example, this requirement
permits you to add a color at index 4, but not at index 7. The subsection, “Creating
Arrays” on page 4-20, explains a feature for creating large arrays with nil elements.
Initializing the array with nil values enables you to store new objects wherever you
want. The following example uses other methods defined by
SequenceableCollection:

Example 4.14

| anArray |
anArray := Array new.
anArray at: 1 put: 'string one';
at: 2 put: 'string two’;
at: 3 put: 'string three'.
anArray first.
string one
anArray last.
string three
anArray indexOf: (anArray at: 2)
2

4-14

GemStone Systems, Inc. July 1996

Collection and Stream Classes Collection Subclasses

Adding Objects to SequenceableCollection

SequenceableCollection defines two new methods for adding objects to its in-
stances.

The message addLast: anObject appends its argument to the receiver, increasing
the size of the receiver by one. For example, given the array anArray:

Example 4.15

anArray addLast: 'string four'.
anArray size.

4

anArray last.

string four

The message insert: aSequenceableCollection at: anIndex inserts the elements
of a new SequenceableCollection into the receiver at anlndex and returns the
receiver. For example;

Example 4.16

| colors moreColors |
colors := Array new add: 'red’; add: 'blue’;
add: 'green’; yourself.
moreColors := Array new add: 'mauve’; add: 'taupe';yourself.
colors insert: moreColors at: 2.
colors verifyElementsin:
#('red' 'mauve’ 'taupe' 'blue’ 'green’)
an Array
#1 red
#2 mauve

#3 taupe
#4 blue

#5 green

If anIndex is exactly one greater than the size of the receiver, this method appends
each of aSequenceableCollection’s elements to the receiver.

In addition to the two new adding methods, SequenceableCollection redefines
add: so it puts objects only at the end of the receiver. In other words, add: does
the same thing as addLast:

July 1996

GemStone Systems, Inc. 4-15

Collection Subclasses GemStone Programming Guide

Removing Objects From A SequenceableCollection

You can remove a one or more objects from a SequenceableCollection. In the
following example, deleteObjectAt: removes the first element of the array
rockClingers , decreasing the array’s size by one:

Example 4.17

| rockClingers |
rockClingers := Array withAll: #(limpet' 'mussel' ‘whelk’).
UserGlobals at: #rockClingers put: rockClingers.
(rockClingers deleteObjectAt: 1) = 'limpet’

ifFalse:[~ 'wrong deletion result'

1.

rockClingers verifyElementsin: #('mussel’ ‘whelk")
an Array

#1 mussel

#2 whelk

The next example removes the rest of rockClinger ’s elements, leaving an array
of size zero:

Example 4.18

rockClingers deleteFrom: 1 to: 2.
rockClingers verifyElementsin: #()

an Array

4-16 GemStone Systems, Inc. July 1996

Collection and Stream Classes Collection Subclasses

Comparing SequenceableCollection

SequenceableCollection redefines the comparison methods inherited from Object
so that those methods take into account the classes of the collections to be
compared and the number and order of their elements. Here are the conditions
that must be met for two SequenceableCollections to be considered equal:

= The classes of the two SequenceableCollections must be the same.
= The two SequenceableCollections must be of the same size.
= Corresponding elements of the two objects must be equal.
You can, of course, create subclasses of SequenceableCollections in which you
implement comparison messages with different behavior.
Copying SequenceableCollection

SequenceableCollection understands two copying messages—one that returns a
sequence of the receiver’s elements as a new collection, and one that copies a
sequence of the receiver’s elements into an existing SequenceableCollection.

The following example copies the first two elements of an InvariantArray to a new
InvariantArray:

Example 4.19

| tropicalMammals |

tropicalMammals:= #('capybara’ 'tapir' ‘'margay’)
copyFrom: 1 to: 2.

tropicalMammals verifyElementsin: #(‘capybara’ 'tapir’)

an InvariantArray

#1 capybara
#2 tapir

July 1996 GemStone Systems, Inc. 4-17

Collection Subclasses GemStone Programming Guide

The next example copies two elements of an array into a different array,
overwriting the target array’s original contents:

Example 4.20

| numericArray |
numericArray := Array new add: 1; add: 2;
add: 99; add: 88; yourself.
#(12 34) copyFrom: 3 to: 4 into: numericArray startingAt: 3.
numericArray verifyElementsin: #(12 3 4)
an Array
#11
#2 2
#3 3
#4 4

Bear in mind that copies of SequenceableCollection, like most Smalltalk copies, are
“shallow.” In other words, the elements of the copy are not simply equal to the
elements of the receiver—they are the same objects.

Enumeration and Searching Protocol

Class SequenceableCollection redefines the enumeration and searching messages
inherited from Collection in order to guarantee that they process elements in
order, starting with the element at index 1 and finishing with the element at the last
index.

SequenceableCollection also defines a new enumeration message, reverseDo:
which acts like do: except that it processes the receiver’s elements in the opposite
order.

4-18 GemStone Systems, Inc. July 1996

Collection and Stream Classes Collection Subclasses

SequenceableCollections understand findFirst: aBlock and findLast: aBlock.
The message findFirst: returns the index of the first element that makes aBlock
true, while findLast: returns the index of the last. For example, given
tropicalMammals as defined in the last example:

Example 4.21

tropicalMammals findFirst: [:aMammal | aMammal = ‘capybara’]
1

Arrays

As you have seen in previous examples, instances of Array and of its subclasses
contain elements that you can address with integer keys that describe the positions
of Array elements. For example, myArray at: 1 refers to the first element of
myArray. Example 4.22 uses Array indexing, with protocol from Number, Block,
and Boolean, to code a classic sorting algorithm for a subclass of Array:

Example 4.22

method: SubArray

sortAscending

| selfSize tempStorage exchangeMade |

exchangeMade := true.

selfSize := (self size) - 1.

[exchangeMade] whileTrue:

[exchangeMade := false.
1 to: selfSize do: [:n |
((self at: n) > (self at: n + 1))
ifTrue: [tempStorage := self at: n.

self at: n put: (self at: 1 + n).
self at: n+1 put: tempStorage.
exchangeMade :=true.].].].

"self

%

run "See that the bubble sort works"

(SubArray withAll: #(975312468))

sortAscending verifyElementsin: #(123456789)
%
true

July 1996

GemStone Systems, Inc. 4-19

Collection Subclasses GemStone Programming Guide

One of the most important differences between Smalltalk arrays and a GemStone
array is that GemStone arrays are extensible; you can add new elements to an array
at any time. However, it is usually most efficient to create arrays that are initially
large enough to hold all of the objects you may want to add.

Creating Arrays

You are free to create an array with the inherited message new and let the array
lengthen automatically as you add elements. However, arrays created with new
initially allocate very little storage. As you add objects to such an array, it must
lengthen itself to accommodate the new objects.

Therefore, you will often want to create your arrays with the message new: aSize
(inherited from class Behavior), which makes a new instance of the specified size:

| tenElementArray |
tenElementArray := Array new: 10.

The selector new: stores nil in the indexed instance variables of the empty array.
Having created an array with enough storage for the elements you intend to add,
you can proceed to fill it quickly.

Changing the Size of an Existing Array

Asyou’ve seen, a SequenceableCollection can grow or shrink automatically at run
time as you add or delete elements. However, it’s also possible for you to change
the size without explicitly storing or removing elements, using the message size:
inherited from class Obiject.

In the following example, size: increases the length of an array to 500 and then
decreases it to zero.

Example 4.23

| anArray |

anArray := Array new.
anArray size: 500.
anArray size: 0

When you lengthen an array with size: , the new elements are set to nil.

4-20

GemStone Systems, Inc. July 1996

Collection and Stream Classes Collection Subclasses

Example 4.24 uses size: in a simple implementation of a Stack class:

Example 4.24

Array subclass: 'Stack'’
instVarNames: #()
inDictionary: UserGlobals

category: 'Stack Management'

method: Stack

push: anObject

self add: anObject

%

method: Stack

pop

| theTop |

theTop := self last.

self size: (self size - 1).

theTop

%

method: Stack

clear

self size: 0

%

method: Stack

top

Aself last

%

run

"See that it works"

#[Stack new push: #one; push: #two; push: #three; pop;

push: #four; pop; pop]

verifyElementsin: #(#two)

%

July 1996 GemStone Systems, Inc. 4-21

Collection Subclasses GemStone Programming Guide

Efficient Implementations of Large Arrays

When you create an array of slightly over 2000 elements with new: , or when you
add enough new elements to grow an array to this size using size: , the new
elements are not set to nil, as that would waste storage. Instead, GemStone uses a
sparse tree implementation to make more efficient use of resources. This behavior
occurs in a manner that is transparent to you, and you can place values into the
new elements of the array in the same manner as you would with smaller arrays.
Representing Arrays Literally—Invariant Arrays
Earlier, you encountered literal arrays that looked like this:

#('element one’ 'element two’ 'element three’)
Although this example was referred to as a literal array, the compiler actually
translates such entities into an object of class InvariantArray.
Constraints in the Indexed Part of an Array

The following example creates a subclass of Array constrained to hold numbers:

Example 4.25

Array subclass: 'Stack'’
instVarNames: #() classVars:#() poolDictionaries:#[]
inDictionary: UserGlobals
constraints:#[Number]
instanceslnvariant: false
isModifiable: false

4-22

GemStone Systems, Inc. July 1996

Collection and Stream Classes Collection Subclasses

The following example creates a class with constraints on both named and indexed
instance variables. The instance variable ‘‘name”’ is constrained to hold a string;
the indexed portion is constrained to hold numbers.

Example 4.26

Array subclass: 'NamedStack'
instVarNames: #('name")
classVars:#()
poolDictionaries:#[]
inDictionary: UserGlobals
constraints:#[#['name’, String], Number]
instanceslinvariant: false
isModifiable: false

The following example shows an equivalent way to create NamedStack. This
example creates a modifiable class, modifies it to add constraints, and then
changes the class to a normal class.

Example 4.27

Array subclass: 'NamedStack'

instVarNames: #('name')

inDictionary: UserGlobals

isMadifiable: true)
instVar: 'name’ constrainTo: String ;
varyingConstraint: Number ;immediatelnvariant

July 1996 GemStone Systems, Inc. 4-23

Collection Subclasses GemStone Programming Guide

Strings

A String is a SequenceableCollection modified to accept only instances of
Character as elements. Class String expands the protocol it inherits from
SequenceableCollection to include messages specialized for comparing, searching,
concatenating, and changing the case of character sequences.

Class String and its subclasses are all byte objects. A byte object has two important
practical implications:

= You cannot create a String subclass that has named instance variables.

= Whenyou use new: to create an instance of a kind of String, Smalltalk sets the
new instance’s indexed instance variables to null (ASCII 0).

Creating Strings

You have already seen many strings created as literals. In addition to creating
strings literally, you can use the instance creation methods inherited from String’s
superclasses:

Example 4.28

| myString |

myString := String withAll: #($a $z $u $r $e).
myString

azure

Many of String’s other inherited messages are also useful:

Example 4.29

‘azure' last "return the String’s last character"

$e

‘azure'indexOf:$z "return the position of $z in the String"
2

Searching and Pattern Matching Strings

Class String defines methods that can tell you whether a string contains a
particular sequence of characters and, if so, where the sequence begins. The Class
String contains methods for case-sensitive and case-insensitive search and

4-24

GemStone Systems, Inc. July 1996

Collection and Stream Classes Collection Subclasses

compare. Table 4.1 describes those messages for case-insensitive strings, Table 4.2
describes those messages for case-sensitive strings.

Table 4.1 String’s Case-Insensitive Search Protocol

at: anlndex Returns true if aCharCollection is contained in the
equalsNoCase: receiver, starting at anindex. Returns false otherwise.
aCharCollection

findPattern: aPattern Searches the receiver, beginning at anindex, for a
startingAt: anindex substring that matches aPattern. If a matching
substring is found, returns the index of the first
character of the substring. Returns zero (0) otherwise.

The argument aPattern is an Array containing zero or
more Strings plus zero or more occurrences of the
special wild card characters $* or $?. The character $?
matches any single character in the receiver, and $*
matches any sequence of characters in the receiver.

Table 4.2 String’s Case-Sensitive Search Protocol

at: anlndex Returns true if aCharCollection is contained in the
equals: receiver starting at anlndex. Returns false otherwise.
aCharCollection Generates an error if aCharCollection is not a kind of

CharacterCollection, or if anIndex is not a Smalllnteger.

match: aPrefix Returns true if the argument, aPrefix, is a prefix of the
receiver. Returns false otherwise. The value for aPrefix
may include the wild card characters $* or $?. The
character $? matches any single character in the
receiver, and $* matches any sequence of characters in
the receiver.

includes: Returns true if the receiver contains character.

character

indexOf: Returns the index of the first occurrence of aCharacter in
aCharacter the receiver, not preceding startindex. Returns zero (0) if
startingAt: no match is found.

startIndex

July 1996 GemStone Systems, Inc. 4-25

Collection Subclasses GemStone Programming Guide

Here is an example using a wild card:

Example 4.30

'weimaraner' matchPattern: #('w' $* 'r'")
true

This example returns true because the character $* is interpreted as “any sequence
of characters.” Similarly, the following example returns the index at which a
sequence of characters beginning and ending with $r occurs in the receiver.

Example 4.31

‘weimaraner' findPattern: #('r' $* 'r') startingAt: 1
6

If either of the wild card characters occurs in the receiver, it is interpreted literally.
The following expression returns false because the character $* in the receiver is

interpreted literally:

Example 4.32

"Wildcard characters are literal"
'‘w*r' matchPattern: #('weimaraner’)
false

Comparing Strings

The Class String has methods for comparing strings, divided into categories of
Case-Insensitive Comparisons and Case-Sensitive Comparisons. The following
example shows the boolean value returned for each comparison.

4-26 GemStone Systems, Inc. July 1996

Collection and Stream Classes Collection Subclasses

As shown in the examples, the comparisons for =’ and for match: are always
case sensitive, while the other messages are case insensitive.

Example 4.33

‘A ="a’ "Case Sensitive compare"
false

A’ match: 'a’ "Case Sensitive compare"
false

‘A <’a’

true

‘A >a

false

A<="a "Case Insensitive compare"
true

A >="a’ "Case Insensitive compare"
false

‘A’ isEquivalent: 'a’ "Case Insensitive compare"

true

‘A’ equalsNoCase: 'a
true

A<D "Case Insensitive compare"
true

b >A "Case Insensitive compare"
true

"Case Insensitive compare"

Concatenating Strings

A string responds to the message #, someCharacters by returning a new string in
which someCharacters (a string, a character, or an array of characters) have been
appended to the string’s original contents. For example:

Example 4.34

'String ', ‘con’, 'catenation’
String concatenation

Although this technique is handy when you need to build a small string, it’s not
very efficient. In the last example, Smalltalk creates a String object for the first
literal, 'String’ . The #, message returns a new instance of String containing

July 1996

GemStone Systems, Inc. 4-27

Collection Subclasses GemStone Programming Guide

'String con’ , Which is in turn passed to the #, message again to create a third
string.

When you need to build a longer string, you’ll find it more efficient to use
addAll: or add: (they’re the same for class String) like this:

Example 4.35

| resultString |
resultString := String new.
resultString add: 'String
add: ‘con’;
add: 'catenation'.
resultString

String concatenation

Efficient Implementations of Large Strings

When you create a string of over 8000 characters, characters without values are not
set to ASCII null, as that would waste storage. Instead, GemStone uses a sparse
tree implementation to make more efficient use of resources. This behavior occurs
in a manner that is transparent to you, and you can put new characters in the string
in the same manner as you would with smaller strings.

Converting Strings To Other Kinds of Objects

Class String defines messages that let you convert a string to an upper- or
lowercase string, to a symbol, or to a floating-point number.

Example 4.36

'ABCDE' asLowercase
abcde

‘abcde’ asUppercase
ABCDE

‘abcde’ asSymbol
abcde'l5' asFloat = 1.5el
true'l5' asFloat = 1.5E1
true

4-28

GemStone Systems, Inc. July 1996

Collection and Stream Classes Collection Subclasses

Literal and nonliteral InvariantStrings and Strings behave differently in identity
comparisons. Each nonliteral String (created, for example, with new, withAll: |
or asString) has a unique identity. That is, two Strings that are equal are not
necessarily identical. For example:

Example 4.37

| nonlitString1 nonlitString2 |

nonlitStringl := String withAll: #($a $b $c).
nonlitString2 := String withAll: #($a $b $c).
(nonlitStringl == nonlitString2)

false

However, literal strings (InvariantStrings created literally) that contain the same
character sequences and are compiled at the same time are both equal and
identical:

Example 4.38

| litString1 litString?2 |
litString1 :="abc'.
litString2 :="abc'.
(litStringl == litString2)
true

Symbols

This distinction can become significant in building sets. Because a set does not
accept more than one element with the same identity, you cannot add both
litStringl and litString2 to the same set. You can, however, store both nonlitStringl
and nonlitString2 in a single set.

Class Symbol is a subclass of String. Smalltalk uses symbols internally to represent
variable names and selectors. All symbols are stored in the DataCurator segment,
and they may be viewed by all users. All private information should be maintained
in Strings, not in Symbols.

You create a symbol using the withAll: method. Once asymbol is created, it may
not be modified. When you use the withAll: method to create a new symbol,
Smalltalk checks to see whether the symbol exists in its view of AllISymbols. If the

July 1996

GemStone Systems, Inc. 4-29

Collection Subclasses GemStone Programming Guide

symbol already exists, the OOP for that symbol is returned, otherwise a new OOP
is returned.

DoubleByteString and DoubleByteSymbol

The DoubleByteString and DoubleByteSymbol classes provide the functionality of
String and Symbol classes for DoubleByte character sets.

UnorderedCollection

The class UnorderedCollection implements protocol for indexing, which in turn
allows for large collections to be queried and sorted efficiently.

All subclasses of UnorderedCollection do not allow nil elements. The repository
will silently ignore attempts to create nil elements in these classes.

Chapter 5, “Querying,” describes the querying/sorting functions in detail. The
following section describes the protocol implemented in UnorderedCollection’s
subclasses.

Bag

A Bag is the simplest unordered collections, made of an aggregation of unordered
instance variables. Bags, like most other collections, are elastic, growing to
accommodate new objects as you add them.

You access a Bag’s elements by equality. That is, if a variable has the same value as
an element that is in the Bag, that element is equal to the variable. If you have two
elements in the Bag with the same value, the first element encountered is always
returned.

If the Bag contains elements that are themselves complex objects, determining the
equality is complex and therefore slower than you might have hoped.

You may constrain the variables in a Bag. The equality-accessed class Bag is
provided for compatibility with client Smalltalk standards. If you anticipate a
large number of elements in a Bag, we recommend you use the class IdentityBag.

IdentityBag

IdentityBag has faster access and can more easily handle constrained variables.
Like a Bag, an IdentityBag is elastic and can hold objects of any kind. An
IdentityBag can hold up to 2%°-1 (about a billion) objects.

4-30 GemStone Systems, Inc. July 1996

Collection and Stream Classes Collection Subclasses

To access an IdentityBag, you rely on the identity (OOP) of the object. This is a
much less time-consuming task than an equality comparison, and in most cases it
should be sufficient for your design.

If two elements in the IdentityBag have the same OOP, the first element
encountered is always returned. The object returned is not guaranteed to be the
same one over time.

Because IdentityBag is not ordered, class IdentityBag disallows the inherited
message at:put: . The inherited messages add: and addAll: work pretty much
as they do with other kinds of collection, except, of course, that they are not
guaranteed to insert objects at any particular positions.

IdentityBag defines one new adding message, add: anObject
withOccurrences: anlnteger. This message enables you to add several identical
objects to an IdentityBag with a single message:

Example 4.39

| aBag |

aBag := IdentityBag new add: 'chipmunk’ withOccurrences: 3.
aBag occurrencesOf: ‘chipmunk’
3

Accessing an ldentityBag’s Elements

Since an ldentityBag’s elements are not ordered, ldentityBag must disallow the
message at: . Usually, you’ll need to use Collection’s enumeration protocol to get
at a particular element of a IdentityBag.

The following example uses detect: to find a IdentityBag element equal to
agouti’:

Example 4.40

| bagOfRodents myRodent |

bagOfRodents := IdentityBag withAll: #('beaver’ 'rat' ‘agouti').
myRodent := bagOfRodents detect: [:aRodent | aRodent = ‘agouti’].
myRodent

agouti

July 1996 GemStone Systems, Inc. 4-31

Collection Subclasses GemStone Programming Guide

Removing Objects from a IdentityBag

Class IdentityBag provides several messages for removing objects from an identity
collection. The message remove:ifAbsent: lets you execute some code of your
choice if the specified object cannot be found, in this example the message returns
false if it cannot find “2” in the IdentityBag:

Example 4.41

| myBag |

myBag := ldentityBag withAll: #(2 3 4 5).

((myBag remove: 2 ifAbsent; [*alse]) sortAscending: ")
verifyElementsin: #(3,4,5]

true

Similarly, removeAllPresent: aCollection is safer than removeAll: aCollection,
because the former method does not halt your program if some members of
aCollection are absent from the receiver.

All the removal messages act to delete specific objects from an IdentityBag by
identity; they do not delete objects that are merely equal to the objects given as
arguments. The previous example works correctly because the Smalllnteger 2 has
a unique identity throughout the system. By way of contrast, consider the
following example:

Example 4.42

| myBag arrayl array? |

"Create two objects that are equal but not identical,

and add one of them to a new IdentityBag."

arrayl := Array new add: 'stuff’; add:'nonsense' ; yourself.

array? := Array new add: 'stuff’; add:'nonsense' ; yourself.

"Create an ldentityBag containing arrayl."

myBag := IdentityBag new add: arrayl.

UserGlobals at: #MyBag put: myBag.

"Now try to remove one of the objects from the IdentityBag

by referring to its equal twin in the argument to

remove:ifAbsent"

myBag remove: array2 ifAbsent: ['Sorry, can"t find it'].
Sorry, can't find it

4-32

GemStone Systems, Inc. July 1996

Collection and Stream Classes Collection Subclasses

Comparing ldentityBags
Class IdentityBag redefines the selector = in such a way that it returns true only if
the receiver and the argument:

= are of the same class,

= have the same number of elements,

= have the same constraints on their elements,

= contain only identical (==) elements, and

= contain the same number of occurrences of each object.

Union, Intersection, and Difference

Class ldentityBag provides three messages that perform functions reminiscent of
the familiar set union, set intersection, and set difference operators. There is one
significant difference between these messages and the set operators —
IdentityBag’s messages consider that either the receiver or the argument can
contain duplicate elements. The description of class IdentityBag in the GemStone
Kernel Reference provides more information about how these messages behave
when the receiver’s class is not the same as the class of the argument.

Sorting IdentityBag

Class ldentityBag defines methods that can sort collection elements with
maximum efficiency. Sort keys are specified as paths, and they are restricted to
paths that are able to bear equality indexes. (See Appendix A, “Basic Smalltalk
Syntax." Section: “Path Expressions” on page A-17, for a description of paths. See
“Equality Indexes” on page 5-22, for a description of equality indexes.)

July 1996

GemStone Systems, Inc. 4-33

Collection Subclasses GemStone Programming Guide

The following code defines an Employee object, and an subclass of IdentityBag for
containing Employees. Following examples add instances of Employee to the
IdentityBag and then sorts those instances:

Example 4.43

(Object subclass: 'Employee'
instVarNames: #('name' 'job' 'age' 'bday' ‘address")
classVars: #()
poolDictionaries: #()
inDictionary: UserGlobals
constraints: #[#[#name, String], #[#job, String],
#[#age,Smalllnteger],#[#address,String],
#[#bday, DateTime]]
isInvariant: false) name
%
Employee compileAccessingMethodsFor:
#('name' 'job’ 'age' 'bday' 'address’)
(Employee subclass: 'SymbolNameEmployee'
instVarNames: #()
classVars: #()
poolDictionaries: #()
inDictionary: UserGlobals
constraints: #[#[#name, Symbol]]
isInvariant: false) name
%
(IdentityBag subclass: '‘BagOfEmployees'
instVarNames: #()
classVars: #()
poolDictionaries: #()
inDictionary: UserGlobals
constraints: Employee
isInvariant: false) name
%

4-34 GemStone Systems, Inc. July 1996

Collection and Stream Classes Collection Subclasses

The following code creates a few instances of Employee, places them in an
IdentityBag subclass named BagOfEmployees , and sorts by sortDescending:

Example 4.44

"Make some Employees,and store them in a BagOfEmployees."
| Conan Lurleen Fred myEmployees |
Conan := (SymbolNameEmployee new) name: #Conan;
job: 'librarian’; age: 40; address: '999 W. West'.
Fred := (SymbolNameEmployee new) name: #Fred;
job: ‘clerk’; age: 40; address: '221 S. Main'.
Lurleen := (SymbolNameEmployee new) name: #Lurleen;
job: 'busdriver'; age: 24; address: '540 E. Sixth'.
myEmployees := BagOfEmployees new.
myEmployees add: Fred; add: Lurleen; add: Conan.
UserGlobals at: #myEmployees put: myEmployees
| result |
result := Array new.
(myEmployees sortDescending: 'name’) do:
[:e | result add: e.name].
result verifyElementsin: #(#Lurleen #Fred #Conan)
myEmployees sortDescending: 'name’.

an Array
#1 an Employee
name Lurleen
#2 an Employee
name Fred
#3 an Employee
name Conan
The messages sortAscending: and sortDescending: return arrays of

elements sorted by a specified instance variable of the element class.

In sorting instances of Float, NaN is regarded as greater than an ordinary floating-

point number.

To sort a bag constrained to contain only simple values (such as strings, symbols,

numbers, instances of DateTime, or characters), give an empty path as the
argument to sortAscending: or sortDescending:

July 1996

GemStone Systems, Inc. 4-35

Collection Subclasses GemStone Programming Guide

Example 4.45

| myBagOfStrings |
myBagOfStrings := IdentityBag new
add: 'alpha’; add: 'beta’; yourself.
(myBagOfStrings sortAscending: ")
verifyElementsin: #('alpha’ 'beta’)

an Array

#1 alpha
#2 beta

Either of IdentityBag’s sorting methods can take an array of paths as its argument.
The first path in the array is taken as the primary sort key and the others are taken
in order as subordinate keys, as shown in Example 4.46:

Example 4.46

| returnArray tempString |
tempsString := String new.
returnArray := myEmployees sortAscending: #('age' 'name’).
"Build a printable list of the sorted ages and names"
returnArray do: [:i | tempString add: (i age asString);
add: ''; add: i name;
add: Character If].
tempString
%
24 Lurleen
40 Conan
40 Fred

Here Employees are ordered initially by 'age’, the primary sort key. The two
Employees who have the same age are ordered by 'name’, the secondary sort key.

You may sort a collection on as many as keys as you need. However, the more keys
you sort on, the longer the sort will take (in general).

To sort in ascending order on some keys while sorting in descending order on
others, use sortWith: ~ anArray. The argument to this message is an Array of
paths alternating with sort specifications.

4-36

GemStone Systems, Inc. July 1996

Collection and Stream Classes Collection Subclasses

Example 4.47 uses sortWith: to sort on age in ascending order and on name in
descending order:

Example 4.47

| returnArray tempString |

tempsString := String new.

returnArray := myEmployees sortWith: #('age' 'Ascending’
‘name’' 'Descending’).

returnArray do: [:i | tempString add: (i age asString);
add: ''; add: i name;
add: Character If].

tempString

%

24 Lurleen

40 Fred

40 Conan

Class IdentitySet

IdentitySet is similar to IdentityBag, except that IdentitySet does not accept
duplicate (that is, identical) elements. You may find sets useful for modeling such
entities as relations, which must contain only unique tuples.

To access an IdentitySet, you rely on the identity (OOP) of the object. This is a
much less time-consuming task than an equality comparison, and in most cases it
should be sufficient for your design.

Because IdentitySet is not ordered, class IdentitySet disallows the inherited
messages at: and at:put: . The inherited messages add: and addAll: work
pretty much as they do with other kinds of Collection, except, of course, that they
are not guaranteed to insert objects at any particular positions.

July 1996 GemStone Systems, Inc. 4-37

Collection Subclasses GemStone Programming Guide

IdentitySet As Relations

Suppose that you wanted to build and query a relation such as the one shown in
Figure 4.3:

Figure 4.3 Employee Relations

Employees
Name Job Age Address
Fred clerk 40 221 S. Main
Lurleen busdriver 24 540 E. Sixth
Conan librarian 40 999 W. West

In Smalltalk, it would be natural to represent such a relation as an IdentitySet of
objects of class Employee, with each Employee containing instance variables name,
job, age, and address. Each element of the IdentitySet corresponds to a tuple, and
each instance variable of an element corresponds to a field.

To make it easy to retrieve values from a tuple, you can define methods for class
Employee so that an Employee returns the value of its name instance variable upon
receiving the message name, the value of its age variable upon receiving the
message age, and so on.

The examples on the following pages create a small employee relation as described
above and show how you might use Collection’s enumeration protocol to
formulate queries about the relation.

4-38 GemStone Systems, Inc. July 1996

Collection and Stream Classes Collection Subclasses

Example 4.48

Object subclass: 'Employee’
instVarNames:
#('name’ 'job’ 'age’ 'address' 'lengthOfService')
classVars: #()
poolDictionaries: #[]
inDictionary: UserGlobals
constraints: #()
islnvariant: false.
%
IdentitySet subclass: 'SetOfEmployees'
instVarNames: #()
classVars: #()
poolDictionaries: #[]
inDictionary: UserGlobals
constraints: Employee
islnvariant: false.
%
R Create Some Instance Methods for Employee -----
category: 'Accessing’
method: Employee

name "returns the receiver’'s name"
Aname

%

method: Employee

job "returns the receiver’s job"
7ob

%

method: Employee

age "returns the receiver’'s age"
Nage

%

method: Employee

address "returns the receiver's address"
Naddress

%

July 1996 GemStone Systems, Inc. 4-39

Collection Subclasses

GemStone Programming Guide

R More Methods for Employee ---------

category: 'Updating’

method: Employee

name: aNameString "sets the receiver’'s name"
name := aNameString

%

method: Employee

job: aJobString "sets the receiver’s job"
job := aJobString

%

method: Employee

age: anintegerAge "sets the receiver’'s age"
age = anintegerAge

%

method: Employee

address: aString "sets the receiver’'s address”
address := aString

%

category: 'Formatting’

method: Employee

asString

"Returns a String with info about the receiver (an

Employee).”

N (self name) , "' (self job) , ",

(self age asString), ' ', (self address)

%

method: SetOfEmployees

asTable

"Prints a set of Employees, one to a line"

| aString |

aString := String new.

self do: [:anEmp |

aString addAll: anEmp asString; add: Character If .

]-
AaString
%
expectvalue Employee
run

Employee compileAccessingMethodsFor: Employee.instVarNames

%

4-40

GemStone Systems, Inc.

July 1996

Collection and Stream Classes Collection Subclasses

The following code creates some instances of class Employee and stores them in a
new instance of class SetOfEmployees:

Example 4.49

"Make some Employees, and store them in a SetOfEmployees."
| Conan Lurleen Fred myEmployees |
Conan := (Employee new) name: 'Conan’; job: 'librarian’;
age: 40; address: '999 W. West'.
Fred := (Employee new) name: 'Fred’; job: ‘clerk’;
age: 40; address: '221 S. Main'.
Lurleen := (Employee new) name: 'Lurleen’; job: 'busdriver’;
age: 24; address: '540 E. Sixth'.
myEmployees := SetOfEmployees new.
myEmployees add: Fred; add: Lurleen; add: Conan.
"Store the Employees in your userglobals dictionary."
UserGlobals at: #myEmployees put: myEmployees.

Now it’s possible to form some queries using Collection’s enumeration protocol:

Example 4.50

| age40Employees |

"Use select: to ask for employees aged 40."

age40Employees := myEmployees select:
[:anEmp | anEmp age = 40].

age40Employees asTable

%

Conan librarian 40 999 W. West

Fred clerk 40 221 S. Main

| conanEmps |

"Ask for employees named '‘Conan

conanEmps := myEmployees select:
[:anEmp | anEmp name ='Conan’].

conanEmps asTable

%

Conan librarian 40 999 W. West

July 1996 GemStone Systems, Inc. 4-41

Stream Classes GemStone Programming Guide

Example 4.51

I More examples of queries for the Collection protocol

| notConanBut40Emps |
"Get employees who are 40 years old and not named Conan."
notConanBut40Emps := myEmployees select:

[:anEmp | (anEmp age = 40) & (anEmp name ~= 'Conan’)].
notConanBut40Emps asTable
%
Fred clerk 40 221 S. Main

%

| youngerThan40Emps |

"Find the employees who are younger than 40."

youngerThan40Emps := myEmployees select:
[:anEmp | (anEmp age)< 40].

youngerThan40Emps asTable

%

Lurleen busdriver 24 540 E. Sixth

Set

A Set is another unordered collection. Like the Class Bag, an element of a Set is
accessed by equality. Unlike a Bag, a Set cannot have multiple objects of the same
value.

A Set may have constrained instance variables, but at a cost. This class is provided
for compatibility with client Smalltalk standards. If you anticipate a large number
of elements for your Set, we recommend you use the class IdentitySet. IdentitySet
have faster access and can more easily handle constrained variables.

4.3 Stream Classes

Reading or writing a SequenceableCollection’s elements in sequence often entails
some drudgery. At a minimum, you need to maintain an index variable so that
you can keep track of which element you last processed.

Class Stream and its subclasses relieve you of this burden by simulating
SequenceableCollections with more desirable behavior; a Stream acts like a
SequenceableCollection that keeps track of the index most recently accessed. A

4-42

GemStone Systems, Inc. July 1996

Collection and Stream Classes Stream Classes

Stream that provides this kind of civilized access to a particular
SequenceableCollection is said to “stream on” or *“stream over” that collection.

There are two concrete Stream classes. Class ReadStream is specialized for reading
SequenceableCollections and class WriteStream for writing them. These concrete
Stream classes share two abstract superclasses, PositionableStream and Stream
(see Figure 4.4).

Figure 4.4 Stream Class Hierarchy

Stream
PositionableStream
ReadStream
WriteStream

This unusual juxtaposition of two abstract classes, Stream and PositionableStream,
leaves an opening for you in the hierarchy in case you should ever decide to create
a nonpositionable stream class for accessing, say, a LinkedList class of your own
devising.

A stream provide its special kind of access to a collection by keeping two instance
variables, one of which refers to the collection you wish to read or write, and the
other to a position (an index) that determines which element is to be read or
written next. A stream automatically updates its position variable each time you
use one of Stream’s accessing messages to read or write an element.

July 1996

GemStone Systems, Inc. 4-43

Stream Classes GemStone Programming Guide

Stream Protocol

Streams provide messages to write or read an element at the next position beyond
the current position, change the current position without accessing any elements,
and peek at the next element beyond the current one without changing the
Stream’s notion of its current position. Stream also provide messages to test for an
empty collection and for the end of a stream. Finally, there is a message that
returns the collection associated with a stream. Example 4.52 demonstrates the
effect of several of these messages on a ReadStream.

Example 4.52

| aReadStream anArray |

anArray := #('item1' item2' 'item3" 'item4' item5").
aReadStream := ReadStream on: anArray.
UserGlobals at: #aReadStream put: aReadStream.
aReadStream position. "What's the initial position?"
%

1

"Return the item at the current position."
aReadStream next.

%

item1

aReadStream position: 2. "Set the position to the second
element”

aReadStream next. "Read that element."

%

item2

"Move to position 6. If at the end, reset the position to

the Stream’s beginning"

aReadStream position: 6. "Move past the last element"”
(aReadStream atEnd)ifTrue:[aReadStream reset].
aReadStream next

%

item1

4-44

GemStone Systems, Inc. July 1996

Collection and Stream Classes Stream Classes

Here is an example showing use of WriteStream:

Example 4.53

| aWriteStream |
aWriteStream := WriteStream on: (Array new: 5).
aWriteStream nextPut: 'item1'; nextPut: 'item2'.
UserGlobals at: #aWriteStream put: aWriteStream.
%
"Examine the Stream’s contents"
aWriteStream contents
verifyElementsin: #('item1' item2")
%
aWriteStream contents.
an Array
#1 item1
#2 item2
#3 nil
#4 nil
#5 nil

aWriteStream position: 4.

aWriteStream nextPut: ‘'item4'. "Store new item there."
aWriteStream nextPut: 'item5'. "Store item at next slot."
aWriteStream position: 1. "Move to position 1."
"Replace item there."

aWriteStream nextPut: 'A new item at the front'.

"Examine the Stream’s contents"

aWriteStream contents verifyElementsin:
#('A new item at the front')

%

aWriteStream.itsCollection.

an Array

#1 A new item at the front

#2 item2

#3 nil

#4 item4

#5 item5

July 1996 GemStone Systems, Inc. 4-45

Stream Classes

GemStone Programming Guide

Creating Printable Strings with Streams

Streams are especially useful for building printable strings.

Example 4.54

| aStream aSet lineNumber |
lineNumber := 1.
aStream := WriteStream on: (String new).

aSet := |dentitySet withAll: #('lemur' 'gibbon’ ‘potto’

'siamang’ 'rhesus' 'macaque’ 'orangutan’).

aSet do: [:i | aStream nextPutAll: lineNumber asString.

aStream nextPutAll; ' .
aStream nextPutAll: i.
aStream nextPut: Character If.
lineNumber := lineNumber + 1.].

aStream.itsCollection

%

aStream contents

1 lemur

2 gibbon

3 potto

4 siamang

5 rhesus

6 macaque
7 orangutan

4-46 GemStone Systems, Inc.

July 1996

Chapter

Querying

This chapter describes Smalltalk’s indexed associative access mechanism, a system
for efficiently retrieving elements of large collections.

Relations
reviews the concept of relations.

Selection Blocks and Selections
describes how to use a path to select all the elements of a collection that meet
certain criteria.

Additional Query Protocol
explains how to select a single element of a collection that meets certain
criteria, or all those elements that do not meet them.

Indexing for Faster Access
discusses Smalltalk’s facilities for creating and maintaining indexes on
collections.

Nil Values and Selection
discusses the ramifications of using a path, one of whose elements might
contain nil.

July 1996 GemStone Systems, Inc. 5-1

Relations GemStone Programming Guide

Paths Containing Collections
explains how you can use a path, one of whose elements is a collection instead

of a single object.

Sorting and Indexing
describes protocol for sorting collections efficiently.

5.1 Relations

It’s common practice to construct a relational database as a set of multiple-field
records. Usually, each record represents one entity and each field in a record stores
a piece of information about that entity. In a relational database, the set of records
is called a relation, individual records are called tuples, and the fields are called
attributes.

For example, the following table depicts a small relation that stores data about
employees:

Figure 5.1 Employee Relation

Employees
Name Job Age Address
Fred clerk 40 221 S. Main
Lurleen busdriver 24 540 E. Sixth
Conan librarian 40 999 W. West

In GemStone, it’s natural to represent such a relation as an IdentityBag or
IdentitySet of objects of class Employee, with each employee containing the
instance variables name, job, age, and address. Each element of the IdentitySet
corresponds to a record, and each instance variable of an element corresponds to
a field.

To make it easy to retrieve values from a record, you can define selectors in class
Employee so that an instance of Employee returns the value of its name instance
variable when it receives the message name, the value of its age variable when it
receives the message age, and so on. The discussion of class IdentitySet in
Chapter 4, “Collection and Stream Classes,” describes one way to develop this
Employee class.

5-2 GemStone Systems, Inc. July 1996

Querying

Relations

As that chapter also explains, you can use Collection’s searching protocol to search
for a record (element) containing a particular field (instance variable) value.

myEmployees select: [:anEmployee | anEmployee age = 40]

Searching for an object by content or value instead of by name or location is called
associative access.

The searching messages defined by Collection must send one or more messages for
each element of the receiver. Executing the expression given above requires
sending the messages age and = for each element of myEmployees. This strategy
is suitable for small collections, but it can be too slow for a collection containing
thousands of complex elements.

For efficient associative access to large collections, it’s useful to build an external
index for them. Indexing a Collection creates structures such as balanced trees that
let you find values without waiting for sequential searches. Indexing structures
can retrieve the objects you require by sending many fewer messages—ideally,
only the minimum number necessary. Indexes allow you faster access to large
UnorderedCollections because when such collections are indexed, they can
respond to queries using select: , detect: , orreject: without sending
messages for every element of the receiver.

What You Need To Know

To use Smalltalk’s facilities for searching large collections quickly, you need to:

1. Specify which of the instance variables in a collection’s elements are indexed,
using protocol from UnorderedCollection together with a special syntactic
structure called a path to designate variables for indexing.

2. Construct a selection block whose expressions describe the values to be sought
among the instance variables within the elements of a collection: when a
selection block appears as the argument to one of UnorderedCollection’s
enumeration methods select: ,reject: ,and detect: , the method uses
the indexing structures you’ve specified to retrieve elements quickly.

For example, if you planned to retrieve employees with certain jobs quickly and
frequently, you need to create an “Employees” set that is indexed for fast
associative access and then build an index on the job instance variable in each
element of Employees. Then, to retrieve employees with a certain job, you build
a selection block specifying the instance variable job and the target job, and send
select: to Employees with the selection block as its argument.

Although you do not need to constrain the elements of a collection in order to
index it, nor constrain the instance variables of its elements in order to search a

July 1996

GemStone Systems, Inc. 5-3

Selection Blocks and Selection GemStone Programming Guide

path they define, searching large collections goes faster if such constraints are
specified. On the other hand, if such constraints are not specified, then you can
search collections of heterogeneous elements, such as those containing several
different versions of a class.

This chapter tells you how to specify indexes and perform selections, and it also
provides some miscellaneous information to help you use those mechanisms
efficiently.

5.2 Selection Blocks and Selection

Once you've created a collection, you can efficiently retrieve selected elements of
the collection by formulating queries as enumeration messages that take selection
blocks as their arguments.

A selection block is a syntactic variant of an ordinary Smalltalk block. When a
collection receives select: , detect: ,reject: , or one of several related
messages, with a selection block as the argument, it retrieves those of its elements
that meet the criteria specified in the selection block.

The following statement returns all Employees named 'Fred’. The selection block
is the expression delimited by curly braces { }.

Example 5.1

[fredEmps |
fredEmps := myEmployees select:
{:anEmployee | anEmployee.name = 'Fred'}.

This statement is similar to an example given earlier, in which select: took an
ordinary block as its argument:

Example 5.2

fredEmps := myEmployees select:
[:anEmployee | anEmployee.name = 'Fred.

While square brackets[] delimit an ordinary block, curly braces {} delimita
selection block; Otherwise, the two statements look the same. A query using a
selection block also returns the same results as if the selection block predicate had

5-4 GemStone Systems, Inc. July 1996

Querying Selection Blocks and Selection

been treated as a series of message expressions. However, some special restrictions
apply to the query language.

Subsequent sections of this chapter describe selection block anatomy and behavior
in general, and the query language restrictions in particular.

Selection Block Predicates and Free Variables

Like an ordinary, one-argument block, a selection block has two parts: the free
variable and the predicate. In the following selection block, the free variable is to the
left of the vertical bar and the predicate is to the right.

Figure 5.2 Anatomy of a Selection Block

fredEmps := myEmployees select:
{:anEmployee | anEmployee.name = 'Fred'}

v -
predicate

free variable

A free variable for the selection block is analogous to an argument for an ordinary
block. As select: goes through myEmployees, it makes the free variable
anEmployee represent each element in turn. In contrast to an ordinary block, which
may have several arguments, a selection block can have only one free variable.

The predicate for a selection block is analogous to the right side of an ordinary
block, which contains Smalltalk statements. In a selection block, the predicate must
be a Boolean expression; usually, the expression compares an instance variable
from among the objects to be searched with another instance variable or with a
constant. In the example, for each element of the collection myEmployees, the
predicate compares the element’s instance variable name with the string 'Fred’.

The method for select: gathers into the collection fredEmps each element whose
name value makes the predicate true.

A predicate contains one or more terms—the expressions that specify comparisons.

July 1996 GemStone Systems, Inc. 5-5

Selection Blocks and Selection GemStone Programming Guide

Predicate Terms

A term is a Boolean expression containing an operand and usually a comparison
operator followed by another operand, as shown in Figure 5.3:

Figure 5.3 Anatomy of a Selection Block Predicate Term

anEmployee.name = 'Fred'

N ~ J +

operand operand

comparison operator

Predicate Operands

An operand can be a path (anEmployee.name, in this case), a variable name, or a
literal (CFred’, in this example). All kinds of Smalltalk literals except arrays are
acceptable as operands.

If a path points to objects within elements of select: ’s receiver (as does
anEmployee.name), then each variable in the path must be a valid instance variable
name for the receiver and its elements. In this case, anEmployee.name is acceptable
because the receiver holds employees and class Employee defines the instance
variable name. The kind of constraint required on the last variable in such a path
depends upon the kind of query in which the path is used.

5-6

GemStone Systems, Inc. July 1996

Querying

Selection Blocks and Selection

Predicate Operators

Table 5.1 lists the comparison operators used in a selection block predicate:

Table 5.1 Comparison Operators Allowed in a Selection Block

== Identity comparison operator

= Equality comparison operator, case-sensitive

< Less than equality operator, case-insensitive

<= Less than or equal to equality operator, case-
insensitive

> Greater than equality operator, case-insensitive

>= Greater than or equal to equality operator, case-
insensitive

No other operators are permitted in a selection block.

The associative query mechanism and Smalltalk do not follow exactly the same
rules in determining the legality of comparisons. As in ordinary Smalltalk
expressions, an identity comparison can be performed between two objects of any
kind. The following peculiar query, for example, is perfectly legal:

Example 5.3
| aDateTime |
aDateTime := DateTime now.
myEmployees select: {:i | aDateTime == i.name}

However, not all kinds of objects are comparable using the equality operators =,
<=, <, >=, >, If GemStone kernel classes are being compared, both operands must
be of the same class, unless they are instances of String, Number, or DateTime. In
that case, an operand can be an instance of a subclass of String, Number, or
DateTime and still compare successfully with a String, Number, or DateTime,
respectively. That is, you can use the equality operators in comparing any kind of
String to any other kind of String, or any humber to any other kind of number.

The following query, for example, results in an error because age and 'Frank’ are
of different classes.

myEmployees select: {:i | i.age <= 'Frank'}

July 1996

GemStone Systems, Inc. 5-7

Selection Blocks and Selection GemStone Programming Guide

The following query succeeds because Floats and Integers are both kinds of
Number:
myEmployees select: {:i | 20.0 > i.age}

Because of its special significance as a placeholder for unknown or inapplicable
values, nil is comparable to every kind of object in a selection block, and every kind
of object is comparable to nil.

An attempt to execute a selection block that uses any of the equality operators
including = to compare incomparable objects elicits an error notification.
Predicate Operators and User-defined Classes

If you need to, you can redefine the equality operators =, <=, <, >=, > in classes
that you have created. In that case, the operands compared using these operators
need not be of the same class. If you have created a class and redefined its equality
operators, you can compare instances of that class with any other class that make
sense for your application. See “Redefined Comparison Messages in Selection
Blocks” on page 5-10 for further details.

Predicates Without Operators

A predicate can consist of a single Boolean path or variable. Suppose, for example,
that Employee defined a Boolean variable named isPermanent. The following
query returns all Employees in which isPermanent has the value true:

myEmployees select: {:i | i.isPermanent}
This query is equivalent to:

myEmployees select: {:i | i.isPermanent == true}

5-8 GemStone Systems, Inc. July 1996

Querying Selection Blocks and Selection

Conjunction of Predicate Terms

If you want retrieval of an element to be contingent on the values of two or more
of its instance variables, you can join several terms using a conjunction (logical
AND) operator. The conjunction operator, & makes the predicate true if and only
if the terms it connects are true.

The predicate in the following selection block is true for the Employees who are
named Conan and work as librarians:

Example 5.4

| mySet |
mySet := myEmployees select: { :anEmployee |
(anEmployee.name = 'Conan') & (anEmployee.job ='librarian’)

}

This example returns a collection of the employees who meet the name and job
criteria. Each conjoined term must be parenthesized.

You can conjoin as many as nine terms in a selection block.

If you do not wish to use the Boolean AND operator, but instead would like to
learn which objects meet either one criterion OR another criterion, you must create
two selection blocks, each querying about one of the criteria, and then merge the
two resulting collections using the + operator for Set unions.

Example 5.5 shows how you can get a collection of all employees named either
Fred or Ted.

Example 5.5

| fredsAndTeds freds teds |

freds := myEmployees select: { :anEmployee | anEmployee.name = 'Fred'}.
teds := myEmployees select: { :anEmployee | anEmployee.name = 'Ted' }.
fredsAndTeds := freds + teds

July 1996 GemStone Systems, Inc. 5-9

Selection Blocks and Selection GemStone Programming Guide

Limits on String Comparisons

In comparisons involving instances of String or its subclasses, the associative
access mechanism considers only the first 900 characters of each operand. Two
strings that differ only beginning at the 901st character are considered equal.

Redefined Comparison Messages in Selection Blocks

Because Smalltalk does not execute selection block predicates by passing messages
to GemStone kernel classes, you cannot change the operation of a selection block
by redefining the comparison messages in a GemStone kernel class. In other
words, for predefined GemsStone classes, the comparison operators really are
operators in the traditional programming language sense; they are not messages.

For example, if you recompiled the class DateTime, redefining < to count
backwards from the end of the century, Smalltalk would ignore that redefinition
when < appeared next to an instance of DateTime inside a selection block.
Smalltalk would simply apply an operator that behaved like DateTime’s standard
definition of <.

For subclasses that you have created, however, equality operators can be
redefined. If you do so, the selection block in which they are used performs the
comparison on the basis of your redefined operators—as long as one of the
operands is the class you created and in which you redefined the equality operator.

If you redefine any, you must redefine at least the operators =, >, <, and <=. You
can redefine one or more of these in terms of another if you wish.

The operators must be defined to conform to the following rules:
e Ifa<bandb<c,thena<c.

= Exactly one of these istrue;a<b,orb<a,ora=h.

e a<=bifa<bora=h.

e Ifa=b,thenb=a.

e Ifa<b,thenb>a.

e Ifa>=b,thenb<=a.

You must obey one other rule as well: objects that are equal to each other must
have equal hash values. Therefore, if you redefine =, you must also redefine the
method hash to preserve this constraint between = and hash . Otherwise,
dictionaries will not behave in a consistent and logical manner.

5-10

GemStone Systems, Inc. July 1996

Querying Selection Blocks and Selection

Suppose that you define the class Soldier as follows:

Example 5.6

Object subclass: #Soldier
instVarNames: #(rank)
classVars: #(#Ranks)
poolDictionaries: #()
inDictionary: UserGlobals
constraints: #[#[#rank, Symbol]]
islnvariant: false

Soldier compileAccessingMethodsFor: Soldier.instVarNames

method: Soldier

hash
“Answer a hash value based on the receiver’s rank, since
equality is defined in terms of a Soldier’s rank. “

A rank hash

%

July 1996 GemStone Systems, Inc. 5-11

Selection Blocks and Selection GemStone Programming Guide

You then compile accessing methods for its instance variables, and define an
initialization method to initialize the class variable Ranks, as in the following
example:

Example 5.7

classmethod: Soldier
initialize
"Initialize the class variable Ranks as an array."
| index |
Ranks := SymbolKeyValueDictionary new.
index := 1.
#(#Lieutenant #Captain #Major #Colonel #General)
do: [:e | Ranks at: e put: index.
index :=index +11].
%
Soldier initialize

We then initialize the class by executing the expression:

Soldier initialize

5-12 GemStone Systems, Inc. July 1996

Querying Selection Blocks and Selection

We define the equality operators in the class Soldier as follows:

Example 5.8

method: Soldier

< aSoldier

"Return true if the rank of the receiver is lower than the

rank of the argument. Return false otherwise, or if

either receiver or argument is unranked."

A (Ranks at: rank otherwise: (Ranks size + 1)) <
(Ranks at: aSoldier rank otherwise: 0)

%

method: Soldier

= aSoldier

"Return true if the rank of the receiver is equal to the

rank of the argument. Return false otherwise, or if

either receiver or argument is unranked."

A (Ranks at: rank otherwise: -1) =
(Ranks at: aSoldier rank otherwise: 0)

%

method: Soldier

> aSoldier

"Greater than is defined in terms of less than."

A aSoldier < self

%

method: Soldier

<= aSoldier

"Return true if the rank of the receiver is less than or

equal to the rank of the argument. Return false

otherwise, or if either receiver or argument is unranked."

A (Ranks at: rank otherwise: (Ranks size + 1) <=
(Ranks at: aSoldier rank otherwise: 0))

%

method: Soldier

hash

"Return a hash value based on the receiver's rank, because

equality is defined in terms of a Soldier's rank."

A rank hash

%

July 1996 GemStone Systems, Inc. 5-13

Selection Blocks and Selection GemStone Programming Guide

We now create instances of Soldier having each possible rank, naming them
aLieutenantand so on. We also create an instance of Soldier without any rank, and
name it aPrivate:

Example 5.9

| tmp myArmy tmp2 |
myArmy := IdentityBag new.
1to: 5do: [ii |
tmp := (Soldier.classVars at: #Ranks) keys do: [:tmp |
tmp2 := (Soldier new rank: tmp).
UserGlobals at: ('a’ + tmp) asSymbol put: tmp2.
myArmy add: tmp2
1
]-
tmp2 := (Soldier new rank: #Private).
UserGlobals at: #aPrivate put: tmp2;
at: #myArmy put: (myArmy add: tmp2; yourself) .
A myArmy
%

We can now execute expressions of the form:

Example 5.10

alLieutenant < aMajor
true

aCaptain < alLieutenant
false

Expressions in selection blocks get the same results. Given a collection of soldiers
named myArmy, the following selection block collects all the officers:

Example 5.11

| officers |
officers := myArmy select: { :aSoldier | aSoldier > aPrivate }

5-14 GemStone Systems, Inc. July 1996

Querying

Selection Blocks and Selection

Changing the Ordering of Instances

Once you redefine the equality operators for a given class and create instances of
that class, your instances may not remain the same forever. For example, the
soldiers we created in Example 5.9 above may not all stay the same rank for their
entire careers. Some may be promoted; others may be demoted. If an instance of
Soldier changes its ordering relative to the other instances, you must manually
update the equality index in which it participates. Because you have redefined the
equality operators, GemStone has no way of determining how to update the index
automatically, as it will when you use the system-supplied equality operators.

To handle updating the equality index in your application, follow these steps:

1.

Confine code that can change the relative ordering of instances to as few places
as possible. For the class Soldier, for example, we would write two methods:
promoteTo: and demoteTo: . Code that changed the relative ranking of
soldiers would appear only within these two methods.

Before the code that changes the ordering of the instance, include a line such
as the following:

anArray := self removeObjectFromBtrees

The method removeObjectFromBtrees returns an array that you will need
later within the method. Therefore you must assign the result to some
variable—anArray in the example above.

After the code that changes the ordering of the instance, include a line such as
the following:

self addObjectToBtreesWithValues: anArray

If the ordering of the instance depends on more than one instance variable, this
pair of lines must appear in the methods that set the value of each instance
variable.

CAUTION:
Failing to include these lines can corrupt the equality index and lead to
your application receiving GemStone errors notifying you that certain
objects do not exist. Removing and re-creating the equality index may
not fix the problem.

July 1996

GemStone Systems, Inc. 5-15

Selection Blocks and Selection GemStone Programming Guide

Collections Returned by Selection

The message select: returns a collection of the same class as the message’s
receiver. For example, sending select: to a SetOfEmployees results in a new
SetOfEmployees.

NOTE:
When sent to an instance of RcldentityBag, the message select:
returns an instance of IdentityBag instead. This is because the reduced-
conflict classes use more memory or disk space than their ordinary
counterparts, and conflict is not ordinarily a problem with collections
returned from a query. If it causes a problem for your application,
however, you can convert the resulting instance myBag to an instance
of RcldentityBag with an expression such as either of the two following:

RcldentityBag withAll: myBag
RcldentyfBag new addAll: myBag

See “Transactions and Concurrency Control” on page 6-1 for further
details on class RcldentityBag.

The collection returned by a selection query has no index structures (the following
sections of this chapter describe indexes). This is because indexes are built on
individual instances of nonsequenceable collections rather than the classes. If you
want to perform indexed selections on the new collection, you must build all of the
necessary indexes. A later