
GemStone

GemStone

GemStone
Programming

 Guide

July 1996

Version 5.0

GemStone Programming Guide

ii GemStone Systems, Inc. July 1996

IMPORTANT NOTICE

This manual and the information contained in it are furnished for informational use only
and are subject to change without notice. GemStone Systems, Inc. assumes no responsibility
or liability for any errors or inaccuracies that may appear in this manual or in the
information contained in it. The manual, or any part of it, may not be reproduced,
displayed, photocopied, transmitted or otherwise copied in any form or by any means now
known or later developed, such as electronic, optical or mechanical means, without written
authorization from GemStone Systems, Inc. Any unauthorized copying may be a violation
of law.

The software installed in accordance with this manual is copyrighted and licensed by
GemStone Systems, Inc. under separate license agreement. This software may only be used
pursuant to the terms and conditions of such license agreement. Any other use may be a
violation of law.

Limitations

The software described in this manual is a customer-supported product. Due to the
customer’s ability to change any part of a Smalltalk image, GemStone Systems, Inc. cannot
guarantee that the GemStone programming environment will function with all Smalltalk
images.

Copyright by GemStone Systems, Inc. 1988–1995. All rights reserved.

Use, duplication, or disclosure by the Government is subject to restrictions set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013.

Trademarks

GemStone is a registered trademark of GemStone Systems, Inc.

Objectworks and Smalltalk-80 are trademarks of ParcPlace Systems, Inc.

Smalltalk/V is a registered trademark of Digitalk, Inc.

Sun, Sun Microsystems, Solaris and SunOS are trademarks or registered trademarks of
Sun Microsystems, Inc. All SPARC trademarks, including SPARCstation, are trademarks
or registered trademarks of SPARC International, Inc. SPARCstation is licensed exclusively
to Sun Microsystems, Inc.

UNIX is a registered trademark in the United States and other countries, licensed
exclusively through X/Open Company Limited.

Preface

July 1996 GemStone Systems, Inc. iii

About This Manual
This manual describes the GemStone Smalltalk language and programming
environment — a bridge between your application’s Smalltalk code running on a
UNIX workstation and the GemStone database running on the host computer.
Along with one of the interfaces for the programming environment, you can build
comprehensive applications.

Intended Audience
This manual is intended for users familiar with the basic concepts of computer
programming. It explains GemStone Smalltalk in terms of traditional
programming concepts. Therefore, you’ll benefit most from the material presented
here if you have a solid understanding of a conventional language such as C.

It would also be helpful to be familiar with a Smalltalk language and its
programming environment. In addition to your Smalltalk product manuals, we
recommend Smalltalk-80: The Language and its Implementation and Smalltalk-80: The
Interactive Programming Environment (both published by Addison-Wesley).

This manual assumes that the GemStone system has been correctly installed on
your host computer as described in the GemStone System Administration Guide, and

Preface GemStone Programming Guide

iv GemStone Systems, Inc. July 1996

that your system meets the requirements listed in the Installation section of the
Release Notes.

How This Manual Is Organized
The GemStone Programming Guide is a narrative introduction to the major topics in
GemStone Smalltalk programming. A companion volume, the GemStone Kernel
Reference, lists, in alphabetical order, each of the classes supplied for your use in
Smalltalk programming and describes their complete functionality. We
recommend that you use the GemStone Kernel Reference as a reference when
necessary.

Documentation Conventions
Smalltalk code is printed in a monospace font throughout this manual. It looks like
this:

 numericArray add: (myVariable + 1)

When the result of executing an example is shown, it is underlined:

 numericArray at: 1
12486

Executing the Examples
This manual includes a many examples. Because we cannot be certain which
interface you are using, and because the interface affects the way you execute the
examples, here are a few words about the mechanics of the situation may be useful
here.

There are two simple ways to write and compile a method:

 • If you are using the GemStone Smalltalk Interface, you can use the structured
editing and execution facilities provided by a GemStone Browser or
Workspace. A browser makes it easier to define classes and methods by
presenting templates for these operations. Once you’ve filled out the
templates, a browser internally builds and executes Smalltalk expressions to
compile the classes and methods. A browser organizes your work and
presents it in a pleasing and easily understood format.

A workspace makes it easier to compile and execute fragments of Smalltalk
code interactively, and see the results immediately using the GemStone print
it command.

GemStone Programming Guide Preface

July 1996 GemStone Systems, Inc. v

 • You can also enter your Smalltalk method code through the Topaz version of
the programming environment. Topaz requires a few extra commands to
begin and end an example. To identify code as constituting a method, for
instance, you’ll add a couple of simple non-Smalltalk directives such as
“METHOD:.” These tell Topaz to treat the indicated text as a method to be
compiled and installed in a class.

This is in some ways less convenient than using the GemStone Browser to
create methods, but it has one important advantage: method definitions in this
format are easily represented and inspected on the printed page.

This manual presents examples in Topaz format, with Topaz commands presented
in boldface type. Those commands probably need little explanation when you see
them in context; however, you may need to turn to the Topaz user manual for
instructions about entering and executing the text of the upcoming examples.

If you are using the GemStone Smalltalk Interface, you may instead choose to read
the introductions to the browser and workspace, and then use those tools to enter
the examples in this manual. The text of the examples themselves (excluding the
boldface Topaz commands) is the same whichever way you choose to enter it.

Other Useful Documents
You will find it useful to look at documents that describe other components of the
GemStone data management system:

 • A complete description of the behavior of each GemStone Smalltalk kernel
class is available in the GemStone Kernel Reference.

 • The Topaz interface allows you to process data and move it between the
GemStone system and a terminal or workstation, when your Smalltalk
program needs to read terminal input or send data to a workstation for local
processing and display. The GemBuilder for Smalltalk and GemBuilder for C
interfaces provide function libraries to access the repository. Each interface is
described in its own user manual.

 • In addition, if you will be acting as a system administrator, or developing
software for someone else who must play those roles, read the GemStone
System Administration Guide.

Preface GemStone Programming Guide

vi GemStone Systems, Inc. July 1996

Technical Support
GemStone provides several sources for product information and support.
GemStone product manuals provide extensive documentation, and should always
be your first source of information. GemStone Technical Support engineers will
refer you to these documents when applicable. However, you may need to contact
Technical Support for the following reasons:

 • Your technical question is not answered in the documentation.

 • You receive an error message that directs you to contact GemStone Technical
Support.

 • You want to report a bug.

 • You want to submit a feature request.

Questions concerning product availability, pricing, keyfiles, or future features
should be directed to your GemStone account manager.

When contacting GemStone Technical Support, please be prepared to provide the
following information:

 • Your name, company name, and GemStone license number,

 • the GemStone product and version you are using,

 • the hardware platform and operating system you are using,

 • a description of the problem or request,

 • exact error message(s) received, if any.

Your GemStone support agreement may identify specific individuals who are
responsible for submitting all support requests to GemStone. If so, please submit
your information through those individuals. All responses will be sent to
authorized contacts only.

For non-emergency requests, you should contact Technical Support by email, Web
form, or facsimile. You will receive confirmation of your request, and a request
assignment number for tracking. Replies will be sent by email whenever possible,
regardless of how they were received.

Email: support@gemstone.com
The preferred method of contact. Please do not send files larger than 100K (for
example, core dumps) to this address. A special address for large files will be
provided on request.

GemStone Programming Guide Preface

July 1996 GemStone Systems, Inc. vii

World Wide Web: http://www.gemstone.com
Technical Support is located under Services. A Help Request Form is available
for request submissions. This form requires a password, which is free of
charge but must be requested by completing the Registration Form, found in
the same location. Allow 24 hours for your registration to be recorded and a
password assigned.

Facsimile: (503) 629-8556
When you send a fax to Technical Support, you should also leave a voicemail
message to make sure your fax will be picked up as soon as possible.

We recommend you use telephone contact only for more serious requests that
require immediate evaluation, such as a production database that is non-
operational.

Telephone: (800) 243-4772 or (503) 690-3503
Emergency requests will be handled by the first available engineer. If you are
reporting an emergency and you receive a recorded message, do not use the
voicemail option. Transfer your call to the operator, who will take a message
and immediately contact an engineer.

Non-emergency requests received by telephone will be placed in the normal
support queue for evaluation and response.

24x7 Emergency Technical Support
GemStone offers, at an additional charge, 24x7 emergency technical support. This
support entitles customers to contact GemStone 24 hours a day, 7 days a week, 365
days a year, if they encounter problems that cause their production application to
go down, or that have the potential to bring their production application down.
Contact your GemStone account manager for more details.

Preface GemStone Programming Guide

viii GemStone Systems, Inc. July 1996

Contents

July 1996 GemStone Systems, Inc. ix

Chapter 1. Introduction to GemStone

1.1 Overview of the GemStone System . 1-2
1.2 Multi-User Object Server . 1-2
1.3 Programmable Server Object System . 1-2
1.4 Partitioning of Applications Between Client and Server 1-3
1.5 Large-Scale Repository . 1-4
1.6 Queries and Indexes . 1-4
1.7 Transactions and Concurrency Control . 1-5
1.8 Connections to Outside Data Sources . 1-6
1.9 Object Security and Account Management 1-6
1.10 Services to Manage the GemStone Repository 1-7

Chapter 2. Programming With GemStone

2.1 The GemStone Programming Model . 2-2
Server-based classes, methods, and objects. 2-2
Client and Server Interfaces . 2-2
Gemstone Sessions . 2-4

Contents GemStone Programming Guide

x GemStone Systems, Inc. July 1996

2.2 GemStone Smalltalk . 2-5
Language Extensions . 2-5

Constraining Variables . 2-5
Query Syntax . 2-7
Auto-Growing Collections . 2-7

Class Library Differences . 2-7
No User Interface . 2-7
Different File Access . 2-7
Different C Callouts . 2-8

Class Library Extensions . 2-8
More Collection Classes . 2-8
RC Classes . 2-8
User Account and Security Classes 2-8
System Management Classes. 2-9
File In and File Out . 2-9

Inter-Application Communications. 2-9
2.3 Process Architecture . 2-10

Gem Process . 2-10
Stone Process . 2-10
Shared Object Cache . 2-10
Scavenger Process. 2-11
Extents and Repositories . 2-11
Transaction Log . 2-11
NetLDI . 2-12
Login Dynamics . 2-12

. 2-12

Chapter 3. Name Resolution and Object Sharing

3.1 Sharing Objects . 3-2
3.2 UserProfile and Session-based Symbol Lists 3-2

What’s In Your Symbol List? . 3-3
Examining Your Symbol List . 3-4
Inserting and Removing Dictionaries From Your Symbol List 3-6
Updating Symbol Lists . 3-8
Finding Out Which Dictionary Names an Object 3-11

3.3 Sharing Objects . 3-12
Publishers, Subscribers and the Published Dictionary 3-12

GemStone Programming Guide Contents

July 1996 GemStone Systems, Inc. xi

Chapter 4. Collection and Stream Classes

4.1 An Introduction to Collections . 4-2
Protocol Common To All Collections 4-4

Creating Instances . 4-4
Adding Elements . 4-5
Enumerating . 4-6
Selecting and Rejecting Elements 4-7
Constraining The Elements Of A Collection 4-8

4.2 Collection Subclasses . 4-10
AbstractDictionary . 4-10

AbstractDictionary Protocol 4-10
Internal Dictionary Structure 4-10
KeyValueDictionary . 4-11
SymbolDictionary . 4-12

SequenceableCollection. . 4-13
Accessing and Updating Protocol 4-14
Adding Objects to SequenceableCollection 4-15
Removing Objects From A SequenceableCollection 4-16
Comparing SequenceableCollection 4-17
Copying SequenceableCollection 4-17
Enumeration and Searching Protocol 4-18
Arrays . 4-19
Strings. . 4-24
Symbols . 4-29

DoubleByteString and DoubleByteSymbol 4-30
UnorderedCollection . 4-30

Bag. . 4-30
IdentityBag . 4-30
Class IdentitySet . 4-37
Set . 4-42

4.3 Stream Classes. . 4-42
Stream Protocol . 4-44
Creating Printable Strings with Streams 4-46

Chapter 5. Querying

5.1 Relations . 5-2

Contents GemStone Programming Guide

xii GemStone Systems, Inc. July 1996

What You Need To Know . 5-3
5.2 Selection Blocks and Selection. 5-4

Selection Block Predicates and Free Variables 5-5
Predicate Terms . 5-6

Predicate Operands . 5-6
Predicate Operators . 5-7
Conjunction of Predicate Terms 5-9

Limits on String Comparisons . 5-10
Redefined Comparison Messages in Selection Blocks 5-10

Changing the Ordering of Instances 5-15
Collections Returned by Selection. 5-16
Streams Returned by Selection . 5-16

5.3 Additional Query Protocol . 5-19
5.4 Indexing For Faster Access . 5-20

Identity Indexes . 5-20
Creating Identity Indexes. 5-21

Equality Indexes . 5-22
Creating Equality Indexes . 5-22
Creating Indexes on Very Large Collections 5-23
Automatic Identity Indexing 5-24
Implicit Indexes . 5-24

Indexes and Transactions . 5-24
Inquiring About Indexes . 5-25
Removing Indexes . 5-26

Implicit Index Removal . 5-26
Transferring Indexes . 5-26
Removing and Re-creating Indexes 5-27

Indexing and Authorization . 5-28
Indexing and Performance . 5-28
Indexing Errors . 5-29

5.5 Nil Values and Selection . 5-30
5.6 Paths Containing Collections . 5-31
5.7 Sorting and Indexing . 5-34

Chapter 6. Transactions and Concurrency Control

6.1 Gemstone’s Conflict Management . 6-2

GemStone Programming Guide Contents

July 1996 GemStone Systems, Inc. xiii

Transactions . 6-2
When Should You Commit a Transaction? 6-2
Reading and Writing in Transactions 6-3
Reading and Writing Outside of Transactions 6-4

6.2 How GemStone Detects Conflict . 6-5
Concurrency Management . 6-6
Transaction Modes . 6-7
Changing Transaction Mode . 6-7

Beginning New Manual Transactions 6-8
Committing Transactions. 6-8
Handling Commit Failure In A Transaction 6-10
Indexes and Concurrency Control. . 6-10
Aborting Transactions . 6-11

Updating the View Without Committing or Aborting 6-12
6.3 Controlling Concurrent Access With Locks 6-13

Locking and Manual Transaction Mode 6-14
Lock Types . 6-14

Read Locks . 6-14
Write Locks . 6-15
Exclusive Locks . 6-15

Acquiring Locks . 6-16
Lock Denial . 6-17
Dead Locks . 6-18
Dirty Locks . 6-18
Locking Collections Of Objects Efficiently 6-19
Upgrading Locks . 6-21

Locking and Indexed Collections . 6-22
Removing or Releasing Locks . 6-22

Releasing Locks Upon Aborting or Committing 6-23
Inquiring About Locks . 6-24

6.4 Classes That Reduce the Chance of Conflict 6-26
RcCounter . 6-27
RcIdentityBag . 6-29
RcQueue . 6-29
RcKeyValueDictionary . 6-31

Contents GemStone Programming Guide

xiv GemStone Systems, Inc. July 1996

Chapter 7. Object Security and Authorization

7.1 How GemStone Security Works . 7-2
Login Authorization . 7-2

The UserProfile . 7-3
System Privileges . 7-3
Object Level Security . 7-3

Segments . 7-4
Default Segment and Current Segment 7-6

Objects and Segments . 7-7
Read and Write Authorization and Segments 7-9

How GemStone Responds to Unauthorized Access 7-9
Owner Authorization . 7-10

Segments in the Repository . 7-12
Changing the Segment for an Object 7-13
Revoking Your Own Authorization—a Side Effect 7-16

7.2 An Application Example. 7-16
7.3 A Development Example . 7-19

Planning Segments for User Access. 7-21
Protecting the Application Classes 7-21
Planning Authorization for Data Objects 7-21
Planning Groups . 7-23
Planning Segments . 7-25

Developing the Application . 7-25
Setting Up Segments for Joint Development 7-26
Making the Application Accessible for Testing 7-28
Moving the Application into a Production Environment . . . 7-28

Segment Assignment for User-created Objects 7-29
7.4 Assigning Objects to Segments . 7-29

Segments for New Objects . 7-29
Removing Segments . 7-30

7.5 Privileged Protocol for Class Segment . 7-31
7.6 Segment-related Methods . 7-32

Chapter 8. Class Versions and Instance Migration

8.1 Versions of Classes . 8-2
Defining a New Version . 8-3

GemStone Programming Guide Contents

July 1996 GemStone Systems, Inc. xv

8.2 ClassHistory . 8-3
Defining a Class with a Class History. 8-3
Accessing a Class History . 8-5
Assigning a Class History . 8-6
Class Histories and Constraints . 8-6

8.3 Migrating Objects . 8-7
Migration Destinations . 8-7
Migrating Instances . 8-8

Finding Instances and References 8-8
Using the Migration Destination 8-9
Bypassing the Migration Destination 8-10
Migration Errors . 8-11

Instance Variable Mappings . 8-13
Default Instance Variable Mappings 8-14
Customizing Instance Variable Mappings 8-16
Migrating Collection Class Objects 8-24

Chapter 9. File I/O and Operating System Access

9.1 Accessing Files . 9-2
Specifying Files . 9-2
Creating a File . 9-3
Opening and Closing a File . 9-4
Writing to a File . 9-5
Reading From a File . 9-5

Positioning . 9-6
Testing Files . 9-7
Removing Files . 9-7
Examining A Directory . 9-8

9.2 Executing Operating System Commands 9-9
9.3 File In, File Out, and Passive Object . 9-10
9.4 Creating and Using Sockets . 9-12

Chapter 10. Signals and Notifiers

10.1 Communicating Between Sessions . 10-2
10.2 Object Change Notification. . 10-3

Contents GemStone Programming Guide

xvi GemStone Systems, Inc. July 1996

How the Object Server Notifies a Session 10-3
Setting Up a Notify Set . 10-5

Adding Objects to a Notify Set. 10-5
Collections . 10-7
Listing Your Notify Set . 10-8
Removing Objects From Your Notify Set 10-8

Notification of New Objects . 10-9
Receiving Object Change Notification 10-10
System | signaledObjects. 10-11

Polling for Changes to Objects. 10-12
Troubleshooting. 10-13

Indexes . 10-13
Frequently Changing Objects 10-13
Special Classes . 10-13

Methods for Object Notification. 10-15
10.3 Gem-to-Gem Signaling . 10-15

Sending a Signal. 10-17
Receiving a Signal . 10-19

10.4 Performance Considerations . 10-21
Increasing Speed. 10-21

Dealing With Signal Overflow. 10-22
Using Signals and Notifiers with RPC Applications 10-23
Sending Large Amounts of Data. 10-23

Maintaining Signals and Notification When Users Log Out 10-23

Chapter 11. Error Handling

11.1 Signaling Errors to the User . 11-1
11.2 Handling Errors in Your Application . 11-5

Activation Exceptions . 11-6
Static Exceptions . 11-6
Defining Exceptions . 11-9

Categories and Error Numbers 11-9
Handling Exceptions . 11-14
Raising Exceptions . 11-15
Flow of Control . 11-17

Signaling Other Exception Handlers 11-21
Removing Exception Handlers 11-23

GemStone Programming Guide Contents

July 1996 GemStone Systems, Inc. xvii

Recursive Errors . 11-24
Uncontinuable Errors . 11-24

Chapter 12. Tuning Performance

12.1 Clustering Objects for Faster Retrieval . 12-2
Will Clustering Solve the Problem? . 12-2
Cluster Buckets . 12-3

Cluster Buckets and Extents 12-4
Using Existing Cluster Buckets. 12-5
Creating New Cluster Buckets 12-6
Cluster Buckets and Concurrency 12-7
Cluster Buckets and Indexing 12-8

Clustering Objects . 12-8
The Basic Clustering Message 12-8
Depth-first Clustering . 12-11
Assigning Cluster Buckets 12-11
Clustering vs. Writing to Disk 12-11
Using Several Cluster Buckets 12-11
Clustering Class Objects . 12-12

Maintaining Clusters . 12-14
Determining an Object’s Location 12-14
Why Do Objects Move? . 12-15

12.2 Optimizing for Faster Execution . 12-15
The Class ProfMonitor . 12-15
Profiling Your Code. 12-16
The Profile Report . 12-19
Optimization Hints . 12-21

12.3 Modifying Cache Sizes for Better Performance 12-24
Configuration File Cache Size Parameters 12-24
Tuning Cache Sizes . 12-25

Tuning the Temporary Object Space 12-25
Tuning the Gem Private Page Cache 12-26
Tuning the Stone Private Page Cache 12-26
Tuning the Shared Page Cache 12-27

12.4 Generating Native Code . 12-28
Enabling Native Code . 12-28
Limitations of Native Code. 12-29

Contents GemStone Programming Guide

xviii GemStone Systems, Inc. July 1996

Chapter 13. Advanced Class Protocol

13.1 Adding and Removing Methods . 13-2
Defining Simple Accessing and Updating Methods 13-2
Removing Selectors . 13-4
Modifying Classes . 13-4
The Basic Compiler Interface . 13-5

13.2 Examining a Class’s Method Dictionary 13-6
13.3 Examining, Adding, and Removing Categories 13-10
13.4 Accessing Variable Names and Pool Dictionaries 13-13
13.5 Testing a Class’s Storage Format . 13-16

Appendix A. Basic Smalltalk Syntax

 The Smalltalk Class Hierarchy . A-1
How to Create a New Class . A-2
Case-Sensitivity . A-2
Statements . A-2
Comments . A-3
Expressions . A-3

Kinds of Expressions . A-4
Literals . A-4
Numeric Literals. A-4
Character Literals . A-5
String Literals . A-6
Symbol Literals . A-6
Array Literals . A-7

Variables and Variable Names . A-7
Declaring Temporary Variables A-8
Pseudovariables . A-8

Assignment . A-9
Message Expressions . A-9

Messages . A-10
Reserved Selectors . A-10
Optimized Selectors . A-10

Messages as Expressions . A-11
Combining Message Expressions . A-13

Summary of Precedence Rules A-14

GemStone Programming Guide Contents

July 1996 GemStone Systems, Inc. xix

Cascaded Messages . A-14
Array Constructors . A-15
Path Expressions . A-17
Returning Values . A-18

Blocks. A-19
Blocks with Arguments . A-20
Blocks and Conditional Execution. A-22

Conditional Selection . A-22
Two-way Conditional Selection A-23
Conditional Repetition . A-23

Code Formatting . A-25
A.1 Smalltalk BNF . A-27

Appendix B. GemStone Error Messages

Contents GemStone Programming Guide

xx GemStone Systems, Inc. July 1996

List of

July 1996 GemStone Systems, Inc. xxi

Figures

Figure 3.1. The GsSession Symbol List is a Copy of the UserProfile Symbol List .
3-3
Figure 3.2. Self-Referencing Symbol Dictionary 3-6
Figure 4.1. Simplified Collection Class Hierarchy 4-3
Figure 4.2. SequenceableCollection Class Hierarchy 4-13
Figure 4.3. Employee Relations . 4-38
Figure 4.4. Stream Class Hierarchy. . 4-43
Figure 5.1. Employee Relation .5-2
Figure 5.2. Anatomy of a Selection Block . .5-5
Figure 5.3. Anatomy of a Selection Block Predicate Term. 5-6
Figure 6.1. View States . .6-3
Figure 7.1. User Access to Application Segment1 7-5
Figure 7.2. Multiple Segment Assignments for a Compound Object7-8
Figure 7.3. User Access to a Segment’s Objects 7-10
Figure 7.4. Segments in a GemStone repository. 7-13
Figure 7.5. Application Objects Assigned to Three Segments 7-17
Figure 7.6. User Access to Application Segment1 7-18
Figure 7.7. User Access to Application Segment2 7-19
Figure 7.8. Access Requirements During an Application’s Life Cycle 7-20

Figures GemStone Programming Guide

xxii GemStone Systems, Inc. July 1996

Figure 7.9. Segments Required for User Access to Application Objects 7-27
Figure 10.1. The Object Server Tracks Object Changes 10-4
Figure 10.2. Communicating from Session to Session 10-16
Figure 11.1. Method Contexts and Associated Exceptions 11-6
Figure 11.2. Defining Error Dictionaries. . 11-10
Figure 11.3. Default Flow of Control in Exception Handlers 11-18
Figure 11.4. Activation Exception Handler With Explicit Return 11-20
Figure 11.5. Activation Exception Handler Passing Control to Another Handler .
11-23
Figure 12.1. . 12-19
Figure A.1. Smalltalk BNF . A-28
Figure A.2. Smalltalk Lexical Tokens . A-29

List of

July 1996 GemStone Systems, Inc. xxiii

Tables

Table 4.1. String’s Case-Insensitive Search Protocol 4-25
Table 4.2. String’s Case-Sensitive Search Protocol 4-25
Table 5.1. Comparison Operators Allowed in a Selection Block 5-7
Table 6.1. Transaction Conflict Keys . .6-9
Table 7.1. Access for Application Objects Required by Users 7-22
Table 7.2. Access to the First Five Objects Through Owner and World
Authorization . 7-23
Table 7.3. Access to the Last Six Objects Through Owner and World
Authorization . 7-24
Table 7.4. Access to the Last Six Objects Through the Personnel Group 7-24
Table 7.5. Access to the Last Six Objects Through the Payroll and Sales Groups .
7-25
Table 9.1. GsFile Method Summary .9-4
Table 11.1. GemStone Event Errors. . 11-8
Table 11.2. Uncontinuable Errors . 11-25
Table 12.1. Clustering Protocol . 12-13
Table 12.2. GemNativeCodeMax Values. . 12-28
Table 12.3. GemNativeCodeThreshold Values 12-28
Table 13.1. Method Dictionary Access . 13-7

Tables GemStone Programming Guide

xxiv GemStone Systems, Inc. July 1996

Table 13.2. Category Manipulation . 13-10
Table 13.3. Access to Variable Names . 13-13
Table 13.4. Storage Format Protocol . 13-16
Table 0.1. Optimized Selectors . A-11

Chapter

July 1996 GemStone Systems, Inc. 1-1

1 Introduction to
GemStone

This chapter introduces you to the GemStone system. GemStone provides a distributed,
server-based, multiuser, transactional Smalltalk runtime system, Smalltalk application
partitioning technology, access to relational data, and production-quality scalability and
availability. The GemStone object server allows you to bring together object-based
applications and existing enterprise and business information in a three-tier, distributed
client/server environment.

Overview of the GemStone System GemStone Programming Guide

1-2 GemStone Systems, Inc. July 1996

1.1 Overview of the GemStone System
GemStone provides a wide range of services to help you build objects-based information
systems. GemStone:

 • is a multi-user object server

 • is a programmable server object system

 • manages a large-scale repository of objects

 • supports partitioning of applications between client and server

 • supports queries and indexes for large-scale object processing

 • supports transactions and concurrency control in the object repository

 • supports connections to outside data sources

 • provides object security and account management

 • provides services to manage the object repository.

Each of these features is described in greater detail in the following sections.

1.2 Multi-User Object Server
GemStone can support over 1,000 concurrent users, object repositories of up to 100
gigabytes, and sustained object transaction rates of over 100 transactions per second.
Server processes manage the system, while user sessions support individual user activities.
Repository and server processes can be distributed among multiple machines, and shared
memory and SMP can be leveraged.

Multiple user sessions can be active at the same time, and each user may have multiple
sessions open. A flexible naming scheme allows separate or shared namespaces for
individual users. Coherent groups of objects can be distributed through replication.
Changes users make to objects are committed in transactions, with concurrency controls
and locks ensuring that multi-user changes to objects are coordinated. Security is provided
at several levels, from login authorization to object access privileges.

1.3 Programmable Server Object System
GemStone provides data definition, data manipulation, and query facilities in a single,
computationally complete language — GemStone Smalltalk. The GemStone Smalltalk
language offers built-in data types (classes), operators, and control structures comparable
in scope and power to those provided by languages such as C, C++, or Pascal, in addition

Introduction to GemStone Partitioning of Applications Between Client and Server

July 1996 GemStone Systems, Inc. 1-3

to multi-user concurrency and repository management services. All system-level facilities,
such as transaction control, user authorization, and so on, are accessible from GemStone
Smalltalk.

This manual discusses the use of GemStone Smalltalk for system and application
development, particularly those aspects of GemStone Smalltalk that are unique to running
in a multi-user, secure, transactional system. See theGemStone System Administration
Guide for more information about system administration functions.

1.4 Partitioning of Applications Between Client and
Server

GemStone applications can access objects and run their methods from a number of
languages, including Smalltalk, C, C++, or any language that makes C calls (such as
COBOL or Fortran). Objects created from any of these languages are interoperable with
objects created from the other languages, and can run their methods within GemStone.

To provide this functionality, GemStone provides interface libraries of Smalltalk classes,
C++ classes and functions, and C functions. These language interfaces, known collectively
as GemBuilder, allow you to move objects between an application program and the
GemStone repository, and to connect client objects to GemStone objects. GemBuilder also
provides remote messaging capabilities, client replicates, and synchronization of changes.

GemBuilder for Smalltalk is a set of classes installed in a client Smalltalk image that
provides access to objects in the GemStone repository. The client Smalltalk application
can use these classes to gain access to all of GemStone’s production capabilities.
GemBuilder for Smalltalk also supportstransparent GemStone access from a Smalltalk
application — client Smalltalk and GemStone objects are related to each other, and
GemBuilder maintains the relationship and propagates changes between these client
Smalltalk and GemStone objects, not the application.

GemBuilder for C is a library of C functions that provide a bridge between an application’s
C code and the GemStone object repository. You can work with GemStone objects by
importing them into the C program using structural access or by sending messages to
objects in the repository through GemStone Smalltalk. You can also call C routines from
within GemStone Smalltalk methods.

GemBuilder for C++ provides both persistent storage for C++ applications and access to
persistent GemStone objects from applications written in C++. Because C++ objects stored
in GemStone take on identity and exist independently of the program that created them,
they can be used by other applications, including those written in other programming
languages.

Large-Scale Repository GemStone Programming Guide

1-4 GemStone Systems, Inc. July 1996

Your GemStone system includes one or more of these interfaces. Separate manuals
available for each of the GemBuilder products provide full documentation of the
functionality and use of these products.

1.5 Large-Scale Repository
Object programming languages such as Smalltalk have proven to be highly efficient
development tools. Smalltalk exploits inheritance and code reuse and provides the
flexibility of modeling real world objects with self-contained software modules. Most
Smalltalk implementations, however, are memory based. Objects are either not saved
between executions, or they are saved in a primitive manner that does not lend itself to
concurrent usage or sharing. Smalltalk programmers save their work in an "image," which
is a file that stores their development environment on a workstation. The image holds the
application's classes and instances, the compiled code for all executable methods, and the
values of the variables defined in the product.

GemStone is based on the Smalltalk object model—like a single-user Smalltalk image, it
consists of classes, methods, instances and meta objects. Persistence is established by
attaching new objects to other persistent objects. All objects are derived from a named root
(AllUsers). Objects that have been attached and committed to the repository are visible to
all other users. However, unlike client Smalltalks with memory-based images, the
GemStone repository is accessed through disk caches, so it is not limited in size by
available memory. A GemStone repository can contain over a billion objects. Repositories
can be distributed among many different machines and files. Because each object in a
repository has a unique object identifier (known as an OOP—object-oriented pointer),
GemStone applications can access any object without having to know its physical location.

1.6 Queries and Indexes
GemStone lets you model information in structures as simple as the data permits, and no
more complex than the data demands. You can represent data objects in tables, hierarchies,
networks, queues, or any other structure that is appropriate. Each of these objects may also
be indexable. Complex data structures can be built by nesting objects of various formats.

The power and flexibility of GemStone Smalltalk allow you to perform regular and
associative access queries against very large collections. Because you can represent
information in forms that mirror the information’s natural structure, the translation of user
requests into executable queries can be much easier in GemStone. You do not need to
translate users’ keystrokes or menu selections into relational algebra formulas, calculus
expressions and procedural statements before the query can be executed. See Chapter 5,
"Querying.".

Introduction to GemStone Transactions and Concurrency Control

July 1996 GemStone Systems, Inc. 1-5

1.7 Transactions and Concurrency Control
Each GemStone session defines and maintains a consistent working environment for its
application program, presenting the user with a consistent view of the object repository.
The user works in an environment in which only his or her changes to objects are visible.
These changes are private to the user until the transaction is committed. The effects of
updates to the object repository by other users are minimized or invisible during the
transaction. GemStone then checks for consistency with other users’ changes before
committing the transaction.

GemStone provides two approaches to managing concurrent transactions:

 • Using theoptimistic approach, you read and write objects as if you were the only user,
letting GemStone manage conflicts with other sessions only when you try to commit a
transaction. This approach is easy to implement in an application, but you run the risk
of discarding the work you’ve done if GemStone detects conflicts and does not permit
you to commit your transaction. When GemStone looks for conflicts only at your
commit time, your chances of being in conflict with other users increase both with the
time between your commits and the number of objects being read and written.

 • Using thepessimistic approach, you prevent conflicts as early as possible by explicitly
requesting locks on objects before you modify them. When an object is locked, other
users are unable to lock that object or to commit any changes they have made to the
object. When you encounter an object that another user has locked, you can wait, or
abort your transaction immediately, instead of wasting time doing work that can’t be
committed. If there is a lot of competition for shared information in your application,
or your application can’t tolerate even an occasional inability to commit, using locks
may be your best choice.

GemStone is designed to prevent conflicts when two users are modifying the same object
at the same time. However, some concurrent operations that modify an object, but in
consistent ways, should be allowed to proceed. For example, it might not cause any
concern if two users concurrently added objects to the same Bag in a particular application.

For such cases, GemStone provides reduced-conflict (Rc) classes that can be used instead
of the regular classes in those applications that might otherwise experience too many
unnecessary conflicts:

 • RcCounter can be used instead of a simple number for keeping track of amounts when
it isn’t crucial that you know the results right away.

 • RcIdentityBag provides the same functionality as IdentityBag, except that no conflict
occurs if a number of users read objects in the bag or add objects to the bag at the same
time.

Connections to Outside Data Sources GemStone Programming Guide

1-6 GemStone Systems, Inc. July 1996

 • RcQueue provides a first-in, first-out queue in which no conflict occurs when other
users read objects in the queue or add objects to the queue at the same time.

 • RcKeyValueDictionary provides the same functionality as KeyValueDictionary,
except that no conflict occurs when users read values in the dictionary or add keys and
values to the dictionary at the same time.

See Chapter 6, "Transactions and Concurrency Control."

1.8 Connections to Outside Data Sources
While GemStone methods are all written in Smalltalk (except for a few primitives), you
may often want to call out to other logic written in C. GemStone provides a way to attach
external code, called userActions, to a GemStone session. With userActions, you can
access or generate external information and bring it into GemStone as objects, which can
then be committed and made available to other users. GemBuilder for C is used to write
userActions in C and add them to GemStone Smalltalk, according to rules described in the
GemBuilder for C manual. The description of class System in theGemStone Kernel
Reference describes the messages you can send to invoke these userActions.

GemStone uses this mechanism to build its GemConnect product, which provides access
to relational database information from GemStone objects. GemConnect also provides
automatic tracking of object modifications for synchronizing the relational database, and
supports the generation of SQL to update the relational database with changes.
GemConnect is fully encapsulated and maintained in the GemStone object server. Refer to
theGemConnect Programming Guide for more information about GemConnect and its
capabilities.

1.9 Object Security and Account Management
Compared to a single-user Smalltalk system, GemStone requires substantially more
security mechanisms and controls. As a tool for server implementation, multi-user
Smalltalk must handle requests from many users running a variety of applications, each of
which can require different accessibility of objects. Authentication and authorization are
the cornerstones of GemStone Smalltalk security.

A server must reliably identify the people attempting to use a system resource. This
identification process is known as authentication. Authentication requires a valid user ID
and password. Preventing unauthorized users from entering the system by requiring user
names and passwords is generally effective against casual intrusion. GemStone Smalltalk
supports its own authentication protocol, as well as the Kerberos scheme.

Introduction to GemStone Services to Manage the GemStone Repository

July 1996 GemStone Systems, Inc. 1-7

The next type of security, known as authorization, exists within GemStone and controls
individual object access. Authorization enforcement is implemented at the lowest level of
basic object access to prevent users from circumventing the authorization checking. No
object can be accessed from any language without suitable authorization. GemStone
provides a number of classes to define and manage object authorization policies. These
classes are discussed in greater detail in this manual.

Finally, GemStone defines a set ofprivileges for controlling the use of certain system
services. Privileges determine whether the user is allowed to execute certain system
functions usually only performed by the system administrator. Privileges are more
powerful than authorization. A privileged user can override authorization protection by
sending privileged messages to change the authorization scheme.

In GemStone Smalltalk, a user is represented by an instance of class UserProfile. A
UserProfile contains the following information about a user:

 • unique userID,

 • password (encrypted),

 • default authorization information,

 • privileges,

 • group memberships.

Only users who have a UserProfile can log on to the system. For more information on
UserProfile, see theGemStone System Administration Guide.

See Chapter 7, "Object Security and Authorization."

1.10 Services to Manage the GemStone Repository
GemStone objects are often an enterprise resource. They must be shared among all users
and applications to fill their role as repositories of critical business information and logic.
Their role goes beyond individual applications, requiring permanence and availability to all
parts of the system. GemStone is capable of managing large numbers of objects shared by
hundreds of users, running methods that access millions of objects, and handling queries
over large collections of objects by using indexes and query optimization. It can support
large-scale deployments on multiple machines in a variety of network configurations. All
of this functionality requires a wide array of services for management of the repository, the
system processes, and user sessions.

Services to Manage the GemStone Repository GemStone Programming Guide

1-8 GemStone Systems, Inc. July 1996

GemStone provides services that can:

 • support flexible backup and restore procedures,

 • recover from hardware and network failures,

 • perform object recovery when needed,

 • tune the object server to provide high transaction rates by using shared memory
and asynchronous I/O processes,

 • accommodate the addition of new machines and processors without recoding the
system,

 • make controlled changes to the definition of the business and application objects
in the system.

This manual provides information about programmatical techniques that can be used to
optimize your GemStone environment for system administration. Actual system
administration and management processes are discussed in theGemStone System
Administration Guide.

Chapter

July 1996 GemStone Systems, Inc. 2-1

2 Programming
With GemStone

This chapter provides an overview of the programming environment provided by
GemStone.

The GemStone Programming Model
describes how programming in GemStone differs from programming in a
client Smalltalk development environment.

GemStone Smalltalk
explains the unique aspects of GemStone Smalltalk that affect programming
and application design.

GemStone Architecture
describes GemStone’s development and runtime process architecture, and
how that architecture influences your programming design and techniques.

The GemStone Programming Model GemStone Programming Guide

2-2 GemStone Systems, Inc. July 1996

2.1 The GemStone Programming Model
GemStone is an object server, so programming with GemStone is somewhat
different than programming with a client Smalltalk development environment.
However, there is a great deal that GemStone has in common with client Smalltalk
development, so many of the programming concepts will be quite familiar to you
if you have previously worked with a client Smalltalk system.

Server-based classes, methods, and objects
One key characteristic of GemStone programming is that GemStone Smalltalk
runs in a server, not in a client. Running in a server means that GemStone classes
and methods are stored in a server-based repository (image), and activated by
processes which run on a server, often without a keyboard or screen present. The
developer writing GemStone classes and methods is usually working at a client
machine, communicating with the GemStone environment remotely.

Running in a server also means that the services provided by GemStone’s own
class library are oriented toward server activity. GemStone’s class library provides
functionality for:

 • data handling

 • collection processing and query processing

 • system management

 • user account management

The GemStone class library does not provide functionality for screen presentation
and user interface issues. User interface functionality is provided in client
Smalltalk products.

Because GemStone is an object server, it provides a large number of mechanisms
for communicating with GemStone objects from remote machines for
development purposes, application support, and system management. Remote
machines often host a programming environment that communicates with
GemStone through a GemStone interface. A significant part of programming with
GemStone is designing the interactions between various client and server-based
runtime systems and the GemStone classes, methods, and objects created by the
developer.

Programming With GemStone The GemStone Programming Model

July 1996 GemStone Systems, Inc. 2-3

Client and Server Interfaces
GemStone provides a number of client and server interfaces to make it easy for
developers to write applications which make use of GemStone objects, and to write
GemStone classes and methods which make use of external data. While an entire
application can be built in GemStone Smalltalk and run in the GemStone server,
most applications include either a user interface or interaction of some kind with
other systems. In addition, management of a running GemStone system involves
using GemStone tools and interfaces to program control activities tailored to
specific system environments.

GemStone’s interfaces are numerous. They include:

GemBuilder for Smalltalk
GemBuilder for Smalltalk consists of two parts: a set of GemStone
programming tools, and a programming interface between the client
application code and GemStone. GemBuilder for Smalltalk contains a set of
classes installed in a client Smalltalk image that provides access to objects in a
GemStone repository. Many of the client Smalltalk kernel classes are mapped
to equivalent GemStone classes, and additional class mappings can be created
by the application developer.

GemBuilder for C++
GemBuilder for C++ provides both shared storage for C++ applications and
access to shared objects stored in GemStone by applications written in other
languages. GemBuilder for C++ is implemented as a preprocessor based on
standard C++ syntax. A class library is provided, giving the programmer a
standard set of definitions for commonly used data structures such as sets,
arrays, and bags, as well as functions for managing and manipulating
GemStone objects with C++ code.

GemBuilder for C
GemBuilder for C is a library of C functions that provide a bridge between an
application’s C code and the GemStone repository. This interface allows
programmers to work with GemStone objects by importing them into the C
program using structural access, or by sending messages to objects in the
repository through GemStone Smalltalk. C routines can also be called from
within GemStone Smalltalk methods.

Topaz
Topaz is a GemStone programming environment that provides keyboard
command access to the GemStone object server. Topaz is especially useful for
repository administration tasks and batch mode procedures. Because it is
command driven and generates ASCII output on standard output channels,

The GemStone Programming Model GemStone Programming Guide

2-4 GemStone Systems, Inc. July 1996

Topaz offers access to GemStone without requiring a window manager or
additional language interfaces. You can use Topaz in conjunction with other
GemStone development tools such as GemBuilder for C to build
comprehensive applications.

UserActions (C callouts from GemStone Smalltalk)
UserActions are similar to user-defined primitives in other Smalltalks.
GemBuilder for C can be used to write these user actions, and add them to and
execute them from GemStone Smalltalk.

More information about the GemBuilder and Topaz products are found in their
respective reference manuals. UserActions are discussed in the GemBuilder for C
manual.

Gemstone Sessions
All of the GemStone interfaces provide access to GemStone objects and
mechanisms for running GemStone methods in the server. This access is
accomplished by establishing a session with the GemStone object server. The
process for establishing a session is tailored to the language or user of each
interface. In all cases, however, this process requires identification of the
GemStone object server to be used, the user ID for the login, and other information
required for authenticating the login request.

Once a session is established, all GemStone activity is carried out in the context of
that session, be it low-level object access and creation, or invocation of GemStone
Smalltalk methods.

Sessions allow multiple users to share objects. In fact, different sessions can access
the same repository in different ways, depending on the needs of the applications
or users they are supporting. For example, an employee may only be able to access
employee names, telephone extensions and department names through the
human resources application, while a manager may be able to access and change
salary information as well.

Sessions also control transactions, which are the only way changes to the
repository can be committed. However, a passive session can run outside a
transaction for better performance and lower overhead. For example, a stock
portfolio application that reports the current value of a collection of stocks may run
in a session outside a transaction until notified that a price has changed in a stock
object. The application would then start a transaction, commit the change, and
recalculate the portfolio value. It would then return to a passive session state until
the next change notification.

Programming With GemStone GemStone Smalltalk

July 1996 GemStone Systems, Inc. 2-5

On both UNIX and NT platforms, a session can be integrated with the application
into a single process, called a linked application. Each session can have only one
linked application.

Alternatively, the session can run as a separate process and respond to remote
procedure calls (RPCs) from the application. These sessions are called RPC
applications. PC-based platforms (VisualAge and Visual Smalltalk Enterprise)
must run in RPC mode. Sessions may have multiple RPC applications running
simultaneously with each other and a linked application.

2.2 GemStone Smalltalk
All Smalltalk languages share common characteristics. GemStone Smalltalk, while
providing basic Smalltalk functionality, also provides features that are unique to
multi-user, server-based programming.

GemStone Smalltalk provides data definition, data manipulation, and query
facilities in a single, computationally complete language. It is tailored to operate
in a multi-user environment, providing a model of transactions and concurrency
control, and a class library designed for multi-user access to objects. GemStone
Smalltalk operates on server-class machines to take advantage of shared memory,
asynchronous I/O, and disk partitions. It was built with transaction throughput
and client communication as chief considerations.

At the same time, its common characteristics with other Smalltalks allow you to
implement shared business objects with the same language you use to build client
applications. Since the same code can execute either on the client or on the object
server, you can easily move behavior from the client to the server for application
partitioning.

GemStone Smalltalk extends standard Smalltalk in several ways.

Language Extensions

Constraining Variables

GemStone Smalltalk allows you to constrain instance variables to hold only certain
kinds of objects. The keyword constraints: in a class creation message takes an
argument that specifies the classes the instance variable will accept. Specifying a
constraint is optional.

Constraining a variable ensures that the variable will contain either nil or instances
of the specified class or that class’s subclasses. When you constrain an instance

GemStone Smalltalk GemStone Programming Guide

2-6 GemStone Systems, Inc. July 1996

variable to be a kind of Array, you guarantee that it will always be an Array, an
instance of some subclass of Array (such as InvariantArray), or nil.

Constraining Named Instance Variables

You specify constraints on a class’s named instance variables when you create the
class. The keyword constraints: , a part of the standard subclass creation
message, takes an Array of constraints as its argument.

The following example creates a new subclass of Object with three instance
variables constrained to be Strings and one to be an Integer.

Example 2.1

Object subclass: 'Employee'
 instVarNames: #('name' 'job' 'age' 'address')
 inDictionary: UserGlobals
 constraints: #[
 #[#name, String], #[#job, String],
 #[#age, Integer], #[#address, String]].

In this example, constraints: takes as its argument an Array of two-element
Arrays. The first element is a symbol naming one of the class’s instance variables
and the second element is a class to which the variable is constrained.

Array constructors (enclosed in brackets) are used here instead of literal arrays
(enclosed in parentheses) to build the constraint.

The details of constraint specification differ for named and unordered instance
variables. Chapter 4, "Collection and Stream Classes,” explains how to constrain
unordered instance variables.

Inherited Constraints

Each class inherits instance variables and any constraints on them from its
superclass. You can make inherited constraints more restrictive in the subclass by
naming the inherited instance variables in the argument to constraints: in the
creation statement.

Programming With GemStone GemStone Smalltalk

July 1996 GemStone Systems, Inc. 2-7

The following example creates a subclass of Employee in which the constraint on
the instance variable age is SmallInteger instead of Integer:

Example 2.2

Employee subclass: 'YoungEmployee'
 instVarNames: #()
 classVars: #()
 poolDictionaries: #()
 inDictionary: UserGlobals
 constraints: #[#[#age, SmallInteger]]
 isInvariant: false.

YoungEmployee’s other inherited instance variables, which are not listed in the
constraints: argument, retain their original constraints.

You can only restrict an inherited instance variable to a subclass of the inherited
constraint. So, in the previous example, you could not have constrained age to be
of class Number or Array, since neither Array nor Number is a subclass of Integer.

Circular Constraints

A circular constraint occurs when an instance variable of a class is constrained to
hold instances of its own class, or when each of two classes is constrained to hold
instances of the other’s class.

Query Syntax

Enterprise applications need to support efficient searching over collections to find
all objects that match some specified criteria. Each collection class in GemStone
Smalltalk provides methods for iterating over its contents and allowing any kind
of complex operation to be performed on each element. All collection classes
understand the messages select: , reject: , and detect: .

In GemStone Smalltalk, an index provides a way to traverse backwards along a
path of instance variables for every object in the collection for which the index was
created. This traversal process is usually much faster than iterating through an
entire collection to find the objects that match the selection criteria.

A special query syntax lets you use GemStone Smalltalk’s extended mechanism for
querying collections with indexes. In addition, the special syntax for select blocks
lets you specify a path of named instance variables to traverse during a query.

GemStone Smalltalk GemStone Programming Guide

2-8 GemStone Systems, Inc. July 1996

Auto-Growing Collections

GemStone Smalltalk allows you to create collections of variable length, allowing
you to add and delete elements without manually readjusting the collection size.
GemStone handles the memory management necessary for this process.

Class Library Differences

No User Interface

GemStone Smalltalk does not provide any classes for screen presentation or user
interface development. These aspects of development are handled in your client
Smalltalk.

Different File Access

GemStone class GsFile provides a way to create and access non-GemStone files.
Many of the methods in GsFile distinguish between files stored on the client
machine and files stored on the server machine. GsFile allows the use of full
pathnames or environment variables to specify location. If environment variables
are used, how the variable is expanded depends on whether the process is running
on the client or the server.

Different C Callouts

GemStone Smalltalk uses a mechanism called user actions to invoke C functions
from within methods. User actions must be written and installed according to
special rules, which are described in the GemBuilder for C manual.

Class Library Extensions
You can subclass all GemStone-supplied classes, and applications will inherit all
their predefined structure and behavior. This manual discusses some of these
classes and methods. Your GemBuilder interface provides an excellent means for
becoming familiar with the GemStone class hierarchy. A complete description of
all GemStone Smalltalk classes is found in the GemStone Kernel Reference.

More Collection Classes

GemStone Smalltalk provides a number of specialized Collection classes, such as
the KeyValueDictionary classes, that have been optimized to improve application
speed and support scaling capability. A full discussion of these classes is found in
the Collections chapter of this manual.

Programming With GemStone GemStone Smalltalk

July 1996 GemStone Systems, Inc. 2-9

RC Classes

Reduced-conflict (RC) classes minimize spurious conflicts that can occur in a
multiuser environment. RC classes are used in place of their regular counterpart
classes in those applications that you determine may otherwise encounter too
many of these conflicts. RC classes do not circumvent normal conflict
mechanisms, but they have been specially designed to eliminate or minimize
commit errors on operations that analysis has determined are not true conflicts.

User Account and Security Classes

UserProfile is used by GemStone in conjunction with information GemStone
gathers during each session to provide a range of security and authorization
services, including login authorization, memory and file protection, secondary
storage management, location transparency, logical name translation, and
coordination of resource use by concurrent users. This manual contains a
discussion of how UserProfile is used by GemStone during a session. The System
Administration Guide contains procedures for creating and maintaining
UserProfiles.

Segment is used to control ownership of and access to objects. With Segment, you
can abstractly group objects, specify who owns the objects, specify who can read
them, and specify who can write them. Each repository is composed of segments.
This manual provides a full discussion of segments in the Security chapter.

Both classes are described in detail in the GemStone Kernel Reference.

System Management Classes

GemStone Smalltalk provides a number of classes that offer system management
functionality. Most of the actions that directly call on the data management kernel
can be invoked by sending messages to System, an abstract class that has no
instances. All disk space used by GemStone to store data is represented as a single
instance of class Repository, and all data management functions, such as extent
creation and access, backup and restoration, and garbage collection are performed
against this class. The class ProfMonitor allows you to monitor and capture
statistics about your application performance that can then be used to optimize
and tune your Smalltalk code for maximum performance. The class ClusterBucket
can be used to cluster objects across transactions, meaning their receivers will be
placed, as far as possible, in contiguous locations on the same disk page or in
contiguous locations on several pages.

Implementation of these classes is discussed in this manual. All of these classes are
described in detail in the GemStone Kernel Reference.

Process Architecture GemStone Programming Guide

2-10 GemStone Systems, Inc. July 1996

File In and File Out

Smalltalk allows you to file out source code for classes and methods, save the
resulting text file, and file it in to another repository. The GemStone class
PassiveObject also allows you to file out objects and file them in to another
repository. This functionality is similar to that provided by VisualWorks’ Binary
Object Streaming Service (BOSS) and Visual Smalltalk Enterprise’s Object Filer.
More information about the process is provided in this manual. A description of
the PassiveObject class is provided in the GemStone Kernel Reference.

Inter-Application Communications
GemStone Smalltalk provides two ways to send information from one currently
logged-in session to another:

GemStone can tell an application when an object has changed by sending the
application a notifier at the time of commit. Notifiers eliminate the need for the
application to repeatedly query the Gem for this information. Notification is
optional, and can be enabled for only those objects in which you are interested.

Applications can send messages directly to one another by using Gem-to-Gem
signals. Sending a signal requires a specific action by the receiving Gem.

2.3 Process Architecture
GemStone provides the technology to build and execute applications that are
designed to be partitioned for execution over a distributed network. GemStone’s
architecture provides both scalability and maintainability. Sections describing the
main aspects of GemStone architecture follow.

Gem Process
GemStone creates a Gem process for each session. The Gem runs GemStone
Smalltalk and processes messages from the client session. It provides the user with
a consistent view of the repository, and it manages the user’s GemStone session,
keeping track of the objects the users has accessed, paging objects in and out of
memory as needed, and performing dynamic garbage collection of temporary
objects. The Gem performs the bulk of commit processing. A user application is
always connected to at least one Gem, and may have connections to many Gem.
Gems can be distributed on multiple, heterogeneous servers, which provides
distribution of processing and SMP support. The Gem also offers users the ability
to link in user primitives for customization.

Programming With GemStone Process Architecture

July 1996 GemStone Systems, Inc. 2-11

Stone Process
The Stone process is the resource coordinator. One Stone process manages one
repository. It synchronizes activities and ensures consistency as it processes
requests to commit transactions. Individual Gem processes communicate with the
Stone through interprocess channels. The Stone:

 • coordinates commit processing,

 • coordinates lock acquisition,

 • allocates object IDs,

 • allocates object Pages,

 • writes transaction logs.

Shared Object Cache
The shared object cache provides efficient retrieval of objects from disk, and the
ability for multiple Gems to access the same object. When modified, an object is
written to a new location in the cache. Memory is managed and allocated on a
page basis. The cache also contains buffers for communications between Gems
and the Stone. The shared cache monitor initializes the shared memory cache,
manages cache allocation to the sessions, and dynamically adjusts this allocation
to fit the workload. It also makes sure that frequently accessed objects remain in
memory, and that large objects queries do not flush data from the cache. These
controls allow complex applications to be run on the same repository by multiple
users with no degradation in performance.

Scavenger Process
The scavenger process dynamically reclaims space used by unreferenced objects.
This process is sometimes called dynamic garbage collection, and in GemStone,
may be referred to as the GC Gem. The scavenger process also dynamically
defragments the repository while maintaining requested object clustering. It has a
multi-level collection architecture, consisting of:

 • Dynamic cleanup of temporary objects,

 • Epoch cleanup of shared objects, and

 • Full sweep of the repository.

Process Architecture GemStone Programming Guide

2-12 GemStone Systems, Inc. July 1996

Extents and Repositories
Extents are composed of multiple disk files or raw partitions. A repository, which
is the logical storage unit in which GemStone stores objects, is actually an ordered
file of one or more extents. Extents can be distributed to heterogeneous servers.
Objects can be clustered on an extent for efficient storage and access.

Extents can be mirrored for improved fault tolerance. By mirroring extents, you
store each object in two places to reduce the chance of data loss. GemStone
automatically stores each newly committed object in both locations. Any damage
to one extent leaves all the objects intact in the mirrored extent, allowing GemStone
to automatically switch over to the active mirrored extent on an extent fault. Using
mirrored extents can also improve distributed query performance. GemStone
allows the creation of one mirrored extent for each extent in the repository.

Transaction Log
GemStone’s transaction log provides complete point-in-time roll-forward
recovery. The tranlog contents are composed by the Gem, and the Stone writes the
tranlog using asynchronous I/O. Commit performance is improved through I/O
reduction, since only log records need to be written, not many object pages. In
addition, the object pages stay in memory to be reused. Log files may also be
mirrored for fault tolerance. GemStone supports both file based and raw device
configuration of tranlogs.

NetLDI
In a distributed system, each machine that runs a Stone monitor, Gem session
process, or linked application, or on which an extent resides, must have its own
network server process, known as a NetLDI (Network Long Distance
Information). A NetLDI reports the location of GemStone services on its machine
to remote processes that must connect to those services. The NetLDI also spawns
other GemStone processes on request.

Login Dynamics
When you log in to GemStone, GemStone establishes for you a logical entity called
a GsSession, which is comparable to an operating system session, job, or process.
GemStone creates a separate instance of GsSession each time a user logs in, and it
monitors, serves, and protects each session independently.

You can log into GemStone through any of its interfaces. Whichever interface you
use, GemStone requires the presentation of a user ID (a name or some other

Programming With GemStone Process Architecture

July 1996 GemStone Systems, Inc. 2-13

identifying string) and a password. If the user ID and password pair match the
user ID and password pair of someone authorized to use the system, GemStone
permits interaction to proceed; if not, GemStone severs the logical connection.

The system administrator (or a user with equivalent privileges) assigns each
GemStone user an instance of class UserProfile, which contains, among other
information, the user ID and password. GemStone uses the UserProfile to establish
logical names and default locations, resolve references to system objects, and
perform similar tasks. The system administrator gives each new UserProfile
appropriate customized rights, and stores it with a set of all other UserProfiles in
the set AllUsers.

You can obtain your own UserProfile by sending a message to System. Class
UserProfile defines protocol for obtaining information about default names,
privileges, and so forth. More information about UserProfile is provided in this
manual. Class UserProfile is described in the GemStone Kernel Reference, while
procedures for creating and maintaining UserProfile are found in the GemStone
System Administration Guide.

The GemStone system administrator can also configure a GemStone system to
monitor failures to log in, to note repeated login attempts, and to disable a user’s
account after a number of failed attempts to log into the system through that
account. The GemStone System Administration Guide describes these procedures in
greater detail.

Process Architecture GemStone Programming Guide

2-14 GemStone Systems, Inc. July 1996

Chapter

July 1996 GemStone Systems, Inc. 3-1

3 Name Resolution
and Object Sharing

This chapter describes how Smalltalk finds the objects to which your programs
refer and explains how you can arrange to share (or not to share) objects with other
GemStone users.

Sharing Objects
 explains how Smalltalk allows users to share objects of any kind.

The Session-based and UserProfile Symbol Lists
describes the mechanism that the Smalltalk compiler uses to find objects
referred to in your programs.

Specifying Who Can Share Which Objects
discusses how you can enable other users of your application to share
information.

Sharing Objects GemStone Programming Guide

3-2 GemStone Systems, Inc. July 1996

3.1 Sharing Objects
Smalltalk permits concurrent access by many users to the same data objects. For
example, all Smalltalk programmers can make references to the kernel class Object.
These references point directly to the single class Object—not to copies of Object.

GemStone allows shared access to objects without regard for whether those objects
are files, scalar variables, or collections representing entire databases. This ability
to share data facilitates the development of multi-user applications.

To find the object referred to by a variable, GemStone follows a well-defined
search path:

1. The local variable definitions: temporary variables and arguments

2. Those variables defined by the class of the current method definition: instance,
class, class instance, or pool variables

3. The symbol list assigned your current session

If GemStone cannot find a match for a name in one of these areas, you are given an
error message.

3.2 UserProfile and Session-based Symbol Lists
The GemStone system administrator assigns each GemStone user an object of class
UserProfile. Your UserProfile stores such information as your name, your
encrypted password, native language, and access privileges. Your UserProfile also
contains the instance variable symbolList.

When you log in to GemStone, the system creates your current session (which is
an instance of GsSession object) and initializes it with a copy of the UserProfile
SymbolList object. Smalltalk refers to this copy of the symbol list to find objects
you name in your application.

Name Resolution and Object Sharing UserProfile and Session-based Symbol Lists

July 1996 GemStone Systems, Inc. 3-3

Figure 3.1 The GsSession Symbol List is a Copy of the UserProfile Symbol List

This instance of GsSession is not copied into any client interface nor committed as
a persistent object. Since the symbolList is transient, changes to it cannot incur
concurrency conflicts. Changes to the current session’s symbolList do not affect the
UserProfile symbolList, allowing the UserProfile symbolList to continue to serve
as a default list for other logins. At the same time, methods are provided to
synchronize your session and UserProfile symbolLists.

What’s In Your Symbol List?
The data curator adds to your UserProfile symbol list the SymbolDictionaries
containing associations defining the names of all the objects he or she thinks you
might need. Although the decision about which objects to include is entirely up to
the data curator, your symbol list contains at least:

 • A “system globals” dictionary called Globals. This dictionary contains some or
all of the Smalltalk kernel classes (Object, Class, Collection, etc.) and any other
objects to which all of your GemStone users need to refer. Although you can
read the objects in Globals, you are probably not permitted to modify them.

 • A private dictionary in which you can store objects for your own use and new
classes you do not need to share with other GemStone users. That private
dictionary is usually named UserGlobals.

The symbol list may also include special-purpose dictionaries that are shared with
other users, so that you can all read and modify the objects they contain. The data

Persistent UserProfile:

userId: aFriend
...

SymbolList

GsSession data

Transient data:

SymbolList

At Log in, GsSession creates a copy of
the symbolList in Your UserProfile

UserProfile and Session-based Symbol Lists GemStone Programming Guide

3-4 GemStone Systems, Inc. July 1996

curator can arrange for a dictionary to be shared by inserting a reference to that
dictionary in each user’s UserProfile symbol list.

Except for the dictionaries Globals and UserGlobals, the contents of each user’s
SymbolList are likely to be different.

Examining Your Symbol List
To get a list of the dictionaries in your persistent symbol list, send your UserProfile
the message dictionaryNames . For example:

Example 3.1

System myUserProfile dictionaryNames
 1 UserGlobals
 2 UserClasses
 3 ClassesForTesting
 4 Globals
 5 Published

The SymbolDictionaries listed in the example have the following function:

 • UserGlobals

Contains application and application service objects. This dictionary is the
default used by GemBuilder for Smalltalk to replicate classes in GemStone.

 • UserClasses

Contains per-user class definitions, and is created by the GemBuilder for
Smalltalk to replicate classes when necessary. Putting this dictionary before
the Globals dictionary allows an application or user to override Kernel classes
without changing them. Keeping it separate from UserGlobals allows a
distinction between classes and application objects.

 • ClassesForTesting

A user-defined dictionary.

 • Globals

Provides access for the GemStone Kernel Classes.

 • Published

Provides space for globally-visible shared objects created by a user.

Name Resolution and Object Sharing UserProfile and Session-based Symbol Lists

July 1996 GemStone Systems, Inc. 3-5

To list the contents of a symbol list Dictionary:

 • If you are using Topaz, set your display level to 2, and execute some
expression that returns the Dictionary. “Display level” settings are available
only in Topaz.

 • If you are running GemBuilder, select the expression UserGlobals in a
GemStone workspace and execute GS-inspect .

Example 3.2

UserGlobals
self

#NativeLanguage
#UserGlobals
#GcUser

If you examine all of your symbol list dictionaries, you’ll see that most of the kernel
classes are listed. In addition, you may notice objects called CompileError,
RuntimeError, FatalError, AbortingError, WeekDayNames, and MonthNames.
These objects provide the text for error messages, days of the week, and months in
your native language.

Finally, you’ll discover that most of the dictionaries refer to themselves. Since the
symbol list must contain all source code symbols that are not defined locally nor
by the class of a method, the symbol list dictionaries need to define names for
themselves so that you can refer to them in your code. Figure 3.2 illustrates that the
dictionary named UserGlobals contains an association for which the key is
UserGlobals and the value is the dictionary itself.

The object server searches symbol lists sequentially, taking the first definition of a
symbol it encounters. Therefore, if a name, say “#BillOfMaterials,” is defined in the
first dictionary and in the last, Smalltalk finds only the first definition.

UserProfile and Session-based Symbol Lists GemStone Programming Guide

3-6 GemStone Systems, Inc. July 1996

Figure 3.2 Self-Referencing Symbol Dictionary

Inserting and Removing Dictionaries From Your Symbol List
Creating a dictionary is like creating any other object, as the following example
shows. Once you’ve created the new dictionary, you can add it to your symbol list
by sending your UserProfile the message insertDictionary: aSymbolDict at:
anInt.

Example 3.3

| newDict |
 newDict := SymbolDictionary new.
 newDict at: #NewDict put: newDict.
 System myUserProfile insertDictionary: newDict at: 1.

As you might expect, insertDictionary: at: shifts existing symbol list
dictionaries as needed to accommodate the new dictionary. In this example, the
new dictionary is inserted into the UserProfile symbolList and then updated in the
current session.

Because the Smalltalk compiler searches symbol lists sequentially, taking the first
definition of a symbol it encounters, your choice of the index at which to insert a
new dictionary is significant.

The following example places the object myCollection in the user’s private
dictionary named myClassDict . Then it inserts myClassDict in the first position
of the current Session’s symbolList, which causes the object server to search

UserGlobals Dictionary

#Object aClass
#Collection aClass
#UserGlobals
 . .
 . .

Name Resolution and Object Sharing UserProfile and Session-based Symbol Lists

July 1996 GemStone Systems, Inc. 3-7

myClassDict prior to UserGlobals, meaning the GemStone object server will
always find myCollection in myClassDict.

Example 3.4

| myClassDict |
(System myUserProfile resolveSymbol:#myClassDict) isNil
 ifTrue:[
 myClassDict := (System myUserProfile createDictionary:

#myClassDict).
]
 ifFalse:[
 myClassDict := (System myUserProfile resolveSymbol:

#myClassDict) value
].
Object subclass: 'myCollection'
 instVarNames: #('this' 'that' 'theOther')
 classVars: #()
 poolDictionaries: #()
 inDictionary: myClassDict
 constraints: #()
 isInvariant: false
%

GsSession currentSession userProfile insertDictionary: myClassDict
at: 1.
%

"Create a new object named myCollection,
 placed in the UserGlobals dictionary: "

Object subclass: 'myCollection'
 instVarNames: #('snakes' 'snails' 'tails')
 classVars: #()
 poolDictionaries: #()
 inDictionary: UserGlobals
 constraints: #()
 isInvariant: false
%

UserProfile and Session-based Symbol Lists GemStone Programming Guide

3-8 GemStone Systems, Inc. July 1996

When you refer to myCollection, only the version of the object that is in
myClassDict is returned, because the object server returns the first occurrence
found when searching the dictionaries listed by the current session’s symbol list.
If the UserGlobals dictionary is listed before myClassDict, the object server only
finds the version of myCollection in UserGlobals.

You may redefine any object by creating a new object of the same name and
placing it in a dictionary that is searched before the dictionary in which the
matching object resides. Therefore, inserting, reordering or deleting a dictionary
from the symbol list may cause the GemStone object server to return a different
object than you may expect.

This situation also happens when you create a class with a name identical to one
of the kernel class names.

CAUTION
We strongly recommend that you do not redefine any kernel classes, as
their implementation may change from one version of GemStone to the
next. Creating a subclass of a kernel class to redefine or extend that
functionality is usually more efficient.

To remove a symbol list dictionary, send your UserProfile the message
removeDictionaryAt: anInteger. For example:

Example 3.5

System myUserProfile removeDictionaryAt: 1

Updating Symbol Lists
There are many ways that the current Session’s symbol list can get out of sync with
the UserProfile symbol list. As some of the examples in this chapter show, updates
can made to the current session symbolList that exist only as long as you are
logged in. By changing only the symbol list for the current session, you can
dynamically change the session namespace without causing concurrency
conflict.For example, if you are developing a new class, you may purposely set
your current session symbol list to include new objects for testing.

Name Resolution and Object Sharing UserProfile and Session-based Symbol Lists

July 1996 GemStone Systems, Inc. 3-9

Three UserProfile methods help synchronize the persistent and transient symbol
lists:

 • UserProfile | insertDictionary aDictionary at: anIndex

This method inserts a Dictionary into the UserProfile symbol list at the
specified index.

 • UserProfile | removeDictionary: aDictionary

This method removes the specified dictionary from the UserProfile
symbolList.

 • UserProfile | symbolList: aSymbolList

This method replaces the UserProfile symbol list with the specified symbol
list; However, you cannot execute this method unless you are authorized to
write in certain protected portions of the system.

When any of these methods are used, the method modifies the UserProfile symbol
list. Then, if the receiver is identical to “GsSession currentSession userProfile”, the
current session’s symbolList is updated. If a problem occurs during one of these
methods, the persistent symbol list is updated, but the transient current session
symbol list is left in its old state.

UserProfile and Session-based Symbol Lists GemStone Programming Guide

3-10 GemStone Systems, Inc. July 1996

The following example provides an instruction for copying the transient symbol
list into the persistent UserProfile symbol list. The example continues with adding
a new dictionary to the current session and finally resets the current session’s
symbol list back to the UserProfile symbol list.

Example 3.6

! Copies the GsSession symbol list to the UserProfile
System myUserProfile symbolList:
 (GsSession currentSession symbolList copy)
! Checks that the symbol lists are the same
GsSession currentSession symbolList =
 System myUserProfile symbolList
%
! Adds a new dictionary to the currentsession
GsSession currentSession symbolList add: SymbolDictionary new
%
! compares the two symbollists; they should differ
GsSession currentSession symbolList =
 System myUserProfile symbolList
%
! Updates the UserProfile symbolList to current session
GsSession currentSession symbolList replaceElementsFrom:
(System myUserProfile symbolList)
%

Name Resolution and Object Sharing UserProfile and Session-based Symbol Lists

July 1996 GemStone Systems, Inc. 3-11

Finding Out Which Dictionary Names an Object
To find out which dictionary defines a particular object name, send your
UserProfile the message symbolResolutionOf: aSymbol. If aSymbol is in your
symbol list, the result is a string giving the symbol list position of the dictionary
defining aSymbol, the name of that dictionary, and a description of the association
for which aSymbol is a key. For example:

Example 3.7

"Which symbol list Dictionary defines the object 'Bag'?"
System myUserProfile symbolResolutionOf: #Bag
3 Globals
 Bag Bag

If aSymbol is defined in more than one dictionary, symbolResolutionOf: finds
only the first reference. Smalltalk considers two symbols with the same name to be
identical.

To find out which dictionary stores a name for an object and what that name is,
send your UserProfile the message dictionaryAndSymbolOf: anObject. This
message returns an array containing the first dictionary in which anObject is
stored, and the symbol which names the object in that dictionary.

Example 3.8 uses dictionaryAndSymbolOf: to find out which dictionary in the
symbol list stores a reference to class DateTime:

Example 3.8

| anArray theDict myUserPro n |
myUserPro := System myUserProfile. "get the UserProfile"
"Find the Dictionary containing DateTime"
anArray := myUserPro dictionaryAndSymbolOf: DateTime.
theDict := anArray at: 1.

aSymbolDictionary (#DateTime->DateTime,...)

Note that dictionaryAndSymbolOf: returns the first dictionary in which
anObject is a value.

Sharing Objects GemStone Programming Guide

3-12 GemStone Systems, Inc. July 1996

3.3 Sharing Objects
As you know, all GemStone users have access to such objects as the kernel classes
Integer and Collection because those objects are referred to by a dictionary
(usually called Globals) that is present in every user’s symbol list.

If you want GemStone users to share other objects as well, you need to arrange for
references to those objects to be added to the users’ symbol lists. You can add the
references to the Published Dictionary, which is a GemStone provided dictionary
and which has a corresponding segment (PublishedSegment), or you can create
another dictionary and authorization segment using the PublishedSegment as a
model. The Published Dictionary and Published Segment is not currently used by
GemStone classes, but may be utilized by future products.

Your system’s authorization mechanism is probably set up to preclude you from
modifying UserProfiles other than your own, so you probably need the
cooperation of your GemStone system administrator to place a Dictionary in a set
of UserProfiles.

Publishers, Subscribers and the Published Dictionary
The Published Dictionary, PublishedSegment, and the groups Subscribers and
Publishers together provide an example of how to set up a system for sharing
objects.

The Published Dictionary is an initially empty dictionary referred to by your
UserProfile. It contains symbols that most users need to access. The objects named
in this dictionary are created in the PublishedSegment. The PublishedSegment is
owned by the Data Curator and has World access set to none. Two groups have
access to the Published Segment:

 • Subscribers have read-only access to the PublishedSegment, and

 • Publishers have read-write access to the PublishedSegment.

Publishers can create objects in the PublishedSegment and enter them in the
Published Dictionary. Then members of the Subscribers group can access the
objects.

Chapter

July 1996 GemStone Systems, Inc. 4-1

4 Collection and
Stream Classes

The Collection classes make up the largest group of classes in Smalltalk. This
chapter describes the common functionality available for Collection classes.

An Introduction to Collections
introduces the Smalltalk objects that store groups of other objects.

Collection Subclasses
describes several kinds of ready-made data structures that are central to
Smalltalk data description and manipulation.

Stream Classes
describes classes that add functionality to access or modify data stored as a
Collection.

An Introduction to Collections GemStone Programming Guide

4-2 GemStone Systems, Inc. July 1996

4.1 An Introduction to Collections
Collections can store groups of other objects in indexed or unnamed instance
variables. In addition, most classes in the Collection hierarchy can also have
named instance variables. Collections can be classified by the orders in which they
store elements, the kinds of objects they can store, and the kinds of access methods
they provide. A simplified structure of the Collection class hierarchy is listed in
Figure 4.1.

How you wish to access information determines which subclasses you choose to
create for your objects:

 • Access by Key — the Dictionary Classes

Keys can be numbers, strings, symbols, or any objects that respond
meaningfully to the comparison message =. A dictionary is a collection of
values which can be accessed by their associations.

Dictionaries can have named instance variables, if you choose to define them.

 • Access by Position — the SequenceableCollection Classes

You can refer to the component objects of a SequenceableCollection with
numeric keys, just as you refer to array elements in C or Pascal by means of
numeric subscripts. This Class includes Arrays, Strings, and the Sorted
Collection.

ByteArray, CharacterCollection, and CharacterCollection subclasses store
byte values only, while the other sequenceable collections can have named
instance variables if you choose to define them.

 • Access by Value — the UnorderedCollection Classes

The objects in these collections are accessed by matching an unnamed instance
variable value. These Classes act as black boxes; they hide the internal
ordering of their elements from you and from other objects. Bags and Sets are
included in the UnorderedCollection Class.

You may create index structures for fast access to the contents of these classes.

Collection and Stream Classes An Introduction to Collections

July 1996 GemStone Systems, Inc. 4-3

Figure 4.1 Simplified Collection Class Hierarchy

Collection
AbstractDictionary

Dictionary
KeyValueDictionary

IdentityKeyValueDictionary
GsMethodDictionary
IdentityDictionary

SymbolDictionary
SymbolKeyValueDictionary

IntegerKeyValueDictionary
StringKeyValueDictionary

SequenceableCollection
Array

AbstractCollisionBucket
CollisionBucket

IdentityCollisionBucket
RcCollisionBucket

InvariantArray
Repository
SymbolList

ByteArray
CharacterCollection

DoubleByteString
DoubleByteSymbol

String
InvariantString
Symbol

Interval
OrderedCollection

SortedCollection
UnorderedCollection

Bag
IdentityBag

IdentitySet
ClassSet
StringPairSet
SymbolSet

Set

An Introduction to Collections GemStone Programming Guide

4-4 GemStone Systems, Inc. July 1996

Protocol Common To All Collections
The superclass of the collection classes, Collection, provides some protocol shared
by all collection subclasses. In fact, providing that common protocol is Collection’s
only function; it is an abstract superclass. Instances of Collection itself are not
typically useful.

Collection defines methods that enable you to:

 • Create instances of its subclasses

 • Add and remove elements in collections

 • Convert from one kind of class to another

 • Enumerate (loop through), compare, and sort the content of collections

 • Select or reject certain elements on the collection based on specified criteria.

The GemBuilder interface provides an excellent means for reviewing the purpose
and format for each of the categories of methods available for manipulating
Collection Classes and subclasses. The examples that follow provide a starting
point for using Collections.

All the protocol displayed in the examples is defined in the GemStone Kernel
Reference manual.

Creating Instances

All Collection classes respond to the familiar instance creation message new. When
sent to a Collection class, this message causes a new instance of the class with no
elements (size zero) to be created. Most kinds of collections can expand as you add
additional objects.

Another instance creation message, new: anInteger, causes any Collection
subclass except IdentityBag or IdentitySet to create an instance with anInteger nil
elements:

Example 4.1

| myArray |
myArray := Array new: 5.
myArray at: 3 put: 'a string'.
myArray size
5

Collection and Stream Classes An Introduction to Collections

July 1996 GemStone Systems, Inc. 4-5

It’s sometimes slightly more efficient to use new: than new, because a Collection
created with new: need not expand repeatedly as you add new elements.

Class Collection defines an additional instance creation message,
withAll: aCollection, that creates a new instance of the receiver containing all of
the objects stored in aCollection. For example:

Example 4.2

| birds |
birds := Array withAll:#('wren' 'robin' 'turkey buzzard').
birds at: 3
turkey buzzard

Adding Elements

Collection defines for its subclasses two basic methods for adding elements:

 • the add: method adds one element to the Collection

 • the addAll: method adds several elements to the Collection at once.

The following example uses both these methods to add elements to an instance of
Collection’s subclass IdentitySet. (An IdentitySet is an unordered, extensible
collection of objects—you’ll learn about its properties in detail later.)

Example 4.3

| potpourri |
potpourri := IdentitySet new.
UserGlobals at: #Potpourri put: potpourri.

Potpourri add: 'a string of characters'; add: 0.0035;add: #aSymbol.
Potpourri addAll: #(#flotsam #jetsam #salvage).
Potpourri
%

IdentitySet is a very simple kind of collection, so adding elements is
straightforward. Other Collection classes override these methods in order to
control access to elements or to enforce an ordering scheme. Still other subclasses
of Collection provide additional methods that add elements at numbered positions
or symbolic keys. You’ll read about those specialized methods later.

An Introduction to Collections GemStone Programming Guide

4-6 GemStone Systems, Inc. July 1996

Enumerating

Collection defines several methods that enable you to loop through a collection’s
elements. Because iterating or enumerating the elements of a data structure is one
of the most common programming tasks, Collection’s built-in enumeration
facilities are extremely useful; they relieve you of worrying about data structure
size and loop indexes. And because they have been carefully tailored to each of
Collection’s specialized subclasses, you needn’t create a custom iterative control
structure for each enumeration problem.

The most general enumeration message is do: aBlock. When you send a Collection
this message, the receiver evaluates the block repeatedly, using each of its
elements in turn as the block’s argument.

Suppose that you made an instance of IdentitySet in this way:

Example 4.4

| virtues |
virtues := IdentitySet new.
virtues addAll: #(’humility’ ’generosity’ ’veracity’
 ’continence’ ’patience’).
((UserGlobals at: #Virtues put: virtues) sortAscending: '')
 verifyElementsIn: #['continence', 'generosity',
 'humility', 'patience', 'veracity']

To create a single String to which each virtue has been appended, you could use
the message do: aBlock like this:

Example 4.5

| aString |
aString := String new. "Make a new, empty String."
"Append a virtue, followed by a space, to the new String"

(Virtues sortAscending: '')
 do: [:aVirtue | aString := aString , ' ' , aVirtue].
^ aString
 continence generosity humility patience veracity

In this example, the method for do: executes the body of the block (aString ,
’ ’ , aVirtue) repeatedly, substituting each of Virtues’ elements in turn for the

Collection and Stream Classes An Introduction to Collections

July 1996 GemStone Systems, Inc. 4-7

block argument aVirtue, until all of the virtues have been appended to aString.
(The String concatenation message (",") is explained later in this chapter.)

In addition to do: aBlock, Collection provides several specialized enumeration
methods.When sent to SequenceableCollections, those messages that return
collections (such as select:) always preserve the ordering of the receiver in the
result. That is, if element a comes before element b in the receiver, then element a
is guaranteed to come before b in the result.

NOTE:
To avoid unpredictable consequences, do not add elements to or remove
them from a collection during enumeration.

Selecting and Rejecting Elements

The messages select: aBlock and reject: aBlock make it easy to pick out those
elements of a collection that meet some condition and to store them in a new
collection of the same kind as the original.

The following examples form two new sets, one containing the virtues ’patience’
and ’continence’, the other containing all of the other virtues.

Example 4.6

| a b |
"Select all of the virtues equal to 'patience' or 'continence'"
a := Virtues select: [:n | (n = 'patience') | (n = 'continence')].
a.

an IdentitySet
 #1 patience
 #2 continence
| a b |
"Select all of the virtues NOT equal to 'patience' or 'continence'"
b := Virtues reject: [:n | (n = 'patience') | (n = 'continence')].
b.
%
an IdentitySet
 #1 humility
 #2 generosity
 #3 veracity

An Introduction to Collections GemStone Programming Guide

4-8 GemStone Systems, Inc. July 1996

Constraining The Elements Of A Collection

The unordered or indexed elements of a collection cannot be constrained
individually. They are instead constrained to contain only a single kind of element.

You can specify the kind of elements a collection can hold when you create its
class. If you do not, your subclass inherits only the most general kind of
constraint—every element of a collection must be a kind of Object.

The following example creates a subclass of IdentitySet whose instances must
contain only instances of a version of Employee or a subclass thereof:

Example 4.7

Object subclass: 'Employee'
 instVarNames: #('name' 'jobclass' 'address')
 classVars: #()
 poolDictionaries: #()
 inDictionary: UserGlobals
 constraints: #[#[#name,String],
 #[#jobclass,Integer],
 #[#address,String]]
 isInvariant: false

IdentitySet subclass: 'SetOfEmployees'
 instVarNames: #()
 classVars: #()
 poolDictionaries: #()
 inDictionary: UserGlobals
 constraints: Employee
 isInvariant: false.
%

When you create a constrained Collection class that has no named instance
variables, the constraints: keyword takes as its argument a single class name.
Because all elements (unnamed instance variables) in a constrained Collection
must be of a single kind (or nil), no more information is needed. However, a
SetOfEmployees could store a subclass of Employees as well as Employees. A
SetOfEmployees could also contain instances of a previous or future version of
Employee or its subclass, as long as the class of those instances shares a class
history with either class Employee or its subclass.

Collection and Stream Classes An Introduction to Collections

July 1996 GemStone Systems, Inc. 4-9

If the class whose variables you are constraining also defines named instance
variables, the argument to the constraints: keyword is an Array of two-
element Arrays followed by a single class name. As with non-Collection classes,
the first element of each two-element Array is a Symbol naming one of the class’s
instance variables, and the last element of each is a class. The final class name
supplies the constraint for the unnamed instance variables.

For example, suppose you want define a SetOfEmployees as an unordered
collection of employees, each with a named instance variable representing a
different division of your company. In that case, the instance creation message
would look like Example 4.8.

Example 4.8

IdentitySet subclass: 'SetOfEmployees'
 instVarNames: #('division')
 classVars: #()
 poolDictionaries: #()
 inDictionary: UserGlobals
 constraints: #[#[#division, String], Employee]
 isInvariant: false

Inquiring about Constraints

The allConstraints method returns all of the constraints on a class. It returns
an array of classes, with one element in the array for each named instance variable
in the class. If the receiver has constraints on the instance variables, the array
returned by the method appends those constraints as additional elements.

The following example shows how the returned array looks for SetOfEmployees
defined in Example 4.8. The first four elements are the four instance variables for
SetOfEmployees: name, jobclass, address, and division. Then the constraint for
division is listed as an element. The last element in the returned array is the
constraint for SetOfEmployees to contain only instances of Employee.

Example 4.9

SetOfEmployees allConstraints verifyElementsIn:
 #[Object, Object, Object, Object, String, Employee]
true

Collection Subclasses GemStone Programming Guide

4-10 GemStone Systems, Inc. July 1996

To determine the constraint on indexed or unordered instance variables of a class,
send it the varyingConstraint message:

Example 4.10

SetOfEmployees varyingConstraint
Employee

Also useful are the methods (inherited from Behavior) constraintOn: ,
definition , and hierarchy .

4.2 Collection Subclasses
This chapter describes the properties of Collection’s concrete subclasses, and it
gives you some guidance about choosing places for new classes that you might
want to add to the Collection hierarchy.

Subclasses of Collection can be grouped by the kinds of access methods they
provide and the kinds of objects their instances can store. Let’s first consider those
collection classes that don’t provide access to elements through external numeric
indexes.

AbstractDictionary
AbstractDictionary is a subclass of Collection. AbstractDictionary requires that all
of an instance’s elements must have unique keys.

The subclasses of AbstractDictionary provide access to their elements by means of
keys that can be strings, symbols, integers, or objects of any kind.

AbstractDictionary Protocol

AbstractDictionary defines a large number of methods that enable you to store and
retrieve objects on the basis of either keys or values. Some of the methods return
only single keys or values, while others return entire associations.

Internal Dictionary Structure

Dictionaries provide their special facilities by storing key-value pairs instead of
simple, linear lists of objects. Many of the messages that dictionaries understand

Collection and Stream Classes Collection Subclasses

July 1996 GemStone Systems, Inc. 4-11

are specialized for referring to either the key or the value portions of their
component associations.

In the following example, the message includesKey: aKey tests to see whether
the dictionary myDictionary contains the definition of glede:

Example 4.11

run
| myDictionary |
myDictionary := StringKeyValueDictionary new.
myDictionary at: ’glede’ put: 'a bird of prey'.
(myDictionary includesKey: ’glede’) ifTrue:
 [myDictionary at: ’glede’].
%
a bird of prey

KeyValueDictionary

KeyValueDictionary has several subclasses, divided according to the type of key
used to access the information:

 • IdentityKeyValueDictionary,

 • IntegerKeyValueDictionary; and

 • StringKeyValueDictionary.

In each case, the hashing function is applied to the key.

Collection Subclasses GemStone Programming Guide

4-12 GemStone Systems, Inc. July 1996

SymbolDictionary

A subclass of IdentityKeyValueDictionary, SymbolDictionary, constrains all of its
keys to be symbols, which it stores in instances of class SymbolAssociation.

The following example creates a new instance of SymbolDictionary called
“Lizards,” then stores some strings at symbolic keys.

Example 4.12

| Lizards |
Lizards := SymbolDictionary new.
Lizards at: #skink put: 'a small, berry-eating lizard'.
Lizards at: #gecko put: 'a harmless, nocturnal lizard'.
Lizards at: #komodo put: 'a big, irascible reptile'.
Lizards at: #monitor put: 'a large reptile that lives in
your roommate''s closet and usually doesn''t bite'.

"Access one of the SymbolDictionary elements:"
Lizards at: #skink
 a small, berry-eating lizard

The at:put: message in this example took a symbol as its first argument instead
of (as with sequenceable collections) an integer.

To retrieve a value from a dictionary, you need only send it the message at: aKey.
At the end of the previous example, #skink is a key.

It’s important to understand that, just as the entry for “2” is not necessarily the
second item in the dictionary on your bookshelf, the numeral 2 does not signify
anything about position when used as a key in a Smalltalk dictionary. Like strings,
symbols, and other dictionary keys, numerals identify but do not locate dictionary
values.

This simple protocol for storing and retrieving objects on the basis of symbolic
instead of positional keys finds wide use in Smalltalk. In fact, the Smalltalk
compiler and interpreter take advantage of dictionaries to resolve symbols, store
methods, and retrieve error messages, as well as other tasks.

Collection and Stream Classes Collection Subclasses

July 1996 GemStone Systems, Inc. 4-13

SequenceableCollection
Unlike the AbstractDictionary collections, the SequenceableCollections let you
refer to their elements with integer indexes, and they understand messages such
as first and last that refer to the order of those indexed elements. The
SequenceableCollection classes differ from one another mainly in their literal
representations, the kinds of elements they store, and the kinds of changes they
permit you to make to their instances.

Figure 4.2 is an abbreviated diagram of the SequenceableCollection family tree. It
depicts the SequenceableCollection classes you are likely to use as general-
purpose data structures.

Figure 4.2 SequenceableCollection Class Hierarchy

SequenceableCollection
Array
ByteArray
CharacterCollection

DoubleByteString
DoubleByteSymbol

String
 Symbol

Interval
OrderedCollection

SortedCollection

SequenceableCollection is an abstract superclass. The methods it establishes for its
concrete subclasses let you read, write, copy, and enumerate collections in ways
that depend on ordering.

For example, there are methods that enable you to read or write an element at a
particular index, to ask for an element’s index, to request the first and last elements
of a collection, and to copy specified parts of one collection to another.

Collection Subclasses GemStone Programming Guide

4-14 GemStone Systems, Inc. July 1996

Accessing and Updating Protocol

Class Object defines the messages at: anIndex and at: anIndex put: anObject. The
class SequenceableCollection interprets these messages as referring to elements
whose positions are identified by integer keys.

The following example uses at: and at:put: to read and write elements of an
Array.

Example 4.13

| colors |
colors := Array new.
colors at: 1 put: 'vermilion'.
colors at: 2 put: 'scarlet'.
colors at: 3 put: 'crimson'.
colors at: 2
scarlet

Most of the time, SequenceableCollection can grow to accommodate new objects.
However, you must store each new item at an index no more than one greater than
the largest index you’ve already used. In the previous example, this requirement
permits you to add a color at index 4, but not at index 7. The subsection, “Creating
Arrays” on page 4-20, explains a feature for creating large arrays with nil elements.
Initializing the array with nil values enables you to store new objects wherever you
want. The following example uses other methods defined by
SequenceableCollection:

Example 4.14

| anArray |
anArray := Array new.
anArray at: 1 put: 'string one';
 at: 2 put: 'string two';
 at: 3 put: 'string three'.
anArray first.
string one
anArray last.
string three
anArray indexOf: (anArray at: 2)
 2

Collection and Stream Classes Collection Subclasses

July 1996 GemStone Systems, Inc. 4-15

Adding Objects to SequenceableCollection

SequenceableCollection defines two new methods for adding objects to its in-
stances.

The message addLast: anObject appends its argument to the receiver, increasing
the size of the receiver by one. For example, given the array anArray:

Example 4.15

anArray addLast: 'string four'.
anArray size.
4
anArray last.
string four

The message insert: aSequenceableCollection at: anIndex inserts the elements
of a new SequenceableCollection into the receiver at anIndex and returns the
receiver. For example:

Example 4.16

| colors moreColors |
colors := Array new add: 'red'; add: 'blue';
 add: 'green'; yourself.
moreColors := Array new add: 'mauve'; add: 'taupe';yourself.
colors insert: moreColors at: 2.
colors verifyElementsIn:
 #('red' 'mauve' 'taupe' 'blue' 'green')
 an Array
 #1 red
 #2 mauve
 #3 taupe
 #4 blue
 #5 green

If anIndex is exactly one greater than the size of the receiver, this method appends
each of aSequenceableCollection’s elements to the receiver.

In addition to the two new adding methods, SequenceableCollection redefines
add: so it puts objects only at the end of the receiver. In other words, add: does
the same thing as addLast: .

Collection Subclasses GemStone Programming Guide

4-16 GemStone Systems, Inc. July 1996

Removing Objects From A SequenceableCollection

You can remove a one or more objects from a SequenceableCollection. In the
following example, deleteObjectAt: removes the first element of the array
rockClingers , decreasing the array’s size by one:

Example 4.17

| rockClingers |
rockClingers := Array withAll: #('limpet' 'mussel' 'whelk').
UserGlobals at: #rockClingers put: rockClingers.
(rockClingers deleteObjectAt: 1) = 'limpet'
 ifFalse:[^ 'wrong deletion result'
].

rockClingers verifyElementsIn: #('mussel' 'whelk')
 an Array
 #1 mussel
 #2 whelk

The next example removes the rest of rockClinger ’s elements, leaving an array
of size zero:

Example 4.18

rockClingers deleteFrom: 1 to: 2.
rockClingers verifyElementsIn: #()
an Array

Collection and Stream Classes Collection Subclasses

July 1996 GemStone Systems, Inc. 4-17

Comparing SequenceableCollection

SequenceableCollection redefines the comparison methods inherited from Object
so that those methods take into account the classes of the collections to be
compared and the number and order of their elements. Here are the conditions
that must be met for two SequenceableCollections to be considered equal:

 • The classes of the two SequenceableCollections must be the same.

 • The two SequenceableCollections must be of the same size.

 • Corresponding elements of the two objects must be equal.

You can, of course, create subclasses of SequenceableCollections in which you
implement comparison messages with different behavior.

Copying SequenceableCollection

SequenceableCollection understands two copying messages—one that returns a
sequence of the receiver’s elements as a new collection, and one that copies a
sequence of the receiver’s elements into an existing SequenceableCollection.

The following example copies the first two elements of an InvariantArray to a new
InvariantArray:

Example 4.19

| tropicalMammals |
tropicalMammals:= #('capybara' 'tapir' 'margay')

copyFrom: 1 to: 2.
tropicalMammals verifyElementsIn: #('capybara' 'tapir')
an InvariantArray
#1 capybara
#2 tapir

Collection Subclasses GemStone Programming Guide

4-18 GemStone Systems, Inc. July 1996

The next example copies two elements of an array into a different array,
overwriting the target array’s original contents:

Example 4.20

| numericArray |
numericArray := Array new add: 1; add: 2;
 add: 99; add: 88; yourself.
#(1 2 3 4) copyFrom: 3 to: 4 into: numericArray startingAt: 3.
numericArray verifyElementsIn: #(1 2 3 4)
an Array
 #1 1
 #2 2
 #3 3
 #4 4

Bear in mind that copies of SequenceableCollection, like most Smalltalk copies, are
“shallow.” In other words, the elements of the copy are not simply equal to the
elements of the receiver—they are the same objects.

Enumeration and Searching Protocol

Class SequenceableCollection redefines the enumeration and searching messages
inherited from Collection in order to guarantee that they process elements in
order, starting with the element at index 1 and finishing with the element at the last
index.

SequenceableCollection also defines a new enumeration message, reverseDo: ,
which acts like do: except that it processes the receiver’s elements in the opposite
order.

Collection and Stream Classes Collection Subclasses

July 1996 GemStone Systems, Inc. 4-19

SequenceableCollections understand findFirst: aBlock and findLast: aBlock.
The message findFirst: returns the index of the first element that makes aBlock
true, while findLast: returns the index of the last. For example, given
tropicalMammals as defined in the last example:

Example 4.21

tropicalMammals findFirst: [:aMammal | aMammal = 'capybara']
1

Arrays

As you have seen in previous examples, instances of Array and of its subclasses
contain elements that you can address with integer keys that describe the positions
of Array elements. For example, myArray at: 1 refers to the first element of
myArray. Example 4.22 uses Array indexing, with protocol from Number, Block,
and Boolean, to code a classic sorting algorithm for a subclass of Array:

Example 4.22

method: SubArray
sortAscending
| selfSize tempStorage exchangeMade |
exchangeMade := true.
selfSize := (self size) - 1.
[exchangeMade] whileTrue:
 [exchangeMade := false.
 1 to: selfSize do: [:n |
 ((self at: n) > (self at: n + 1))
 ifTrue: [tempStorage := self at: n.
 self at: n put: (self at: 1 + n).
 self at: n+1 put: tempStorage.
 exchangeMade := true.].].].
^self
%
run "See that the bubble sort works"
(SubArray withAll: #(9 7 5 3 1 2 4 6 8))
 sortAscending verifyElementsIn: #(1 2 3 4 5 6 7 8 9)
%
true

Collection Subclasses GemStone Programming Guide

4-20 GemStone Systems, Inc. July 1996

One of the most important differences between Smalltalk arrays and a GemStone
array is that GemStone arrays are extensible; you can add new elements to an array
at any time. However, it is usually most efficient to create arrays that are initially
large enough to hold all of the objects you may want to add.

Creating Arrays

You are free to create an array with the inherited message new and let the array
lengthen automatically as you add elements. However, arrays created with new
initially allocate very little storage. As you add objects to such an array, it must
lengthen itself to accommodate the new objects.

Therefore, you will often want to create your arrays with the message new: aSize
(inherited from class Behavior), which makes a new instance of the specified size:

| tenElementArray |
tenElementArray := Array new: 10.

 The selector new: stores nil in the indexed instance variables of the empty array.
Having created an array with enough storage for the elements you intend to add,
you can proceed to fill it quickly.

Changing the Size of an Existing Array

As you’ve seen, a SequenceableCollection can grow or shrink automatically at run
time as you add or delete elements. However, it’s also possible for you to change
the size without explicitly storing or removing elements, using the message size:
inherited from class Object.

In the following example, size: increases the length of an array to 500 and then
decreases it to zero.

Example 4.23

| anArray |
anArray := Array new.
anArray size: 500.
anArray size: 0

When you lengthen an array with size: , the new elements are set to nil.

Collection and Stream Classes Collection Subclasses

July 1996 GemStone Systems, Inc. 4-21

Example 4.24 uses size: in a simple implementation of a Stack class:

Example 4.24

Array subclass: 'Stack'
 instVarNames: #()
 inDictionary: UserGlobals
category: 'Stack Management'
method: Stack
push: anObject
self add: anObject
%
method: Stack
pop
| theTop |
theTop := self last.
self size: (self size - 1).
^theTop
%
method: Stack
clear
self size: 0
%
method: Stack
top
^self last
%
run
"See that it works"
#[Stack new push: #one; push: #two; push: #three; pop;
push: #four; pop; pop]
verifyElementsIn: #(#two)
%

Collection Subclasses GemStone Programming Guide

4-22 GemStone Systems, Inc. July 1996

Efficient Implementations of Large Arrays

When you create an array of slightly over 2000 elements with new: , or when you
add enough new elements to grow an array to this size using size: , the new
elements are not set to nil, as that would waste storage. Instead, GemStone uses a
sparse tree implementation to make more efficient use of resources. This behavior
occurs in a manner that is transparent to you, and you can place values into the
new elements of the array in the same manner as you would with smaller arrays.

Representing Arrays Literally—Invariant Arrays

Earlier, you encountered literal arrays that looked like this:

#(’element one’ ’element two’ ’element three’)

Although this example was referred to as a literal array, the compiler actually
translates such entities into an object of class InvariantArray.

Constraints in the Indexed Part of an Array

The following example creates a subclass of Array constrained to hold numbers:

Example 4.25

Array subclass: 'Stack'
 instVarNames: #() classVars:#() poolDictionaries:#[]
 inDictionary: UserGlobals
 constraints:#[Number]
 instancesInvariant: false
 isModifiable: false

Collection and Stream Classes Collection Subclasses

July 1996 GemStone Systems, Inc. 4-23

The following example creates a class with constraints on both named and indexed
instance variables. The instance variable ‘‘name’’ is constrained to hold a string;
the indexed portion is constrained to hold numbers.

Example 4.26

Array subclass: 'NamedStack'
 instVarNames: #('name')
 classVars:#()
 poolDictionaries:#[]
 inDictionary: UserGlobals
 constraints:#[#['name', String], Number]
 instancesInvariant: false
 isModifiable: false

The following example shows an equivalent way to create NamedStack. This
example creates a modifiable class, modifies it to add constraints, and then
changes the class to a normal class.

Example 4.27

Array subclass: 'NamedStack'
 instVarNames: #('name')
 inDictionary: UserGlobals
 isModifiable: true)
instVar: 'name' constrainTo: String ;
varyingConstraint: Number ;immediateInvariant

Collection Subclasses GemStone Programming Guide

4-24 GemStone Systems, Inc. July 1996

Strings

A String is a SequenceableCollection modified to accept only instances of
Character as elements. Class String expands the protocol it inherits from
SequenceableCollection to include messages specialized for comparing, searching,
concatenating, and changing the case of character sequences.

Class String and its subclasses are all byte objects. A byte object has two important
practical implications:

 • You cannot create a String subclass that has named instance variables.

 • When you use new: to create an instance of a kind of String, Smalltalk sets the
new instance’s indexed instance variables to null (ASCII 0).

Creating Strings

You have already seen many strings created as literals. In addition to creating
strings literally, you can use the instance creation methods inherited from String’s
superclasses:

Example 4.28

| myString |
myString := String withAll: #($a $z $u $r $e).
myString
azure

Many of String’s other inherited messages are also useful:

Example 4.29

'azure' last "return the String’s last character"
$e

'azure'indexOf:$z "return the position of $z in the String"
2

Searching and Pattern Matching Strings

Class String defines methods that can tell you whether a string contains a
particular sequence of characters and, if so, where the sequence begins. The Class
String contains methods for case-sensitive and case-insensitive search and

Collection and Stream Classes Collection Subclasses

July 1996 GemStone Systems, Inc. 4-25

compare. Table 4.1 describes those messages for case-insensitive strings, Table 4.2
describes those messages for case-sensitive strings.

Table 4.1 String’s Case-Insensitive Search Protocol

at: anIndex
equalsNoCase:
aCharCollection

Returns true if aCharCollection is contained in the
receiver, starting at anIndex. Returns false otherwise.

findPattern: aPattern
startingAt: anIndex

Searches the receiver, beginning at anIndex, for a
substring that matches aPattern. If a matching
substring is found, returns the index of the first
character of the substring. Returns zero (0) otherwise.

The argument aPattern is an Array containing zero or
more Strings plus zero or more occurrences of the
special wild card characters $* or $?. The character $?
matches any single character in the receiver, and $*
matches any sequence of characters in the receiver.

Table 4.2 String’s Case-Sensitive Search Protocol

at: anIndex
equals:
aCharCollection

Returns true if aCharCollection is contained in the
receiver starting at anIndex. Returns false otherwise.
Generates an error if aCharCollection is not a kind of
CharacterCollection, or if anIndex is not a SmallInteger.

match: aPrefix Returns true if the argument, aPrefix, is a prefix of the
receiver. Returns false otherwise. The value for aPrefix
may include the wild card characters $* or $?. The
character $? matches any single character in the
receiver, and $* matches any sequence of characters in
the receiver.

includes:
character

Returns true if the receiver contains character.

indexOf:
aCharacter
startingAt:
startIndex

Returns the index of the first occurrence of aCharacter in
the receiver, not preceding startIndex. Returns zero (0) if
no match is found.

Collection Subclasses GemStone Programming Guide

4-26 GemStone Systems, Inc. July 1996

Here is an example using a wild card:

Example 4.30

'weimaraner' matchPattern: #('w' $* 'r')
true

This example returns true because the character $* is interpreted as “any sequence
of characters.” Similarly, the following example returns the index at which a
sequence of characters beginning and ending with $r occurs in the receiver.

Example 4.31

'weimaraner' findPattern: #('r' $* 'r') startingAt: 1
6

If either of the wild card characters occurs in the receiver, it is interpreted literally.
The following expression returns false because the character $* in the receiver is
interpreted literally:

Example 4.32

"Wildcard characters are literal"
'w*r' matchPattern: #('weimaraner')
 false

Comparing Strings

The Class String has methods for comparing strings, divided into categories of
Case-Insensitive Comparisons and Case-Sensitive Comparisons. The following
example shows the boolean value returned for each comparison.

Collection and Stream Classes Collection Subclasses

July 1996 GemStone Systems, Inc. 4-27

As shown in the examples, the comparisons for ’=’ and for match: are always
case sensitive, while the other messages are case insensitive.

Example 4.33

’A’ = ’a’ "Case Sensitive compare"
false
’A’ match: ’a’ "Case Sensitive compare"
false
’A’ < ’a’
true
’A’ > ’a’
false
’A’ <= ’a’ "Case Insensitive compare"
true
’A’ >= ’a’ "Case Insensitive compare"
false
’A’ isEquivalent: ’a’ "Case Insensitive compare"
true
’A’ equalsNoCase: ’a’ "Case Insensitive compare"
true
’A’ < ’b’ "Case Insensitive compare"
true
’b’ > ’A’ "Case Insensitive compare"
true

Concatenating Strings

A string responds to the message #, someCharacters by returning a new string in
which someCharacters (a string, a character, or an array of characters) have been
appended to the string’s original contents. For example:

Example 4.34

'String ' , 'con' , 'catenation'
String concatenation

Although this technique is handy when you need to build a small string, it’s not
very efficient. In the last example, Smalltalk creates a String object for the first
literal, ’String’ . The #, message returns a new instance of String containing

Collection Subclasses GemStone Programming Guide

4-28 GemStone Systems, Inc. July 1996

’String con’ , which is in turn passed to the #, message again to create a third
string.

When you need to build a longer string, you’ll find it more efficient to use
addAll: or add: (they’re the same for class String) like this:

Example 4.35

| resultString |
resultString := String new.
resultString add: 'String ';
 add: 'con';
 add: 'catenation'.
resultString

String concatenation

Efficient Implementations of Large Strings

When you create a string of over 8000 characters, characters without values are not
set to ASCII null, as that would waste storage. Instead, GemStone uses a sparse
tree implementation to make more efficient use of resources. This behavior occurs
in a manner that is transparent to you, and you can put new characters in the string
in the same manner as you would with smaller strings.

Converting Strings To Other Kinds of Objects

Class String defines messages that let you convert a string to an upper- or
lowercase string, to a symbol, or to a floating-point number.

Example 4.36

'ABCDE' asLowercase
abcde
'abcde' asUppercase
ABCDE
'abcde' asSymbol
abcde'15' asFloat = 1.5e1
true'15' asFloat = 1.5E1
true

Collection and Stream Classes Collection Subclasses

July 1996 GemStone Systems, Inc. 4-29

Literal and nonliteral InvariantStrings and Strings behave differently in identity
comparisons. Each nonliteral String (created, for example, with new, withAll: ,
or asString) has a unique identity. That is, two Strings that are equal are not
necessarily identical. For example:

Example 4.37

| nonlitString1 nonlitString2 |
nonlitString1 := String withAll: #($a $b $c).
nonlitString2 := String withAll: #($a $b $c).
(nonlitString1 == nonlitString2)
false

However, literal strings (InvariantStrings created literally) that contain the same
character sequences and are compiled at the same time are both equal and
identical:

Example 4.38

 | litString1 litString2 |
litString1 := 'abc'.
litString2 := 'abc'.
(litString1 == litString2)
true

This distinction can become significant in building sets. Because a set does not
accept more than one element with the same identity, you cannot add both
litString1 and litString2 to the same set. You can, however, store both nonlitString1
and nonlitString2 in a single set.

Symbols

Class Symbol is a subclass of String. Smalltalk uses symbols internally to represent
variable names and selectors. All symbols are stored in the DataCurator segment,
and they may be viewed by all users. All private information should be maintained
in Strings, not in Symbols.

You create a symbol using the withAll: method. Once a symbol is created, it may
not be modified. When you use the withAll: method to create a new symbol,
Smalltalk checks to see whether the symbol exists in its view of AllSymbols. If the

Collection Subclasses GemStone Programming Guide

4-30 GemStone Systems, Inc. July 1996

symbol already exists, the OOP for that symbol is returned, otherwise a new OOP
is returned.

DoubleByteString and DoubleByteSymbol
The DoubleByteString and DoubleByteSymbol classes provide the functionality of
String and Symbol classes for DoubleByte character sets.

UnorderedCollection
The class UnorderedCollection implements protocol for indexing, which in turn
allows for large collections to be queried and sorted efficiently.

All subclasses of UnorderedCollection do not allow nil elements. The repository
will silently ignore attempts to create nil elements in these classes.

Chapter 5, “Querying,” describes the querying/sorting functions in detail. The
following section describes the protocol implemented in UnorderedCollection’s
subclasses.

Bag

A Bag is the simplest unordered collections, made of an aggregation of unordered
instance variables. Bags, like most other collections, are elastic, growing to
accommodate new objects as you add them.

You access a Bag’s elements by equality. That is, if a variable has the same value as
an element that is in the Bag, that element is equal to the variable. If you have two
elements in the Bag with the same value, the first element encountered is always
returned.

If the Bag contains elements that are themselves complex objects, determining the
equality is complex and therefore slower than you might have hoped.

You may constrain the variables in a Bag. The equality-accessed class Bag is
provided for compatibility with client Smalltalk standards. If you anticipate a
large number of elements in a Bag, we recommend you use the class IdentityBag.

IdentityBag

IdentityBag has faster access and can more easily handle constrained variables.
Like a Bag, an IdentityBag is elastic and can hold objects of any kind. An
IdentityBag can hold up to 230-1 (about a billion) objects.

Collection and Stream Classes Collection Subclasses

July 1996 GemStone Systems, Inc. 4-31

To access an IdentityBag, you rely on the identity (OOP) of the object. This is a
much less time-consuming task than an equality comparison, and in most cases it
should be sufficient for your design.

If two elements in the IdentityBag have the same OOP, the first element
encountered is always returned. The object returned is not guaranteed to be the
same one over time.

Because IdentityBag is not ordered, class IdentityBag disallows the inherited
message at:put: . The inherited messages add: and addAll: work pretty much
as they do with other kinds of collection, except, of course, that they are not
guaranteed to insert objects at any particular positions.

IdentityBag defines one new adding message, add: anObject
withOccurrences: anInteger. This message enables you to add several identical
objects to an IdentityBag with a single message:

Example 4.39

| aBag |

aBag := IdentityBag new add: 'chipmunk' withOccurrences: 3.
aBag occurrencesOf: 'chipmunk'
3

Accessing an IdentityBag’s Elements

Since an IdentityBag’s elements are not ordered, IdentityBag must disallow the
message at: . Usually, you’ll need to use Collection’s enumeration protocol to get
at a particular element of a IdentityBag.

The following example uses detect: to find a IdentityBag element equal to
’agouti’:

Example 4.40

| bagOfRodents myRodent |
 bagOfRodents := IdentityBag withAll: #('beaver' 'rat' 'agouti').
 myRodent := bagOfRodents detect: [:aRodent | aRodent = 'agouti'].
 myRodent
 agouti

Collection Subclasses GemStone Programming Guide

4-32 GemStone Systems, Inc. July 1996

Removing Objects from a IdentityBag

Class IdentityBag provides several messages for removing objects from an identity
collection. The message remove:ifAbsent: lets you execute some code of your
choice if the specified object cannot be found, in this example the message returns
false if it cannot find “2” in the IdentityBag:

Example 4.41

| myBag |
myBag := IdentityBag withAll: #(2 3 4 5).
((myBag remove: 2 ifAbsent: [^false]) sortAscending: '')
 verifyElementsIn: #[3,4,5]
true

Similarly, removeAllPresent: aCollection is safer than removeAll: aCollection,
because the former method does not halt your program if some members of
aCollection are absent from the receiver.

All the removal messages act to delete specific objects from an IdentityBag by
identity; they do not delete objects that are merely equal to the objects given as
arguments. The previous example works correctly because the SmallInteger 2 has
a unique identity throughout the system. By way of contrast, consider the
following example:

Example 4.42

| myBag array1 array2 |
"Create two objects that are equal but not identical,
 and add one of them to a new IdentityBag."
array1 := Array new add: 'stuff'; add:'nonsense' ; yourself.
array2 := Array new add: 'stuff'; add:'nonsense' ; yourself.
"Create an IdentityBag containing array1."
myBag := IdentityBag new add: array1.
UserGlobals at: #MyBag put: myBag.
"Now try to remove one of the objects from the IdentityBag
by referring to its equal twin in the argument to
remove:ifAbsent"
myBag remove: array2 ifAbsent: ['Sorry, can''t find it'].

Sorry, can’t find it

Collection and Stream Classes Collection Subclasses

July 1996 GemStone Systems, Inc. 4-33

Comparing IdentityBags

Class IdentityBag redefines the selector = in such a way that it returns true only if
the receiver and the argument:

 • are of the same class,

 • have the same number of elements,

 • have the same constraints on their elements,

 • contain only identical (==) elements, and

 • contain the same number of occurrences of each object.

Union, Intersection, and Difference

Class IdentityBag provides three messages that perform functions reminiscent of
the familiar set union, set intersection, and set difference operators. There is one
significant difference between these messages and the set operators —
IdentityBag’s messages consider that either the receiver or the argument can
contain duplicate elements. The description of class IdentityBag in the GemStone
Kernel Reference provides more information about how these messages behave
when the receiver’s class is not the same as the class of the argument.

Sorting IdentityBag

Class IdentityBag defines methods that can sort collection elements with
maximum efficiency. Sort keys are specified as paths, and they are restricted to
paths that are able to bear equality indexes. (See Appendix A, “Basic Smalltalk
Syntax." Section: “Path Expressions” on page A-17, for a description of paths. See
“Equality Indexes” on page 5-22, for a description of equality indexes.)

Collection Subclasses GemStone Programming Guide

4-34 GemStone Systems, Inc. July 1996

The following code defines an Employee object, and an subclass of IdentityBag for
containing Employees. Following examples add instances of Employee to the
IdentityBag and then sorts those instances:

Example 4.43

(Object subclass: 'Employee'
 instVarNames: #('name' 'job' 'age' 'bday' 'address')
 classVars: #()
 poolDictionaries: #()
 inDictionary: UserGlobals
 constraints: #[#[#name, String], #[#job, String],
 #[#age,SmallInteger],#[#address,String],
 #[#bday, DateTime]]
 isInvariant: false) name
%
Employee compileAccessingMethodsFor:
 #('name' 'job' 'age' 'bday' 'address’)
(Employee subclass: 'SymbolNameEmployee'
 instVarNames: #()
 classVars: #()
 poolDictionaries: #()
 inDictionary: UserGlobals
 constraints: #[#[#name, Symbol]]
 isInvariant: false) name
%
(IdentityBag subclass: 'BagOfEmployees'
 instVarNames: #()
 classVars: #()
 poolDictionaries: #()
 inDictionary: UserGlobals
 constraints: Employee
 isInvariant: false) name
%

Collection and Stream Classes Collection Subclasses

July 1996 GemStone Systems, Inc. 4-35

The following code creates a few instances of Employee, places them in an
IdentityBag subclass named BagOfEmployees , and sorts by sortDescending:

Example 4.44

"Make some Employees,and store them in a BagOfEmployees."
| Conan Lurleen Fred myEmployees |
Conan := (SymbolNameEmployee new) name: #Conan;
 job: 'librarian'; age: 40; address: '999 W. West'.
Fred := (SymbolNameEmployee new) name: #Fred;
 job: 'clerk'; age: 40; address: '221 S. Main'.
Lurleen := (SymbolNameEmployee new) name: #Lurleen;
 job: 'busdriver'; age: 24; address: '540 E. Sixth'.
myEmployees := BagOfEmployees new.
myEmployees add: Fred; add: Lurleen; add: Conan.
UserGlobals at: #myEmployees put: myEmployees
| result |
result := Array new.
(myEmployees sortDescending: 'name') do:
 [:e | result add: e.name].
result verifyElementsIn: #(#Lurleen #Fred #Conan)
myEmployees sortDescending: 'name'.

an Array
#1 an Employee
 name Lurleen
#2 an Employee
 name Fred
#3 an Employee
 name Conan

The messages sortAscending: and sortDescending: return arrays of
elements sorted by a specified instance variable of the element class.

In sorting instances of Float, NaN is regarded as greater than an ordinary floating-
point number.

To sort a bag constrained to contain only simple values (such as strings, symbols,
numbers, instances of DateTime, or characters), give an empty path as the
argument to sortAscending: or sortDescending:

Collection Subclasses GemStone Programming Guide

4-36 GemStone Systems, Inc. July 1996

Example 4.45

| myBagOfStrings |
myBagOfStrings := IdentityBag new
 add: 'alpha'; add: 'beta'; yourself.
(myBagOfStrings sortAscending: '')
 verifyElementsIn: #('alpha' 'beta')

an Array
 #1 alpha
 #2 beta

Either of IdentityBag’s sorting methods can take an array of paths as its argument.
The first path in the array is taken as the primary sort key and the others are taken
in order as subordinate keys, as shown in Example 4.46:

Example 4.46

| returnArray tempString |
tempString := String new.
returnArray := myEmployees sortAscending: #('age' 'name').
"Build a printable list of the sorted ages and names"
returnArray do: [:i | tempString add: (i age asString);
 add: ' '; add: i name;
 add: Character lf].
tempString
%
 24 Lurleen
 40 Conan
 40 Fred

Here Employees are ordered initially by ’age’, the primary sort key. The two
Employees who have the same age are ordered by ’name’, the secondary sort key.

You may sort a collection on as many as keys as you need. However, the more keys
you sort on, the longer the sort will take (in general).

To sort in ascending order on some keys while sorting in descending order on
others, use sortWith: anArray. The argument to this message is an Array of
paths alternating with sort specifications.

Collection and Stream Classes Collection Subclasses

July 1996 GemStone Systems, Inc. 4-37

Example 4.47 uses sortWith: to sort on age in ascending order and on name in
descending order:

Example 4.47

| returnArray tempString |
tempString := String new.
returnArray := myEmployees sortWith: #('age' 'Ascending’
 'name' 'Descending’).
returnArray do: [:i | tempString add: (i age asString);
 add: ' '; add: i name;
 add: Character lf].
tempString
%
 24 Lurleen
 40 Fred
 40 Conan

Class IdentitySet

IdentitySet is similar to IdentityBag, except that IdentitySet does not accept
duplicate (that is, identical) elements. You may find sets useful for modeling such
entities as relations, which must contain only unique tuples.

 To access an IdentitySet, you rely on the identity (OOP) of the object. This is a
much less time-consuming task than an equality comparison, and in most cases it
should be sufficient for your design.

Because IdentitySet is not ordered, class IdentitySet disallows the inherited
messages at: and at:put: . The inherited messages add: and addAll: work
pretty much as they do with other kinds of Collection, except, of course, that they
are not guaranteed to insert objects at any particular positions.

Collection Subclasses GemStone Programming Guide

4-38 GemStone Systems, Inc. July 1996

IdentitySet As Relations

Suppose that you wanted to build and query a relation such as the one shown in
Figure 4.3:

Figure 4.3 Employee Relations

 Employees
Name Job Age Address
__

Fred clerk 40 221 S. Main
Lurleen busdriver 24 540 E. Sixth
Conan librarian 40 999 W. West

In Smalltalk, it would be natural to represent such a relation as an IdentitySet of
objects of class Employee, with each Employee containing instance variables name,
job, age, and address. Each element of the IdentitySet corresponds to a tuple, and
each instance variable of an element corresponds to a field.

To make it easy to retrieve values from a tuple, you can define methods for class
Employee so that an Employee returns the value of its name instance variable upon
receiving the message name, the value of its age variable upon receiving the
message age , and so on.

The examples on the following pages create a small employee relation as described
above and show how you might use Collection’s enumeration protocol to
formulate queries about the relation.

Collection and Stream Classes Collection Subclasses

July 1996 GemStone Systems, Inc. 4-39

Example 4.48

Object subclass: 'Employee'
 instVarNames:
 #('name' 'job' 'age' 'address' 'lengthOfService')
 classVars: #()
 poolDictionaries: #[]
 inDictionary: UserGlobals
 constraints: #()
 isInvariant: false.
%
IdentitySet subclass: 'SetOfEmployees'
 instVarNames: #()
 classVars: #()
 poolDictionaries: #[]
 inDictionary: UserGlobals
 constraints: Employee
 isInvariant: false.
%
! ----- Create Some Instance Methods for Employee -----
category: 'Accessing'
method: Employee
name "returns the receiver’s name"
 ^name
%
method: Employee
job "returns the receiver’s job"
 ^job
%
method: Employee
age "returns the receiver’s age"
 ^age
%
method: Employee
address "returns the receiver’s address"
 ^address
%

Collection Subclasses GemStone Programming Guide

4-40 GemStone Systems, Inc. July 1996

! ------- More Methods for Employee ---------
category: 'Updating'
method: Employee
name: aNameString "sets the receiver’s name"

name := aNameString
%
method: Employee
job: aJobString "sets the receiver’s job"

job := aJobString
%
method: Employee
age: anIntegerAge "sets the receiver’s age"

age := anIntegerAge
%
method: Employee
address: aString "sets the receiver’s address"

address := aString
%
category: 'Formatting'
method: Employee
asString
"Returns a String with info about the receiver (an
Employee)."
 ^ (self name) , ' ' ,(self job) , ' ' ,
 (self age asString), ' ' , (self address)
%
method: SetOfEmployees
asTable
"Prints a set of Employees, one to a line"
| aString |
aString := String new.
self do: [:anEmp |
 aString addAll: anEmp asString; add: Character lf .
].
^aString
%
expectvalue Employee
run
Employee compileAccessingMethodsFor: Employee.instVarNames
%

Collection and Stream Classes Collection Subclasses

July 1996 GemStone Systems, Inc. 4-41

The following code creates some instances of class Employee and stores them in a
new instance of class SetOfEmployees:

Example 4.49

"Make some Employees, and store them in a SetOfEmployees."
| Conan Lurleen Fred myEmployees |
Conan := (Employee new) name: 'Conan'; job: 'librarian';
 age: 40; address: '999 W. West'.
Fred := (Employee new) name: 'Fred'; job: 'clerk';
 age: 40; address: '221 S. Main'.
Lurleen := (Employee new) name: 'Lurleen'; job: 'busdriver';
 age: 24; address: '540 E. Sixth'.
myEmployees := SetOfEmployees new.
myEmployees add: Fred; add: Lurleen; add: Conan.
"Store the Employees in your userglobals dictionary."
UserGlobals at: #myEmployees put: myEmployees.

Now it’s possible to form some queries using Collection’s enumeration protocol:

Example 4.50

| age40Employees |
"Use select: to ask for employees aged 40."
age40Employees := myEmployees select:
 [:anEmp | anEmp age = 40].
age40Employees asTable
%
Conan librarian 40 999 W. West
Fred clerk 40 221 S. Main

| conanEmps |
"Ask for employees named 'Conan'"
conanEmps := myEmployees select:
 [:anEmp | anEmp name ='Conan'].
conanEmps asTable
%
Conan librarian 40 999 W. West

Stream Classes GemStone Programming Guide

4-42 GemStone Systems, Inc. July 1996

Example 4.51

! More examples of queries for the Collection protocol

| notConanBut40Emps |
"Get employees who are 40 years old and not named Conan."
notConanBut40Emps := myEmployees select:
 [:anEmp | (anEmp age = 40) & (anEmp name ~= 'Conan')].
notConanBut40Emps asTable
%
Fred clerk 40 221 S. Main
%
| youngerThan40Emps |
"Find the employees who are younger than 40."
youngerThan40Emps := myEmployees select:
 [:anEmp | (anEmp age)< 40].
youngerThan40Emps asTable
%
Lurleen busdriver 24 540 E. Sixth

Set

A Set is another unordered collection. Like the Class Bag, an element of a Set is
accessed by equality. Unlike a Bag, a Set cannot have multiple objects of the same
value.

A Set may have constrained instance variables, but at a cost. This class is provided
for compatibility with client Smalltalk standards. If you anticipate a large number
of elements for your Set, we recommend you use the class IdentitySet. IdentitySet
have faster access and can more easily handle constrained variables.

4.3 Stream Classes
Reading or writing a SequenceableCollection’s elements in sequence often entails
some drudgery. At a minimum, you need to maintain an index variable so that
you can keep track of which element you last processed.

Class Stream and its subclasses relieve you of this burden by simulating
SequenceableCollections with more desirable behavior; a Stream acts like a
SequenceableCollection that keeps track of the index most recently accessed. A

Collection and Stream Classes Stream Classes

July 1996 GemStone Systems, Inc. 4-43

Stream that provides this kind of civilized access to a particular
SequenceableCollection is said to “stream on” or “stream over” that collection.

There are two concrete Stream classes. Class ReadStream is specialized for reading
SequenceableCollections and class WriteStream for writing them. These concrete
Stream classes share two abstract superclasses, PositionableStream and Stream
(see Figure 4.4).

Figure 4.4 Stream Class Hierarchy

Stream
 PositionableStream
 ReadStream
 WriteStream

This unusual juxtaposition of two abstract classes, Stream and PositionableStream,
leaves an opening for you in the hierarchy in case you should ever decide to create
a nonpositionable stream class for accessing, say, a LinkedList class of your own
devising.

A stream provide its special kind of access to a collection by keeping two instance
variables, one of which refers to the collection you wish to read or write, and the
other to a position (an index) that determines which element is to be read or
written next. A stream automatically updates its position variable each time you
use one of Stream’s accessing messages to read or write an element.

Stream Classes GemStone Programming Guide

4-44 GemStone Systems, Inc. July 1996

Stream Protocol
Streams provide messages to write or read an element at the next position beyond
the current position, change the current position without accessing any elements,
and peek at the next element beyond the current one without changing the
Stream’s notion of its current position. Stream also provide messages to test for an
empty collection and for the end of a stream. Finally, there is a message that
returns the collection associated with a stream. Example 4.52 demonstrates the
effect of several of these messages on a ReadStream.

Example 4.52

| aReadStream anArray |
anArray := #('item1' 'item2' 'item3' 'item4' 'item5').
aReadStream := ReadStream on: anArray.
UserGlobals at: #aReadStream put: aReadStream.
aReadStream position. "What’s the initial position?"
%
 1

"Return the item at the current position."
aReadStream next.
%
 item1

aReadStream position: 2. "Set the position to the second
element"
aReadStream next. "Read that element."
%
 item2

"Move to position 6. If at the end, reset the position to
the Stream’s beginning"
aReadStream position: 6. "Move past the last element"
(aReadStream atEnd)ifTrue:[aReadStream reset].
aReadStream next
%
 item1

Collection and Stream Classes Stream Classes

July 1996 GemStone Systems, Inc. 4-45

Here is an example showing use of WriteStream:

Example 4.53

| aWriteStream |
aWriteStream := WriteStream on: (Array new: 5).
aWriteStream nextPut: 'item1'; nextPut: 'item2'.
UserGlobals at: #aWriteStream put: aWriteStream.
%
"Examine the Stream’s contents"
aWriteStream contents
 verifyElementsIn: #('item1' 'item2')
%
aWriteStream contents.
 an Array
 #1 item1
 #2 item2
 #3 nil
 #4 nil
 #5 nil

aWriteStream position: 4.
aWriteStream nextPut: 'item4'. "Store new item there."
aWriteStream nextPut: 'item5'. "Store item at next slot."
aWriteStream position: 1. "Move to position 1."
"Replace item there."
aWriteStream nextPut: 'A new item at the front'.

"Examine the Stream’s contents"
aWriteStream contents verifyElementsIn:
 #('A new item at the front')
%
aWriteStream.itsCollection.
 an Array
 #1 A new item at the front
 #2 item2
 #3 nil
 #4 item4
 #5 item5

Stream Classes GemStone Programming Guide

4-46 GemStone Systems, Inc. July 1996

Creating Printable Strings with Streams
Streams are especially useful for building printable strings.

Example 4.54

| aStream aSet lineNumber |
lineNumber := 1.
aStream := WriteStream on: (String new).
aSet := IdentitySet withAll: #('lemur' 'gibbon' 'potto'
'siamang' 'rhesus' 'macaque' 'orangutan').
aSet do: [:i | aStream nextPutAll: lineNumber asString.
 aStream nextPutAll: ' '.
 aStream nextPutAll: i.
 aStream nextPut: Character lf.
 lineNumber := lineNumber + 1.].
aStream.itsCollection
%
aStream contents
 1 lemur
 2 gibbon
 3 potto
 4 siamang
 5 rhesus
 6 macaque
 7 orangutan

Chapter

July 1996 GemStone Systems, Inc. 5-1

5 Querying

This chapter describes Smalltalk’s indexed associative access mechanism, a system
for efficiently retrieving elements of large collections.

Relations
reviews the concept of relations.

Selection Blocks and Selections
describes how to use a path to select all the elements of a collection that meet
certain criteria.

Additional Query Protocol
explains how to select a single element of a collection that meets certain
criteria, or all those elements that do not meet them.

Indexing for Faster Access
discusses Smalltalk’s facilities for creating and maintaining indexes on
collections.

Nil Values and Selection
discusses the ramifications of using a path, one of whose elements might
contain nil.

Relations GemStone Programming Guide

5-2 GemStone Systems, Inc. July 1996

Paths Containing Collections
explains how you can use a path, one of whose elements is a collection instead
of a single object.

Sorting and Indexing
describes protocol for sorting collections efficiently.

5.1 Relations
It’s common practice to construct a relational database as a set of multiple-field
records. Usually, each record represents one entity and each field in a record stores
a piece of information about that entity. In a relational database, the set of records
is called a relation, individual records are called tuples, and the fields are called
attributes.

For example, the following table depicts a small relation that stores data about
employees:

Figure 5.1 Employee Relation

 Employees
Name Job Age Address

Fred clerk 40 221 S. Main
Lurleen busdriver 24 540 E. Sixth
Conan librarian 40 999 W. West
__

In GemStone, it’s natural to represent such a relation as an IdentityBag or
IdentitySet of objects of class Employee, with each employee containing the
instance variables name, job, age, and address. Each element of the IdentitySet
corresponds to a record, and each instance variable of an element corresponds to
a field.

To make it easy to retrieve values from a record, you can define selectors in class
Employee so that an instance of Employee returns the value of its name instance
variable when it receives the message name, the value of its age variable when it
receives the message age , and so on. The discussion of class IdentitySet in
Chapter 4, “Collection and Stream Classes,” describes one way to develop this
Employee class.

Querying Relations

July 1996 GemStone Systems, Inc. 5-3

As that chapter also explains, you can use Collection’s searching protocol to search
for a record (element) containing a particular field (instance variable) value.

myEmployees select: [:anEmployee | anEmployee age = 40]

Searching for an object by content or value instead of by name or location is called
associative access.

The searching messages defined by Collection must send one or more messages for
each element of the receiver. Executing the expression given above requires
sending the messages age and = for each element of myEmployees. This strategy
is suitable for small collections, but it can be too slow for a collection containing
thousands of complex elements.

For efficient associative access to large collections, it’s useful to build an external
index for them. Indexing a Collection creates structures such as balanced trees that
let you find values without waiting for sequential searches. Indexing structures
can retrieve the objects you require by sending many fewer messages—ideally,
only the minimum number necessary. Indexes allow you faster access to large
UnorderedCollections because when such collections are indexed, they can
respond to queries using select: , detect: , or reject: without sending
messages for every element of the receiver.

What You Need To Know
To use Smalltalk’s facilities for searching large collections quickly, you need to:

1. Specify which of the instance variables in a collection’s elements are indexed,
using protocol from UnorderedCollection together with a special syntactic
structure called a path to designate variables for indexing.

2. Construct a selection block whose expressions describe the values to be sought
among the instance variables within the elements of a collection: when a
selection block appears as the argument to one of UnorderedCollection’s
enumeration methods select: , reject: , and detect: , the method uses
the indexing structures you’ve specified to retrieve elements quickly.

For example, if you planned to retrieve employees with certain jobs quickly and
frequently, you need to create an “Employees” set that is indexed for fast
associative access and then build an index on the job instance variable in each
element of Employees. Then, to retrieve employees with a certain job, you build
a selection block specifying the instance variable job and the target job, and send
select: to Employees with the selection block as its argument.

Although you do not need to constrain the elements of a collection in order to
index it, nor constrain the instance variables of its elements in order to search a

Selection Blocks and Selection GemStone Programming Guide

5-4 GemStone Systems, Inc. July 1996

path they define, searching large collections goes faster if such constraints are
specified. On the other hand, if such constraints are not specified, then you can
search collections of heterogeneous elements, such as those containing several
different versions of a class.

This chapter tells you how to specify indexes and perform selections, and it also
provides some miscellaneous information to help you use those mechanisms
efficiently.

5.2 Selection Blocks and Selection
Once you’ve created a collection, you can efficiently retrieve selected elements of
the collection by formulating queries as enumeration messages that take selection
blocks as their arguments.

A selection block is a syntactic variant of an ordinary Smalltalk block. When a
collection receives select: , detect: , reject: , or one of several related
messages, with a selection block as the argument, it retrieves those of its elements
that meet the criteria specified in the selection block.

The following statement returns all Employees named ’Fred’. The selection block
is the expression delimited by curly braces { }.

Example 5.1

|fredEmps |
fredEmps := myEmployees select:
 {:anEmployee | anEmployee.name = 'Fred'}.

This statement is similar to an example given earlier, in which select: took an
ordinary block as its argument:

Example 5.2

fredEmps := myEmployees select:
 [:anEmployee | anEmployee.name = 'Fred'].

While square brackets[] delimit an ordinary block, curly braces {} delimit a
selection block; Otherwise, the two statements look the same. A query using a
selection block also returns the same results as if the selection block predicate had

Querying Selection Blocks and Selection

July 1996 GemStone Systems, Inc. 5-5

been treated as a series of message expressions. However, some special restrictions
apply to the query language.

Subsequent sections of this chapter describe selection block anatomy and behavior
in general, and the query language restrictions in particular.

Selection Block Predicates and Free Variables
Like an ordinary, one-argument block, a selection block has two parts: the free
variable and the predicate. In the following selection block, the free variable is to the
left of the vertical bar and the predicate is to the right.

Figure 5.2 Anatomy of a Selection Block

A free variable for the selection block is analogous to an argument for an ordinary
block. As select: goes through myEmployees, it makes the free variable
anEmployee represent each element in turn. In contrast to an ordinary block, which
may have several arguments, a selection block can have only one free variable.

The predicate for a selection block is analogous to the right side of an ordinary
block, which contains Smalltalk statements. In a selection block, the predicate must
be a Boolean expression; usually, the expression compares an instance variable
from among the objects to be searched with another instance variable or with a
constant. In the example, for each element of the collection myEmployees, the
predicate compares the element’s instance variable name with the string ’Fred’.

The method for select: gathers into the collection fredEmps each element whose
name value makes the predicate true.

A predicate contains one or more terms—the expressions that specify comparisons.

fredEmps := myEmployees select:
 {:anEmployee | anEmployee.name = 'Fred'}

free variable

predicate

Selection Blocks and Selection GemStone Programming Guide

5-6 GemStone Systems, Inc. July 1996

Predicate Terms
A term is a Boolean expression containing an operand and usually a comparison
operator followed by another operand, as shown in Figure 5.3:

Figure 5.3 Anatomy of a Selection Block Predicate Term

Predicate Operands

An operand can be a path (anEmployee.name, in this case), a variable name, or a
literal (’Fred’, in this example). All kinds of Smalltalk literals except arrays are
acceptable as operands.

If a path points to objects within elements of select: ’s receiver (as does
anEmployee.name), then each variable in the path must be a valid instance variable
name for the receiver and its elements. In this case, anEmployee.name is acceptable
because the receiver holds employees and class Employee defines the instance
variable name. The kind of constraint required on the last variable in such a path
depends upon the kind of query in which the path is used.

anEmployee.name = 'Fred'

 operand

comparison operator

operand

Querying Selection Blocks and Selection

July 1996 GemStone Systems, Inc. 5-7

Predicate Operators

Table 5.1 lists the comparison operators used in a selection block predicate:

No other operators are permitted in a selection block.

The associative query mechanism and Smalltalk do not follow exactly the same
rules in determining the legality of comparisons. As in ordinary Smalltalk
expressions, an identity comparison can be performed between two objects of any
kind. The following peculiar query, for example, is perfectly legal:

Example 5.3

| aDateTime |
aDateTime := DateTime now.
myEmployees select: {:i | aDateTime == i.name}

However, not all kinds of objects are comparable using the equality operators =,
<=, <, >=, >. If GemStone kernel classes are being compared, both operands must
be of the same class, unless they are instances of String, Number, or DateTime. In
that case, an operand can be an instance of a subclass of String, Number, or
DateTime and still compare successfully with a String, Number, or DateTime,
respectively. That is, you can use the equality operators in comparing any kind of
String to any other kind of String, or any number to any other kind of number.

The following query, for example, results in an error because age and ’Frank’ are
of different classes.

myEmployees select: {:i | i.age <= 'Frank'}

Table 5.1 Comparison Operators Allowed in a Selection Block

== Identity comparison operator

= Equality comparison operator, case-sensitive

< Less than equality operator, case-insensitive

<= Less than or equal to equality operator, case-
insensitive

> Greater than equality operator, case-insensitive

>= Greater than or equal to equality operator, case-
insensitive

Selection Blocks and Selection GemStone Programming Guide

5-8 GemStone Systems, Inc. July 1996

The following query succeeds because Floats and Integers are both kinds of
Number:

myEmployees select: {:i | 20.0 > i.age}

Because of its special significance as a placeholder for unknown or inapplicable
values, nil is comparable to every kind of object in a selection block, and every kind
of object is comparable to nil.

An attempt to execute a selection block that uses any of the equality operators
including = to compare incomparable objects elicits an error notification.

Predicate Operators and User-defined Classes

If you need to, you can redefine the equality operators =, <=, <, >= , > in classes
that you have created. In that case, the operands compared using these operators
need not be of the same class. If you have created a class and redefined its equality
operators, you can compare instances of that class with any other class that make
sense for your application. See “Redefined Comparison Messages in Selection
Blocks” on page 5-10 for further details.

Predicates Without Operators

A predicate can consist of a single Boolean path or variable. Suppose, for example,
that Employee defined a Boolean variable named isPermanent. The following
query returns all Employees in which isPermanent has the value true:

myEmployees select: {:i | i.isPermanent}

This query is equivalent to:

myEmployees select: {:i | i.isPermanent == true}

Querying Selection Blocks and Selection

July 1996 GemStone Systems, Inc. 5-9

Conjunction of Predicate Terms

If you want retrieval of an element to be contingent on the values of two or more
of its instance variables, you can join several terms using a conjunction (logical
AND) operator. The conjunction operator, &, makes the predicate true if and only
if the terms it connects are true.

The predicate in the following selection block is true for the Employees who are
named Conan and work as librarians:

Example 5.4

| mySet |
mySet := myEmployees select: { :anEmployee |
 (anEmployee.name = 'Conan') & (anEmployee.job ='librarian')
}

This example returns a collection of the employees who meet the name and job
criteria. Each conjoined term must be parenthesized.

You can conjoin as many as nine terms in a selection block.

If you do not wish to use the Boolean AND operator, but instead would like to
learn which objects meet either one criterion OR another criterion, you must create
two selection blocks, each querying about one of the criteria, and then merge the
two resulting collections using the + operator for Set unions.

Example 5.5 shows how you can get a collection of all employees named either
Fred or Ted.

Example 5.5

| fredsAndTeds freds teds |
freds := myEmployees select: { :anEmployee | anEmployee.name = 'Fred' }.
teds := myEmployees select: { :anEmployee | anEmployee.name = 'Ted' }.
fredsAndTeds := freds + teds

Selection Blocks and Selection GemStone Programming Guide

5-10 GemStone Systems, Inc. July 1996

Limits on String Comparisons
In comparisons involving instances of String or its subclasses, the associative
access mechanism considers only the first 900 characters of each operand. Two
strings that differ only beginning at the 901st character are considered equal.

Redefined Comparison Messages in Selection Blocks
Because Smalltalk does not execute selection block predicates by passing messages
to GemStone kernel classes, you cannot change the operation of a selection block
by redefining the comparison messages in a GemStone kernel class. In other
words, for predefined GemStone classes, the comparison operators really are
operators in the traditional programming language sense; they are not messages.

For example, if you recompiled the class DateTime, redefining < to count
backwards from the end of the century, Smalltalk would ignore that redefinition
when < appeared next to an instance of DateTime inside a selection block.
Smalltalk would simply apply an operator that behaved like DateTime’s standard
definition of <.

For subclasses that you have created, however, equality operators can be
redefined. If you do so, the selection block in which they are used performs the
comparison on the basis of your redefined operators—as long as one of the
operands is the class you created and in which you redefined the equality operator.

If you redefine any, you must redefine at least the operators =, >, <, and <=. You
can redefine one or more of these in terms of another if you wish.

The operators must be defined to conform to the following rules:

 • If a < b and b < c, then a < c.

 • Exactly one of these is true: a < b, or b < a, or a = b.

 • a <= b if a < b or a = b.

 • If a = b, then b = a.

 • If a < b, then b > a.

 • If a >= b, then b <= a.

You must obey one other rule as well: objects that are equal to each other must
have equal hash values. Therefore, if you redefine =, you must also redefine the
method hash to preserve this constraint between = and hash . Otherwise,
dictionaries will not behave in a consistent and logical manner.

Querying Selection Blocks and Selection

July 1996 GemStone Systems, Inc. 5-11

Suppose that you define the class Soldier as follows:

Example 5.6

Object subclass: #Soldier
 instVarNames: #(rank)
 classVars: #(#Ranks)
 poolDictionaries: #()
 inDictionary: UserGlobals
 constraints: #[#[#rank, Symbol]]
 isInvariant: false

Soldier compileAccessingMethodsFor: Soldier.instVarNames

method: Soldier
hash
 “Answer a hash value based on the receiver’s rank, since
 equality is defined in terms of a Soldier’s rank. “
^ rank hash
%

Selection Blocks and Selection GemStone Programming Guide

5-12 GemStone Systems, Inc. July 1996

You then compile accessing methods for its instance variables, and define an
initialization method to initialize the class variable Ranks, as in the following
example:

Example 5.7

classmethod: Soldier
initialize
 "Initialize the class variable Ranks as an array."
 | index |
Ranks := SymbolKeyValueDictionary new.
index := 1.
#(#Lieutenant #Captain #Major #Colonel #General)

do: [:e | Ranks at: e put: index.
index := index + 1].

%
Soldier initialize

We then initialize the class by executing the expression:

Soldier initialize

Querying Selection Blocks and Selection

July 1996 GemStone Systems, Inc. 5-13

We define the equality operators in the class Soldier as follows:

Example 5.8

method: Soldier
 < aSoldier
"Return true if the rank of the receiver is lower than the
rank of the argument. Return false otherwise, or if
either receiver or argument is unranked."
^ (Ranks at: rank otherwise: (Ranks size + 1)) <

(Ranks at: aSoldier rank otherwise: 0)
%
method: Soldier
= aSoldier
"Return true if the rank of the receiver is equal to the
rank of the argument. Return false otherwise, or if
either receiver or argument is unranked."
^ (Ranks at: rank otherwise: -1) =

(Ranks at: aSoldier rank otherwise: 0)
%
method: Soldier
> aSoldier
"Greater than is defined in terms of less than."
^ aSoldier < self
%
method: Soldier
<= aSoldier
 "Return true if the rank of the receiver is less than or
equal to the rank of the argument. Return false
otherwise, or if either receiver or argument is unranked."
^ (Ranks at: rank otherwise: (Ranks size + 1) <=

(Ranks at: aSoldier rank otherwise: 0))
%
method: Soldier
hash
"Return a hash value based on the receiver's rank, because
equality is defined in terms of a Soldier's rank."
^ rank hash
%

Selection Blocks and Selection GemStone Programming Guide

5-14 GemStone Systems, Inc. July 1996

We now create instances of Soldier having each possible rank, naming them
aLieutenant and so on. We also create an instance of Soldier without any rank, and
name it aPrivate:

Example 5.9

| tmp myArmy tmp2 |
myArmy := IdentityBag new.
1 to: 5 do: [:i |
 tmp := (Soldier.classVars at: #Ranks) keys do: [:tmp |
 tmp2 := (Soldier new rank: tmp).
 UserGlobals at: (’a’ + tmp) asSymbol put: tmp2.
 myArmy add: tmp2
].
].
tmp2 := (Soldier new rank: #Private).
UserGlobals at: #aPrivate put: tmp2;
 at: #myArmy put: (myArmy add: tmp2; yourself) .
^ myArmy
%

We can now execute expressions of the form:

Example 5.10

aLieutenant < aMajor
true

aCaptain < aLieutenant
false

Expressions in selection blocks get the same results. Given a collection of soldiers
named myArmy, the following selection block collects all the officers:

Example 5.11

| officers |
officers := myArmy select: { :aSoldier | aSoldier > aPrivate }

Querying Selection Blocks and Selection

July 1996 GemStone Systems, Inc. 5-15

Changing the Ordering of Instances

Once you redefine the equality operators for a given class and create instances of
that class, your instances may not remain the same forever. For example, the
soldiers we created in Example 5.9 above may not all stay the same rank for their
entire careers. Some may be promoted; others may be demoted. If an instance of
Soldier changes its ordering relative to the other instances, you must manually
update the equality index in which it participates. Because you have redefined the
equality operators, GemStone has no way of determining how to update the index
automatically, as it will when you use the system-supplied equality operators.

To handle updating the equality index in your application, follow these steps:

1. Confine code that can change the relative ordering of instances to as few places
as possible. For the class Soldier, for example, we would write two methods:
promoteTo: and demoteTo: . Code that changed the relative ranking of
soldiers would appear only within these two methods.

2. Before the code that changes the ordering of the instance, include a line such
as the following:

anArray := self removeObjectFromBtrees

The method removeObjectFromBtrees returns an array that you will need
later within the method. Therefore you must assign the result to some
variable—anArray in the example above.

3. After the code that changes the ordering of the instance, include a line such as
the following:

self addObjectToBtreesWithValues: anArray

If the ordering of the instance depends on more than one instance variable, this
pair of lines must appear in the methods that set the value of each instance
variable.

CAUTION:
Failing to include these lines can corrupt the equality index and lead to
your application receiving GemStone errors notifying you that certain
objects do not exist. Removing and re-creating the equality index may
not fix the problem.

Selection Blocks and Selection GemStone Programming Guide

5-16 GemStone Systems, Inc. July 1996

Collections Returned by Selection
The message select: returns a collection of the same class as the message’s
receiver. For example, sending select: to a SetOfEmployees results in a new
SetOfEmployees.

NOTE:
When sent to an instance of RcIdentityBag, the message select:
returns an instance of IdentityBag instead. This is because the reduced-
conflict classes use more memory or disk space than their ordinary
counterparts, and conflict is not ordinarily a problem with collections
returned from a query. If it causes a problem for your application,
however, you can convert the resulting instance myBag to an instance
of RcIdentityBag with an expression such as either of the two following:

RcIdentityBag withAll: myBag
RcIdentyfBag new addAll: myBag

See “Transactions and Concurrency Control” on page 6-1 for further
details on class RcIdentityBag.

The collection returned by a selection query has no index structures (the following
sections of this chapter describe indexes). This is because indexes are built on
individual instances of nonsequenceable collections rather than the classes. If you
want to perform indexed selections on the new collection, you must build all of the
necessary indexes. A later section, “Transferring Indexes” on page 5-26, describes
a technique for duplicating a collection’s indexes in a new instance.

Streams Returned by Selection
The result of a selection block can be returned as a stream instead of a collection.
Returning the result as a stream is faster. If you are not sure that your query is
precisely the right one, using a stream allows you to test the results with minimal
overhead.

When GemStone returns the result of a selection block as a collection, the following
operations must occur:

1. Each object in the result must be read.

2. The collection must be created.

3. Each object in the result must be put into the collection.

Querying Selection Blocks and Selection

July 1996 GemStone Systems, Inc. 5-17

For a collection consisting of 10,000 objects, these operations can take a significant
amount of time. By contrast, when GemStone returns the result of a selection block
as a stream, the resulting objects are returned one at a time. Each object you
request is read once, resulting in significantly faster performance and less
overhead.

Streams do not automatically save the resulting objects. If you do not save them
as you read them, the results of the query are lost.

The results of a selection block can be returned as a stream using the method
selectAsStream: . This method returns an instance of the class
RangeIndexReadStream, similar to a ReadStream but making more efficient use of
GemStone resources. Like instances of ReadStream instances of
RangeIndexReadStream understand the messages next and atEnd .

Suppose your company wishes to send a congratulatory letter to anyone who has
worked there for ten years or more. Once you have sent the letter, you have no
further use for the data. Assuming that each employee has an instance variable
called lengthOfService, you can use a stream to formulate the query as follows:

Example 5.12

method: Employee
sendCongratulations
^ 'Congratulations. Thank you for your years of service. '
%
myEmployees createEqualityIndexOn: 'lengthOfService'
 withLastElementClass: SmallInteger

| oldTimers anOldTimer |
oldTimers := myEmployees selectAsStream:
 { :anEmp | anEmp.lengthOfService >= 10}.
[oldTimers atEnd] whileFalse: [
 anOldTimer := oldTimers next.
 anOldTimer sendCongratulations.].
%
nil

Selection Blocks and Selection GemStone Programming Guide

5-18 GemStone Systems, Inc. July 1996

The method selectAsStream: has certain limitations, however.

 • It takes a single predicate only; no conjunction of predicate terms is allowed.

 • The collection you are searching must have an equality index on the path
specified in the predicate. (Creating equality indexes is discussed in the section
“Indexing For Faster Access” on page 5-20.)

 • The predicate can contain only one path.

For example, the predicate shown in the following compares the result of one path
with the result of another and therefore cannot be used with selectAsStream:

Example 5.13

myEmployees select: { :emp | emp.age > emp.lengthOfService }

myEmployees createEqualityIndexOn: ’age’
withLastElementClass: SmallInteger;

 createEqualityIndexOn: ’lengthOfService’
withLastElementClass: SmallInteger

myEmployees selectAsStream:
 { :emp | emp.age > emp.lengthOfService }
%

Formulating a query using selectAsStream: is inappropriate for these cases:

 • You wish to modify the receiver of the message (the nonsequenceable
collection) by adding or removing elements.

 • You want to modify instance variables upon which the query is based in the
elements returned by the stream, while you are accessing the stream. Doing
so can cause a GemStone error or corrupt the stream. If you must modify the
receiver or its elements based on the query, use select: instead, which
returns the entire resulting collection at once.

Querying Additional Query Protocol

July 1996 GemStone Systems, Inc. 5-19

5.3 Additional Query Protocol
In addition to select: , three other messages search when sent to a collection with
a selection block as argument.

If you want to use the associative access mechanism to retrieve all elements of a
constrained Collection for which a a selection block is false, send reject: aBlock.
The following expression, for example, retrieves all elements of myEmployees not
named 'Lurleen':

Example 5.14

myEmployees reject: {:i | i.name = ’Lurleen’}

The messages detect: aBlock and detect: aBlock ifNone: exceptionBlock can
also take selection blocks as arguments when sent to collections. The message
detect: aBlock returns a single element of the receiver that meets the criteria
specified in aBlock. The following expression returns an Employee of age 40:

Example 5.15

myEmployees detect: {:i | i.age = 40}

Since nonsequenceable collections are by definition unordered, there is no telling
which element will be returned when there are several qualified candidates. If no
elements are qualified, detect: issues an error notification and the interpreter
halts.

If you don’t want the interpreter to halt in the event of a fruitless search, use
detect: aBlock ifNone: exceptionBlock. See Chapter 4, “Collection and Stream
Classes.”)

Indexing For Faster Access GemStone Programming Guide

5-20 GemStone Systems, Inc. July 1996

5.4 Indexing For Faster Access
Although queries using selection blocks can execute more rapidly than
conventional selections that pass messages, their default behavior is to search
collections in a relatively inefficient sequential manner. Given the right
information, however, Smalltalk can build indexes that use as keys the values of
instance variables within the elements of a collection. The keys can be the
collection’s elements or the values of instance variables of the collection’s
elements. In fact, keys can be the values of variables nested within the elements of
a collection up to 16 levels deep. Values that serve as keys need not be unique.

In the presence of indexes, collections need not be searched sequentially in order
to answer queries. Therefore, searching a large indexed collection can be
significantly faster than searching a similar, nonindexed collection.

Smalltalk can create and maintain two kinds of indexes: identity indexes, which
facilitate identity queries, and equality indexes, which facilitate equality queries.

Identity Indexes
Identity indexes accelerate identity queries. The simplest kind of identity query
selects the elements of a collection in which some instance variable is identical to
(or not identical to) a target value. The following example retrieves from a
collection of employees those elements in which the instance variable age has the
value 40:

Example 5.16

|age40Employees |
age40Employees := myEmployees select:
 {:anEmployee | anEmployee.age == 40}
aSetOfEmployees

In order to execute such a query with the greatest possible efficiency, you need to
have built an identity index on the constrained path to the instance variable age.

Querying Indexing For Faster Access

July 1996 GemStone Systems, Inc. 5-21

Creating Identity Indexes

To create an identity index, use UnorderedCollection’s selector
createIdentityIndexOn: , which takes as its argument a path, specified as a
string. Here is a message telling myEmployees to create an identity index on the
instance variable age within each of its elements:

myEmployees createIdentityIndexOn: ’age’.

Another example may be helpful. Given that each Employee’s instance variable
address contains another instance variable, zipcode, the following statement creates
an identity index on the zipcodes nested within the elements of the IdentityBag
MyEmployees:

myEmployees createIdentityIndexOn: ’address.zipcode’.

For large collections, it may take a long time to create an index in one transaction.
So, for these large collections, you may choose to commit your work to the
repository before the index is completed with the method:

createIdentityIndexOn: aPathString commitInterval: aNumber

The sender specifies an interval what which to commit results during the
enumeration of the collection. By breaking the index creation into multiple,
smaller transactions, the overall time required to build the index is shorter.

While the index is being created, the index is write-locked. Any query that would
normally use the index is performed directly on the collection, by brute force. If a
concurrent user modifies a object that is actively participating in the index at the
same time, the createIdentityIndexOn: method is terminated with an error.

The message progressOfIndexCreation returns a description of the current
status for an index as it is created.

Indexing For Faster Access GemStone Programming Guide

5-22 GemStone Systems, Inc. July 1996

Equality Indexes
Equality indexes facilitate equality queries. The simplest kind of equality query
selects the elements of a collection in which a particular named instance variable
is equal to some target value.

The following example retrieves from a collection of employees those elements in
which the instance variable name has the value ’Fred’:

Example 5.17

| freds |
freds := myEmployees select:
 { :anEmployee | anEmployee.name = 'Fred' }
aSetOfEmployees

As explained in a previous section, equality queries use the related comparison
operators =, <, <=, > , and >=.

You can create equality indexes on the following kinds of objects:

You can create equality indexes on classes you have defined, as long as they either
implement or inherit at least methods for the selectors =, >, >=, <, <=. One or more
of these methods can be implemented in terms of the others, if necessary.

Creating Equality Indexes

The technique for creating equality indexes is similar to the technique for creating
identity indexes. To create an equality index for a path whose instance variables
are all constrained, send the message createEqualityIndexOn: with a path as
its argument.

You can create an equality index on the instance variable name within each element
of the collection myEmployees, assuming that the class of myEmployees is
constrained to hold instances of the class Employee, and name is constrained to be
an instance of String:

myEmployees createEqualityIndexOn: 'name'.

 • Boolean • Number

 • Character • String

 • DateTime • UndefinedObject

Querying Indexing For Faster Access

July 1996 GemStone Systems, Inc. 5-23

To create an equality index directly on the elements of a collection instead of on
instance variables of those elements, you can give an empty string as the path
argument to the indexing message. The following example creates an equality
index on the elements of the collection aBagOfAnimals (a collection constrained to
hold only instances of Animal):

aBagOfAnimals createEqualityIndexOn: ''.

You can also create an equality index on the elements of a collection, or on instance
variables of those elements, when any or all elements of the path, including the
final one, have not been constrained. To do so, specify the class of the final element
of the path by sending the message:

createEqualityIndexOn: aPath withLastElementClass: aClass

The argument to the first keyword is a path (or an empty string); the argument to
the second keyword is the name of the class whose instances you expect to
encounter at the end of the path.

Some examples:

aBagOfAnimals createEqualityIndexOn: ''
withLastElementClass: Animal.

myEmployees createEqualityIndexOn: 'address'
 withLastElementClass: Address.

myEmployees createEqualityIndexOn: 'department.manager'
 withLastElementClass: Employee.

Creating Indexes on Very Large Collections

For large collections, it may take a long time to create an index in one transaction.
For those collections, you may choose to commit your work to the repository
before the index is completed with the methods:

createEqualityIndexOn: aPathString commitInterval: aNumber
createEqualityIndexOn: aPathString withLastELementClass: aClass
 commInterval: aNumber

These messages work in the manner previously described, but the sender specifies
an interval what which to commit results during the enumeration of the collection.
By breaking the index creation into multiple, smaller transactions, the overall time
required to build the index is shorter.

Indexing For Faster Access GemStone Programming Guide

5-24 GemStone Systems, Inc. July 1996

While the index is being created, the index is write-locked. Any query that would
normally use the index is performed directly on the collection, by brute force. If a
concurrent user modifies a object that is actively participating in the index at the
same time, the method terminates with an error.

The message progressOfIndexCreation returns a description of the current
status for an index as it is created.

Automatic Identity Indexing

Smalltalk can build either identity or equality indexes on atomic objects—that is,
instances of Boolean, Character, SmallInteger and UndefinedObject. In fact, for
those kinds of objects, equality and identity are the same, so creating an equality
index effectively creates an identity index as well.

Implicit Indexes

In the process of creating an index on a nested instance variable, Smalltalk also
creates identity indexes on the values that lie on the path to that variable. For
example, creating an equality index on last in the following expression also creates
an identity index on name.

myEmployees createEqualityIndexOn: ’name.last’.

Therefore, executing the above expression allows you to make indexed identity
queries in terms of name values without explicitly creating an index on name.

Indexes and Transactions
Adding an object to an indexed collection writes that object to the repository.
Similarly, creating or removing an index on a collection writes elements of the
collection. Finally, modifying an object that participates in an index on some
collection can, under certain circumstances, write certain objects built and
maintained internally by GemStone as part of the indexing mechanism. Chapter 6,
“Transactions and Concurrency Control,” explains the significance of your writing
an object.

Querying Indexing For Faster Access

July 1996 GemStone Systems, Inc. 5-25

Inquiring About Indexes
Class UnorderedCollection defines messages that enable you to ask collections
about the indexes on their contents. These messages are:

 • equalityIndexedPaths and identityIndexedPaths

Returns, respectively, the equality indexes and the identity indexes on the
receiver’s contents. Each message returns an array of strings representing the
paths in question.

This example returns the paths into myEmployees that bear equality indexes:

myEmployees equalityIndexedPaths

 • kindsOfIndexOn: aPathNameString

Returns information about the kind of index present on an instance variable
within the elements of the receiver. The information is returned as one of these
symbols: #none, #identity, #equality, #identityAndEquality.

 • equalityIndexedPathsAndConstraints

Returns an array in which the odd-numbered elements are the elements of the
path, and the even-numbered elements are the constraints, if any, on those
elements. These include both constraints specified explicitly in a class
definition and those specified when creating an index using the keyword
withLastElementClass: .

The following sections describe several practical uses for these messages.

Indexing For Faster Access GemStone Programming Guide

5-26 GemStone Systems, Inc. July 1996

Removing Indexes
Class UnorderedCollection defines these messages for removing indexes from a
collection:

 • removeEqualityIndexOn: aPathString

Removes an equality index from the variable indicated by aPathString. If the
path specified does not exist (perhaps because you mistyped), this method
returns an error. If the path specified was implicitly created, the method
returns the path, but the index is not removed. If the index is successfully
removed, the method returns the receiver.

 • removeIdentityIndexOn: aPathString

 Removes identity indexes. If the path specified does not exist, the method
returns an error. If the path specified was implicitly created, the method
returns the path, but the index is not removed. If the index is successfully
removed, the method returns the receiver.

 • removeAllIndexes

Removes all explicitly created indexes from the receiver. If the receiver retains
implicit indexes after the removal, this method returns an array indicating that
the receiver participates, as an element of a path, in indexes created on other
collections. Otherwise, this method returns the receiver.

For complete information on these methods, see the GemStone Kernel Reference.

Implicit Index Removal

As previously explained, building an index on the path 'a.b.c' causes GemStone to
create implicit identity indexes on the paths 'a.b' and 'a', as well. When you remove
explicitly created indexes, the implicit ones that were created on the same path are
also removed. That is, when you remove indexes from the path 'a.b.c', GemStone
also removes the implicit indexes from the paths 'a.b' and 'a'.

Implicitly created indexes cannot be explicitly removed. However, explicitly
created indexes must be explicitly removed.

Transferring Indexes

As explained elsewhere in this chapter, a collection returned by select: is
devoid of indexing, even when select: ’s receiver has indexes in place.

In general, assume that any operation that transfers or re-creates the elements of a
collection preserves any constraints it might have, but destroys indexes. For

Querying Indexing For Faster Access

July 1996 GemStone Systems, Inc. 5-27

example, when you copy a collection, the copy retains the original constraints but
loses indexes. Migrating an indexed collection destroys its indexes.

Fortunately, the index inquiry protocol for UnorderedCollection makes it easy to
transfer indexes to a new collection:

Example 5.18

| someEmployees identityIndexes equalityIndexes |
"First, gather some elements of myEmployees into a new
Collection."
someEmployees := myEmployees select:
 { :anEmp | anEmp.job = 'clerk'}.
"Now make some arrays containing the indexes on employees."
identityIndexes := myEmployees identityIndexedPaths.
equalityIndexes := myEmployees equalityIndexedPaths.

"For each index on myEmployees, create a similar index on
someEmpolyees."
1 to: (identityIndexes size) do:
 [:n | someEmployees createIdentityIndexOn:
 (identityIndexes at: n)].
1 to: (equalityIndexes size) do:
 [:n | someEmployees createEqualityIndexOn:
(equalityIndexes at:n)withLastElementClass: SmallInteger].

Removing and Re-creating Indexes

For several reasons, you may sometimes wish to remove indexes temporarily and
then create them again. For example, you may wish to accelerate updates or you
may be migrating a class to a new version.

Whenever you change the value of an object that participates in an index, Smalltalk
automatically adjusts the indexes to accommodate the new value. Obviously, this
entails more work than must ordinarily be done when a value changes.

Therefore, when your program needs to make a large batch of changes to an object
that participates in an index, it might be most efficient to remove some or all of the
object’s indexes before performing the updates. When the frequency of updates to
the object decreases, you can rebuild the indexes to accelerate queries again.

Indexing For Faster Access GemStone Programming Guide

5-28 GemStone Systems, Inc. July 1996

When you migrate an explicitly indexed collection from one version to another, its
index is automatically removed. To accelerate queries, you may wish to create the
index anew after the collection has been migrated. If the original path was not
constrained, an error arises if you use equalityIndexedPaths to determine the
indexes beforehand so that you can re-create them later. Instead, send the message
equalityIndexedPathsAndConstraints to determine the argument to use,
and re-create the index with the message createEqualityIndexOn:
withLastElementClass: , using as the argument to the last keyword the
appropriate class returned from equalityIndexedPathsAndConstraints .
See the comment for this method in the GemStone Kernel Reference for complete
details on its return value.

Indexing and Authorization
When you query an UnorderedCollection that contains an element you are not
authorized to read, you will get an authorization error, regardless of whether the
collection is indexed, However, under certain narrow circumstances, indexing an
UnorderedCollection can cause spurious authorization errors. The sequence of
events that can lead to such errors is:

1. An object that participates in the index was once assigned to a segment for
which you lack authorization.

2. The object is moved from that segment to another segment that you are, in fact,
authorized to read.

Under those circumstances, the indexing system does not automatically recognize
the move, which causes inappropriate authorization errors for queries on the
UnorderedCollection. If you believe that you are experiencing spurious
authorization errors, execute an expression of the form:

aBag recomputeIndexSegments

Executing such an expression removes the problem for the duration of your
session. If you wish to remove the problem for other sessions or other users,
commit the transaction after executing the expression.

Indexing and Performance
Under ordinary circumstances, indexing a large collection speeds up queries
performed on that collection and has little effect on other operations. Under
certain uncommon circumstances, however, indexing can cause a performance
bottleneck.

Querying Indexing For Faster Access

July 1996 GemStone Systems, Inc. 5-29

For example, you may notice slower than acceptable performance if you are
making a great many modifications to the instance variables of objects that
participate in an index, and:

 • the path of the index is long; or

 • the object occurs many times within the indexed IdentityBag or Bag (recall that
neither IdentitySet nor Set may have multiple occurrences of the same object);
or

 • the object participates in many indexes.

Even so, indexing a large collection is still likely to improve performance unless
more than one of these circumstances holds true. If you do experience a
performance problem, you can work around it in one of two ways:

 • If you have created relatively few indexes but are modifying many indexed
objects, it may be worthwhile to remove the indexes, modify the objects, and
then re-create the indexes.

 • If you are making many modifications to only a few objects, or if you have
created a great many indexes, it is more efficient to commit frequently during
the course of your work. That is, modify a few objects, commit the transaction,
modify a few more objects, and commit again. Frequent commits improve
performance noticeably.

Indexing Errors
When you create an index on an unconstrained collection, or on a path that
includes unconstrained instance variables, it is possible to encounter an object for
which the specified path is in error. For example, imagine that the class Employee
defines the instance variable address, which is intended to store instances of the
class Address. The current class Address includes an instance variable named
zipCode. However, the employees that have worked for your company the longest
store instances of a previous version of Address that did not include this instance
variable. You then attempt to create an index on the following path for such a
collection:

myEmployees createEqualityIndexOn: 'address.zipCode'

When GemStone finds the employees whose addresses do not contain a zip code,
it notifies you of an error. However, creating an index is an operation that creates
a complex and specialized indexing structure. An error in the middle of this
operation can leave the indexing structure in an inconsistent state. In order to
avoid this, a transaction in which such an operation occurs cannot be committed.

Nil Values and Selection GemStone Programming Guide

5-30 GemStone Systems, Inc. July 1996

If you think you may have a collection in which this could be a problem, create its
index in a transaction by itself.

For the same purpose of maintaining the internal consistency of indexing
structures, authorization errors encountered while creating or removing an index,
adding or removing an object from an indexed collection, or changing an object
that participates in an index also prevent the transaction in which they occurred
from being committed.

For details on authorization errors, see the GemStone System Administration Guide.
For details on committing transactions, see Chapter 6.

Errors can also arise when you must remove indexes and re-create them later.

5.5 Nil Values and Selection
Be careful about storing nil in any instance variable that can participate in indexed
queries. When nil appears anywhere in a path except as the last value, selection
block predicates using that path return false without any warning that false might
be a spurious result.

For example, suppose that each employee’s name instance variable contained the
two additional indexed variables first and last. Imagine, too, that some employees
had name set to nil to represent “unknown.” The following selection, meant to
return all employees not named Sergio, also excludes those whose names are
unknown (nil):

myEmployees select: {:anEmp | anEmp.name.first ~= 'Sergio'}

The result might be misleading, because employees with undefined names (nil) are
excluded in addition to employees named ’Sergio’. If it is impractical to rule out
the possibility of employees with nil names, then it is preferable to formulate the
query this way:

myEmployees select: {:anEmp | (anEmp.name ~= nil) &
 (anEmp.name.first ~= 'Sergio') }

Problems with misleading results can also arise if you compare NaN values during
searches. For purposes of associative access, a NaN is never equal to anything else.
This means that you cannot use select: to search for NaNs.

Querying Paths Containing Collections

July 1996 GemStone Systems, Inc. 5-31

5.6 Paths Containing Collections
So far in this chapter, we have discussed only paths that traverse single instance
variables from object to object. Another kind of path is created when any term
except the first, includes an UnorderedCollection instead of a single object.

Paths that include an UnorderedCollection can be used within selection blocks, to
create indexes, or to remove indexes. They cannot be used for sorting or to replace
any other kind of expression.

When you wish to specify a path containing an UnorderedCollection, the
collection is represented by an asterisk. For example, suppose you want to know
which of your employees has children of age 18 or younger. To facilitate such
queries, each of your employees has an instance variable named children, which is
implemented as a set. This set contains instances of a class that has an instance
variable named age. We can make the query this way:

myEmployees select: {:anEmp | anEmp.children.*.age <= 18 }

The asterisk in the path above indicates that the query is to examine all elements
of the set children.

You are free to put as many asterisks in a path as you need, except as the first term
in the path. However, a combinatorial explosion can result. A query searching all
elements of a collection that in turn includes other collections is potentially time-
consuming if the collections are large.

To take another example, suppose that each employee has a set of skills, and each
skill is ranked at a level of 1, 2, or 3, where a skill level of 1 means that the employee
is a novice at the skill and requires supervision, 2 means that the employee can
perform work requiring the skill without supervision, and 3 means that the
employee can supervise another employee trying to learn that skill. Each
employee has an instance variable skills, which is implemented as a set. The set
contains instances of class Skill, a relatively simple object containing the instance
variable type—a string such as ’welding’ or ’lathing’ , and the instance
variable level, which is an integer.

If you want to know which employees possessed some skills at level 3, and could
therefore function as teachers, you can query the object server as follows:

myEmployees select: {:anEmp | anEmp.skills.*.level = 3 }

This query returns all employees who possess any skill at all at the highest level. If
you wish to know which employees have reached level 3 at all their skills, you
must subtract those employees who have any skills at a lower level from the

Paths Containing Collections GemStone Programming Guide

5-32 GemStone Systems, Inc. July 1996

previous result. For this purpose, IdentityBag implements the selector - (minus) to
return only the difference between the two sets:

Example 5.19

Object subclass: ’Skill’
 instVarNames: #(’level’)
 classVars: #()
 poolDictionaries: #[]
 inDictionary: UserGlobals
 constraints: #[#[#level, SmallInteger]]
 isInvariant: false

Skill compileAccessingMethodsFor: Skill.instVarNames

(IdentitySet subclass: ’SetOfSkills’
 instVarNames: #()
 classVars: #()
 poolDictionaries: #[]
 inDictionary: UserGlobals
 constraints: Skill
 isInvariant: false) name
(Object subclass: ’Employee’
 instVarNames: #(’skills’ ’name’ ’job’ ’age’ ’address’
’salary’)
 classVars: #()
 poolDictionaries: #[]
 inDictionary: UserGlobals
 constraints: #[#[#skills, SetOfSkills]]
 isInvariant: false) name
Employee compileAccessingMethodsFor: Employee.instVarNames

(IdentitySet subclass: ’SetOfEmployees’
 instVarNames: #()
 classVars: #()
 poolDictionaries: #[]
 inDictionary: UserGlobals
 constraints: #()
 isInvariant: false) name

| Conan Lurleen Fred myEmployees |
Conan := (Employee new) name: ’Conan’; job: ’librarian’;

Querying Paths Containing Collections

July 1996 GemStone Systems, Inc. 5-33

 age: 40; address: ’999 W. West’; salary: 123.45;
 skills: (SetOfSkills new add:
 (Skill new level: 2); yourself).
Fred := (Employee new) name: ’Fred’; job: ’clerk’;
 age: 40; address: ’221 S. Main’;
 skills: (SetOfSkills new add:
 (Skill new level: 1); yourself).
Lurleen := (Employee new) name: ’Lurleen’; job: ’busdriver’;
 age: 24; address: ’540 E. Sixth’;
 skills: (SetOfSkills new add:
 (Skill new level: 3); yourself).

myEmployees := SetOfEmployees new.
UserGlobals at: #myEmployees put: myEmployees;
 at: #Conan put: Conan; at: #Fred put: Fred;
 at: #Lurleen put: Lurleen.

myEmployees add: Fred; add: Lurleen; add: Conan; yourself

(myEmployees select: {:anEmp | anEmp.skills.*.level = 3 }) -
 (myEmployees select: {:anEmp | anEmp.skills.*.level < 3 })

If, on the other hand, you wish to know which employees have not reached level 3
at any skill, you must find all employees who have any skills at the lower levels,
and then subtract those who also have one or more skills at level 3:

Example 5.20

(myEmployees select: {:anEmp | anEmp.skills.*.level < 3 }) -
 (myEmployees select: {:anEmp | anEmp.skills.*.level = 3 })

Using this functionality can produce one kind of surprise—you can occasionally
get a result that has more elements than the receiver. For example, recall the query
we used to determine which employees had children of age 18 or younger. If an
employee in the IdentityBag myEmployees has two children who meet the
criterion, that employee is represented in the result twice. Employees with three
minor children appear in the result three times, and so on. You may find this result
a bit startling, but it conforms to the intent of the class IdentityBag, which allows
duplicate entries.

Sorting and Indexing GemStone Programming Guide

5-34 GemStone Systems, Inc. July 1996

5.7 Sorting and Indexing
Although indexes are not necessary for sorting, Smalltalk can take advantage of
equality indexes to accelerate some kinds of sorts. Specifically, an index is helpful
in sorting on a path consisting of at most one instance variable name. For example,
an equality index on name makes the following expression execute more quickly
than it would in the absence of an index:

myEmployees sortAscending: 'name'

Similarly, the following expression sorts an IdentityBag more rapidly with an
index on the path ’ ’ (the elements of the collection):

myBagOfStrings sortAscending: ''.

Chapter

July 1996 GemStone Systems, Inc. 6-1

6 Transactions and
Concurrency
Control

GemStone users can share code and data objects by maintaining common
dictionaries that refer to those objects. However, if operations that modify shared
objects are interleaved in any arbitrary order, inconsistencies can result. This
chapter describes how GemStone manages concurrent sessions to prevent such
inconsistencies.

Gemstone’s Conflict Management
introduces the concept of a transaction and describes how it interacts with
each user’s view of the repository.

Changing Transaction Mode
describes how to start and commit, continue, or abort a transaction in either
automatic or manual transaction mode.

Concurrency Management
introduces optimistic and pessimistic concurrency control.

Controlling Concurrent Access With Locks
discusses the kids of lock you can use to prevent conflict.

Classes That Reduce the Chance of Conflict
describes the classes that help reduce the likelihood of a conflict.

Gemstone’s Conflict Management GemStone Programming Guide

6-2 GemStone Systems, Inc. July 1996

6.1 Gemstone’s Conflict Management
GemStone prevents conflict between users by encapsulating each session’s
operations (computations, stores, and fetches) in units called transactions. The
operations that make up a transaction act on what appears to you to be a private
view of GemStone objects. When you tell GemStone to commit the current
transaction, GemStone tries to merge the modified objects in your view with the
shared object store.

Figure 6.1 illustrates how your view is updated.

Transactions
A transaction maintains a consistent view of the repository. Objects that the
repository contained when you start a transaction are preserved in your view,
even if you are not using them and other users’ actions have rendered them
obsolete. The storage that they are using cannot be reclaimed until you commit or
abort your transaction. Depending upon the characteristics of your particular
installation (such as the number of users, the frequency of transactions, and the
extent of object sharing), this burden can be trivial or significant.

When you log into GemStone, a transaction is started for you. This transaction
exists until you successfully commit the transaction, abort it, or log out. Your view
endures for the length of the transaction, unless you explicitly choose to continue
the transaction and get a new view.

When Should You Commit a Transaction?
Most applications create or modify objects in logically separate steps, combining
trivial operations in sequences that ultimately do significant things. To protect
other users from reading or using intermediate results, you want to commit after
your program has produced some stable and usable results. Changes become
visible to other users only after you’ve committed.

Your chance of being in conflict with other users increases with the time between
commits.

Transactions and Concurrency Control Gemstone’s Conflict Management

July 1996 GemStone Systems, Inc. 6-3

Figure 6.1 View States

Reading and Writing in Transactions
GemStone considers the operations that take place in a transaction (or view) as
reading or writing objects. Any operation that sends a message to an object, or
accesses any instance variable of an object, is said to read that object. An operation
that stores something in one of an object’s instance variables is said to write the
object. While you can read without writing, writing an object always implies

view of current

view of your
Commit

Log out

Log in

Modify an

Start

object

modifications
transaction

C
om

m
it fails

C
om

m
it succeeds

Modify an

view of your
modifications and
updated objects

modified by others

Log out

Log out

Modify an
object Continue Transaction

Commit
transaction

Continue
transaction

view does
not exist

Abort
transaction

Abort transaction

object

committed repository

Gemstone’s Conflict Management GemStone Programming Guide

6-4 GemStone Systems, Inc. July 1996

reading it. GemStone must read the internal state of an object in order to store a
new value in the object.

Operations that fetch information about an object also read the object. In
particular, fetching an object’s size, class, or segment reads the object. An object
also gets read in the process of being stored into another object.

The following expression sends a message to obtain the name of an employee and
so reads the object:

theName := anEmployee name. "reads anEmployee"

The following example, reads aName in the process of storing it in anEmployee.
Reading aName is necessary to ensure that storing it won’t violate any of
anEmployee’s constraints on the instance variable name:

anEmployee name: aName "writes anEmployee, reads aName"

 In this example, anEmployee is written in the same operation that aName is read.

Some less common operations cause objects to be read or written:

 • Assigning an object to a new segment, using the message
assignToSegment:, writes the object and reads both the old and the new
segment.

 • Adding an object to an indexed collection for the first time, creating an index
on a collection, or removing an index on a collection writes the elements of the
collection.

 • Modifying an object that participates in an index may write support objects
built and maintained as part of the indexing mechanism.

For the purposes of detecting conflict among concurrent users, GemStone keeps
separate sets of the objects you have written during a transaction and the objects
you have only read. These sets are called the write set and the read set; the read set
is always a superset of the write set.

Reading and Writing Outside of Transactions
Outside of a transaction, reading an object is accomplished precisely the same way.
You can write objects in the same way as well, but you cannot commit these
changes to make them a permanent part of the repository.

Transactions and Concurrency Control How GemStone Detects Conflict

July 1996 GemStone Systems, Inc. 6-5

6.2 How GemStone Detects Conflict
GemStone detects conflict by comparing your read and write sets with those of all
other transactions committed since your transaction began. The following
conditions signal a possible concurrency conflict:

 • An object in your write set is also in the write set of another transaction—a
write/write conflict. Write-write conflicts can involve only a single object.

 • An object in your write set is in the read set of another transaction, and an
object in your read set is in any other concurrent transaction’s write set—a
read/write conflict. A concurrent transaction is any transaction that was
committed between the time you started your transaction and the time you
tried to commit your transaction. The conflicting read set and the conflicting
write set need not be associated with the same concurrent transaction. A read-
write conflict must always involve at least two objects, but sometimes involves
more.

You set the level of checking the object server does with the
CONCURRENCY_MODE configuration parameter in your application’s
configuration file. Your choices are:

 • FULL_CHECKS

Checks for both write/write and read/write conflicts. This is the default mode
because it is the safest.

 • NO_RW_CHECKS

Performs write/write checking only. If a write/write conflict is detected, then
your transaction cannot commit; read/write conflicts are ignored. This mode
allows an occasional out-of-date entry to overwrite a more current one. You
can use object locks to enforce more stringent control if you can anticipate the
problem.

The FULL_CHECKS setting is the most convenient and efficient if:

 • you are not sharing data with other sessions, or

 • you are reading data but not writing, or

 • you are writing a limited amount of shared data and you can tolerate not being
able to commit your work sometimes, or

 • you are not likely to write the same objects as another concurrent session.

How GemStone Detects Conflict GemStone Programming Guide

6-6 GemStone Systems, Inc. July 1996

Concurrency Management
As the application designer, you determine your approach to concurrency control.

 • Using the optimistic approach to concurrency control, you simply read and
write objects as if you were the only user. The object server detects conflicts
with other sessions only at the time you try to commit your transaction. Your
chance of being in conflict with other users increases with the time between
commits and the size of your read set and you write set.

Although easy to implement in an application, this approach entails the risk
that you might lose the work you’ve done if conflicts are detected and you are
unable to commit.

 • Using the pessimistic approach to concurrency control, you detect and prevent
conflicts by explicitly requesting locks that signal your intentions to read or
write objects. By locking an object, other users are unable to use the object in a
way that conflicts with your purposes. If you are unable to acquire a lock, then
someone else has already locked the object and you cannot use the object. You
can then abort the transaction immediately instead of doing work that can’t be
committed.

 • Using Reduced Conflict Classes to perceive a write/write conflict and further
test the changes to see if they can truly be added concurrently. In some cases,
allowing operations to succeed leaves the object in a consistent state, even
though a write conflict is detected.

The GemStone reduced-conflict classes work well in situations that otherwise
experience unnecessary conflicts. These classes are: RcCounter, RcIdentityBag,
RcQueue, and RcKeyValueDictionary. See “Classes That Reduce the Chance
of Conflict” on page 6-26.

Transactions and Concurrency Control How GemStone Detects Conflict

July 1996 GemStone Systems, Inc. 6-7

Transaction Modes
You use GemStone in either of two modes:

 • automatic transaction mode

In this mode, GemStone begins a transaction when you log in, and starts a new
one after each commit or abort message. In this default mode, you are in a
transaction the entire time you are logged into a GemStone session. If the work
you are doing requires committing to the repository frequently, you need to
use the automatic transaction mode as you cannot make permanent changes
to the repository when you are outside a transaction.

 • manual transaction mode

In manual transaction mode, you may be logged in and outside of a
transaction. You explicitly control whether your session can commit.
Although when you log in a transaction is started for you, you can set the
transaction mode to manual, which aborts the current transaction and leaves
you outside a transaction. Then you can start a transaction when you are ready
to commit. Manual transaction mode provides a method of minimizing the
transactions, while still managing the repository for concurrent access.

In this state, you can view the repository, browse objects, and make
computations based upon object values. You cannot make permanent any
changes, nor add any new objects you may have created while outside a
transaction. You can start a transaction at any time during a session, and carry
temporary results you may have computed while outside a transaction into
your new transaction. Here they can be committed, subject to the usual
constraints of conflict-checking.

To determine the transaction mode you are in, print the results of sending the
message:

System transactionMode

Changing Transaction Mode
To change to manual transaction mode, send the message:

System transactionMode: #manualBegin

This message aborts the current transaction and changes the transaction mode. It
does not start a new transaction, but it does provide a fresh view of the repository.
(Use #autoBegin to returns to automatic transaction mode.)

How GemStone Detects Conflict GemStone Programming Guide

6-8 GemStone Systems, Inc. July 1996

Beginning New Manual Transactions

In manual transaction mode, you can start a transaction by sending the message:

System beginTransaction

This message gives you a fresh view of the repository and starts a transaction.
When you commit or abort this new transaction, you will again be outside of a
transaction until you either explicitly begin a new one or change transaction
modes.

If you send the message System beginTransaction while you are already in
a transaction, GemStone does an abort.

You can determine whether you are currently in a transaction by sending the
message:

System inTransaction

This message returns true if you are in a transaction and false if you are not.

Committing Transactions
Committing a transaction has two effects:

 • It makes your new and changed objects visible to other users as a permanent
part of the repository.

 • It makes visible to you any new or modified objects that have been committed
by other users in an up-to-date view of the repository.

When you tell GemStone to commit your transaction, the object server:

1. Checks whether other concurrent sessions have committed transactions that
modify an object that you modified during your transaction.

2. Checks whether other concurrent sessions have committed transactions that
modify an object that you have read during your transaction.

3. Checks for locks set by other sessions that indicate the intention to modify
objects that you have read.

Transactions and Concurrency Control How GemStone Detects Conflict

July 1996 GemStone Systems, Inc. 6-9

If none of these conditions is found, GemStone commits the transaction. The
message commitTransaction commits the current transaction:

Example 6.1

UserGlobals at: #SharedDictionary put: SymbolDictionary new.

SharedDictionary at: #testData put: 'a string'.
"modifies private view"

System commitTransaction.
"commit the transaction, merging my private view
 of SharedDictionary with the committed repository"

%

The message commitTransaction returns true if GemStone commits your
transaction and false if it can’t. To find why your transaction failed to commit, you
can send the message:

System transactionConflicts

This method returns a symbol dictionary in which the keys indicate the kind of
conflict detected; they are one of a set of symbols as shown in Table 6.1.

If the transaction experienced no conflicts, an empty dictionary is returned.
Conflict sets are cleared at the beginning of a commit and can be examined until
the next commit.

Table 6.1 Transaction Conflict Keys

Key Meaning

#'Read-Write' ReadSet and WriteSetUnion conflict.

#'Write-Read' WriteSet and ReadSetUnion conflict.

#'Write-Write' WriteSet and WriteSetUnion conflict.

#'Read-ExclusiveLock' ReadSet and ExclusiveLockSet conflict.

#'Write-ReadLock' WriteSet and ExclusiveLockSet conflict.

#'Write-WriteLock' WriteSet and WriteLockSet conflict.

#Rc-Write-Write Write-Write conflict on an instance of a
reduced conflict class.

How GemStone Detects Conflict GemStone Programming Guide

6-10 GemStone Systems, Inc. July 1996

Handling Commit Failure In A Transaction
If GemStone refuses to commit your transaction, the transaction read or wrote an
object that another user modified and committed to the repository since your
transaction began. Because you can’t undo a read or a write operation, simply
repeating the attempt to commit will not succeed.

You must abort the transaction in order to get a new view of the repository and,
along with it, an empty read set and an empty write set. A subsequent attempt to
run your code and commit the view can succeed. If the competition for shared data
is heavy, subsequent transactions can also fail to commit. In this situation, locking
objects that are frequently modified by other transactions gives you a better chance
of committing.

One common cause of a write-write conflict occurs when two users
simultaneously try to override the same inherited method, even though the two
users are implementing their methods in two different subclasses. If both of the
subclasses to which the users are adding the method have been committed, but
neither subclass implemented the inherited method, the first user who tries to
commit will succeed, but the second user will get a write-write conflict for that
method in the superclass’s method dictionary. In this case, the second user can
commit after aborting the transaction, because the first user will have completed
the implementation and will no longer be in the first user’s write set.

Indexes and Concurrency Control
Building an index on a collection effectively writes all of the elements in the
collection and all values of instance variables that participate in the index (those
that appear in the indexed path). As a result, it is possible to experience conflict on
objects that you have not explicitly written.

Consider the following expression:

myEmps createEqualityIndexOn: ’department.manager.name’

This expression writes all of the employees in myEmps, the department instance
variable in every instance of Employee, the manager instance variable in every
instance of Department, and the name instance variable in every instance of
Manager (assuming such classes).

If one transaction builds an index on salary into a collection of employees and a
second transaction modifies the salary of one of the employees in the collection, the
two transactions will conflict on the modified employee. This conflict occurs even
though the first transaction has not explicitly modified any of the employees, and
the second transaction has not explicitly modified the collection.

Transactions and Concurrency Control How GemStone Detects Conflict

July 1996 GemStone Systems, Inc. 6-11

Although unlikely, it is possible that you can encounter conflict on the internal
indexing structures used by GemStone. For example, if two transactions modify
the salaries of different employees that participate in the same indexed set, it is
possible that both transactions will modify the same internal indexing structure
and therefore conflict, despite the fact that neither transaction has explicitly
accessed an object written by the other transaction.

To check this possibility, examine the dictionary returned by evaluating System
transactionConflicts . If it refers to instances of the classes DependencyList,
IndexList, or any class containing “Btree” in its name, it is likely that you have
experienced a conflict on some portion of an indexing structure. In that case, you
can abort the transaction and try the modification again.

Aborting Transactions
If GemStone refuses to commit your modifications, your view remains intact with
all of the new and modified objects it contains. However, your view now also
includes other users’ modifications to objects that are visible to you, but that you
have not modified. You must take some action to save the modifications in your
session or in a file outside GemStone.

Then you need to abort the transaction. This discards all of the modifications from
the aborted transaction, and gives you a new view containing the shared,
committed objects. Depending on the activities of other users, you can repeat your
operations using the new values and commit the new transaction without
encountering conflicts.The message abortTransaction discards the modified
objects in your view. If you are automatic transaction mode, this message also
begins a new transaction.

Example 6.2

SharedDictionary at: #testData put: 'a string'.
"modifies private view"

System abortTransaction.
"discard the modified copy of SharedDictionary
 and all other modified objects, get a new view,
 and start a new transaction"

Aborting a transaction discards any changes you have made to shared objects
during the transaction. However, work you have done locally within your own
interface is not affected by an abortTransaction . GemStone gives you a new

How GemStone Detects Conflict GemStone Programming Guide

6-12 GemStone Systems, Inc. July 1996

view of the repository that does not include any changes you made to permanent
objects during the aborted transaction. The new view includes changes committed
by other users since your last transaction started. Objects that you have created
locally in your own application, remain until you remove them or end your
session.

Updating the View Without Committing or Aborting

The message continueTransaction gives you a new, up-to-date view of other
users’ committed work without discarding the objects you have modified in your
current session.

The message continueTransaction returns true if your uncommitted changes
do not conflict with the current state of the repository; it returns false is the
repository has changed.

Unlike commitTransaction and abortTransaction ,
continueTransaction does not end your transaction. It has no effect on object
locks. continueTransaction does not discard any changes you have made or
commit any changes. Objects you have modified or created do not become visible
to other users.

Work you have done locally within your own interface is not affected by a
continueTransaction . Objects that you have created in your own application
remain. Similarly, any execution that you have begun continues, unless the
execution explicitly depends upon a successful commit operation.

Being Signaled to Abort

As mentioned earlier, being in a transaction incurs certain costs. When you are in
a transaction, GemStone waits until you commit or abort to reclaim obsolete
objects in your view. When you are outside of a transaction, GemStone warns y9u
when your view is outdated, sending your session the error #rtErrSignalAbort.
You are allowed a certain amount of time to abort your current view, as specified
in the STN_GEM_ABORT_TIMEOUT parameter in your configuration file. (This
parameter is described in the GemStone System Administrator’s Guide.) When you
abort your current view (by sending the message System abortTransaction),
GemStone can reclaim storage and you get a fresh view of the repository.

If you do not respond within the specified time period, the object server forces an
abort, sending your session the error #abortErrLostOtRoot. This indicates that
your view of the repository has been recomputed, and copies of objects that your
application had been holding may no longer be valid.

Transactions and Concurrency Control Controlling Concurrent Access With Locks

July 1996 GemStone Systems, Inc. 6-13

You lose nothing you cannot retrieve — work you have done locally (such as
references to objects within your application) is retained, and you still cannot
commit work to the repository when running outside of a transaction. However,
you must read again those objects that you had previously read from the
repository, and recompute the results of any computations performed on them,
because the object server no longer guarantee that the application values are valid.

Your GemStone session controls whether it receives the error message
#rtErrSignalAbort. To enable receiving it, send the message:

System enableSignaledAbortError

To disable receiving it, send the message:

System disableSignaledAbortError

To determine whether receiving this error message is presently enabled or
disabled, send the message:

System signaledAbortErrorStatus

This method returns true if the error message is enabled, and false if it is disabled.
By default, GemStone sessions disable receiving this error message. The
GemBuilder interfaces may change this default. If you wish to be notified of the
error (for an exception handler for the circumstance), then you must explicitly
enable the signaled abort error.

NOTE:
When running outside a transaction, GemStone behaves as described,
possibly aborting your view, whether or not your session receives the
error message for a signaled abort.The GemBuilder interfaces can handle
this abort request for you. See your GemBuilder manual for details.

6.3 Controlling Concurrent Access With Locks
If many users are competing for shared data in your application, or you can’t
tolerate even an occasional inability to commit, then you can implement
pessimistic concurrency control by using locks.

Locking an object is a way of telling GemStone (and, indirectly, other users) your
intention to read or write the object. Holding locks prevents transactions whose
activities would conflict with your own from committing changes to the
repository. Unless you specify otherwise, GemStone locks persist across aborts. If
you lock on an object and then abort, your session still holds the lock after the
abort. Aborting the current transaction (and starting another, if you are in manual

Controlling Concurrent Access With Locks GemStone Programming Guide

6-14 GemStone Systems, Inc. July 1996

transaction mode) gives you an up-to-date value for the locked object without
removing the lock.

Remember, locking improves one user’s chances of committing only at the
expense of other users. Use locks sparingly to prevent an overall degradation of
system performance.

Locking and Manual Transaction Mode
GemStone permits you to request any kind of lock, no matter your transaction
mode or whether you are in a transaction. When you are using manual transaction
mode and running outside of a transaction, however, you are not allowed to
commit the results of your operations. Requesting a lock under such circumstances
is not helpful, and can adversely affect other users’ ability to get work done. It may
be useful to request a lock to determine whether an object is dirty, and therefore to
ascertain whether your view of it is current and valid. Otherwise, do not
recommended to request a lock when outside a transaction.

Lock Types
GemStone provides three kinds of locks: read, write, and exclusive. A session may
hold only one kind of lock on an object at a time.

Read Locks

Holding a read lock on an object means that you can use the object’s value, and
then commit without fear that some other transaction has committed a new value
for that object during your transaction. Another way of saying this is that holding
a read lock on an object guarantees that other sessions cannot:

 • acquire a write or exclusive lock on the object, or

 • commit if they have written the object.

To understand the utility of read locks, imagine that you need to compute the
average age of a large number of employees. While you are reading the employees
and computing the average, another user changes an employee’s age and commits
(in the aftermath of the birthday party). You have now performed the computation
using out-of-date information. You can prevent this frustration by read-locking the
employees at the outset of your transaction; this prevents changes to those objects.

Transactions and Concurrency Control Controlling Concurrent Access With Locks

July 1996 GemStone Systems, Inc. 6-15

Multiple sessions can hold read locks on the same object. A maximum of 1 million
read locks can be held concurrently, but a maximum of 2000 is recommended.

NOTE:
If you have a read lock on an object and you try to write that object, your
attempt to commit that transaction will fail.

Write Locks

Holding a write lock on an object guarantees that you can write the object and
commit. That is, it ensures that you won’t find that someone else has prevented
you from committing by writing the object and committing it before you, while
your transaction was in progress. Another way of looking at this is that holding a
write lock on an object guarantees that other sessions cannot:

 • acquire any kind of lock on the object, or

 • commit if they have written the object.

Write locks are useful, for example, if you want to change the addresses of a
number of employees. If you write-lock the employees at the outset of your
transaction, you prevent other sessions from modifying one of the employees and
committing before you can finish your work. This guarantees your ability to
commit the changes.

Write locks differ from read locks in that only one session can hold a write lock on
an object. In fact, if a session holds a write lock on an object, then no other session
can hold any kind of lock on the object. This prevents another session from
receiving the assurance implied by a read lock: that the value of the object it sees
in its view will not be out of date when it attempts to commit a transaction.

Exclusive Locks

An exclusive lock is like a write lock in that it guarantees your ability to write an
object. It goes beyond a write lock by guaranteeing that other sessions cannot:

 • acquire any kind of lock on the object, or

 • commit if they have written or read the object.

Exclusive locks are most easily understood by considering an example.

Suppose once more that you want to change the addresses of a set of employees.
Simply write-locking the employees prevents other users from changing the
employees before you have finished with them. It does not, however, prevent
another user from reading the employees’ addresses (to determine geographic
distribution, perhaps), and then writing that derived information in other objects.

Controlling Concurrent Access With Locks GemStone Programming Guide

6-16 GemStone Systems, Inc. July 1996

To prevent another user from obtaining possibly inaccurate data, you must acquire
an exclusive lock on every employee.

GemStone’s exclusive locks correspond to what traditional data management
systems call exclusive locks, or sometimes just write locks. By contrast,
GemStone’s write locks are not exclusive in the conventional sense, because other
sessions can read a write-locked object optimistically (that is, without holding a
lock) and still commit.

Acquiring Locks
The kernel class System is the receiver of all lock requests. The following
statements request one lock of each kind:

Example 6.3

System readLock: SharedDictionary.
System writeLock: myEmployees.
System exclusiveLock: someMoreData.

When locks are granted, these messages return System.

Commits and aborts do not necessarily release locks, although locks can be set up
so that they will do so. Unless you specify otherwise, once you acquire a lock, it
remains in place until you log out or remove it explicitly. (Subsequent sections
explain how to remove locks.) Variants of these messages for locking collections of
objects en masse are described in the section “Locking Collections Of Objects
Efficiently” on page 6-19.

When a lock is requested, GemStone grants it unless one of the following
conditions is true:

 • You do not have suitable authorization. Read locks require read authorization;
write locks and exclusive locks require write authorization.

 • The object is an instance of SmallInteger, Boolean, Character, or nil. Trying to
lock these special, atomic objects is meaningless.

 • The object is already locked in an incompatible way by another session
(remember, only read locks can be shared).

Transactions and Concurrency Control Controlling Concurrent Access With Locks

July 1996 GemStone Systems, Inc. 6-17

Lock Denial

If you request a lock on an object and another session already holds a conflicting
lock on it, then GemStone denies your request; GemStone does not automatically
wait for locks to become available.

If you use one of the simpler lock request messages (such as readLock:), lock
denial generates an error. If you want to take some automatic action in response to
the denial, use a more complex lock request message, such as the one described
above. A lock denial causes GemStone to execute the block argument to
ifDenied: . The method in Example 6.4 uses this technique to request a lock
repeatedly until the lock becomes available:

Example 6.4

anObject := Object new.
%
Object subclass: #Dummy
 instVarNames: #()
 inDictionary: UserGlobals
%
method: Dummy
getReadLockOn: anObject
 "This method tries to lock anObject. If the lock is
 denied, it determines the kind of lock and the user who
 has locked the object."
System readLock: anObject
 ifDenied: [^ #[System lockKind: anObject,
 System lockOwners: anObject]]
 ifChanged: [System abortTransaction].
%
Dummy new getReadLockOn: anObject
%
method: Dummy
getReadLockOn: anObject
System readLock: anObject
 ifDenied: [self getReadLockOn: anObject]
 ifChanged: [System abortTransaction]
%

Dummy new getReadLockOn: Object new

Controlling Concurrent Access With Locks GemStone Programming Guide

6-18 GemStone Systems, Inc. July 1996

Dead Locks

You may never acquire a lock, no matter how long you wait. Furthermore, because
GemStone does not automatically wait for locks, it does not attempt deadlock
detection. It is your responsibility to limit the attempts to acquire locks in some
way. For example, you can write a portion of your application in such a way that
there is an absolute time limit on attempts to acquire a lock. Or you can let users
know when locks are being awaited and allow them to interrupt the process if
needed.

Dirty Locks

If another user has written an object and committed the change since your
transaction began, then the value of the object in your view is out of date. Although
you may be able to acquire a lock on the object, it is a dirty lock because you cannot
use the object and commit, despite holding the lock.

This condition is trapped by the argument to the ifChanged: keyword following
read lock request message:

System readLock: anObject ifDenied: [block1]
 ifChanged: [block2].

Like its simpler counterpart, this message returns System if it acquires a lock on
anObject without complications. It generates an error if the user has no
authorization for acquiring the lock, or selects one of the blocks passed as
arguments and executes that block, returning the block’s value.

For example, if a conflicting lock is held on anObject, this message executes the
block given as an argument to the keyword ifDenied: . Similarly, if anObject has
been changed by another session, it executes the argument to ifChanged: . The
following sections provide some suggestions about the code such blocks might
contain.

Transactions and Concurrency Control Controlling Concurrent Access With Locks

July 1996 GemStone Systems, Inc. 6-19

For example:

Example 6.5

expectvalue %Object
run
anObject := Object new.
%
System readLock: anObject
 ifDenied: []
 ifChanged: [System abortTransaction]
%

To minimize your chances of getting dirty locks, lock the objects you need as early
in your transaction as possible. If you encounter a dirty lock in the process, you can
keep track of the fact and continue locking. After you finish locking, you can abort
your transaction to get current values for all of the objects whose locks are dirty.
For example:

Example 6.6

anObject := Object new.
%

| dirtyBag |
dirtyBag := IdentityBag new.
myEmployees do: [:anEmp |
 System readLock: anEmp
 ifDenied: []
 ifChanged: [dirtyBag add: anEmp]].
dirtyBag isEmpty
 ifTrue: [^true]
 ifFalse: [System abortTransaction].
%

Your new transaction can then proceed with clean locks.

Locking Collections Of Objects Efficiently

In addition to the locking request messages for single objects, GemStone provides
locking request messages that can lock entire collections of objects. If the objects

Controlling Concurrent Access With Locks GemStone Programming Guide

6-20 GemStone Systems, Inc. July 1996

you need to lock are already in collections, or if they can be gathered into
collections without too much work, it is more efficient for you to use the collection-
locking methods than to lock the objects individually.

The following statements request locks on each of the elements of three different
collections:

Example 6.7

UserGlobals at: #myArray put: Array new;
 at: #myBag put: IdentityBag new;
 at: #mySet put: IdentitySet new.
%

System readLockAll: myArray.
System writeLockAll: myBag.
System exclusiveLockAll: mySet.
%

The messages used in this example are similar to the simple, single-object locking-
request messages (such as readLock:) that you’ve already seen. If a clean lock is
acquired on each element of the argument, these messages return System. If you
lack the proper authorization for any object in the argument, GemStone generates
an error and grants no locks.

The difference between these methods and their single-object counterparts is in the
handling of other errors. The system does not immediately halt to report an error
if an object in the collection is changed, or if a lock must be denied because another
session has already locked the object. Instead, the system continues to request
locks on the remaining elements, acquiring as many locks as possible. When the
method finishes processing the entire collection, it generates an error. In the
meantime, however, all locks that you acquired remain in place.

You might want to handle these errors from within your Smalltalk program
instead of letting execution halt. For this purpose, class System provides
collection-locking methods that pass information about unsuccessful lock requests
to blocks that you supply as arguments. For example:

System writeLockAll: aCollection ifIncomplete: aBlock

The argument aBlock that you supply to this method must take three arguments.
If locks are not granted on all elements of aCollection (for any reason except
authorization failure), the method passes three arrays to aBlock and then executes
the block. The first array contains all elements of aCollection for which locks were

Transactions and Concurrency Control Controlling Concurrent Access With Locks

July 1996 GemStone Systems, Inc. 6-21

denied; the second contains all elements for which dirty locks were granted; and
the third is empty (it is there for compatibility with previous versions of
GemStone).

You can then take appropriate actions within the block. For example:

Example 6.8

classmethod: Dummy
handleDenialOn: deniedObjs
^ deniedObjs
%
classmethod: Dummy
getWriteLocksOn: aCollection
System writeLockAll: aCollection
 ifIncomplete: [:denied :dirty :unused |
 denied isEmpty ifFalse: [self handleDenialOn: denied].
 dirty isEmpty ifFalse: [System abortTransaction]]
%

System readLockAll: myEmployees
%

Dummy getWriteLocksOn: myEmployees
%

Upgrading Locks

On occasion, you might want to upgrade a lock; that is, change a read lock to a write
lock or a write lock to an exclusive lock. You might initially intend to read an
object, only to discover later that you must also write the object. Although you
could take the risk of writing the object optimistically (this is, without a write lock),
you might wish to ensure your ability to commit by first upgrading the lock to a
write lock.

GemStone currently provides no built-in support for upgrading locks. However,
you can remove the lock you currently hold and then immediately request an
upgraded lock. In the situation described in the previous paragraph, for example,
you could remove the read lock on the object and then immediately request a write
lock.

Controlling Concurrent Access With Locks GemStone Programming Guide

6-22 GemStone Systems, Inc. July 1996

It is important to request the upgraded lock immediately, because between the
time that the lock is removed, and the time that the upgraded lock is requested,
another session has the opportunity to lock the object, or to write it and commit.

Locking and Indexed Collections
When indexes are present, locking can fail to prevent conflict. The reasons are
similar to those presented above in the section “Indexes and Concurrency Control”
on page 6-10. Briefly, GemStone maintains indexing structures in your view and
does not lock these structures when an indexed collection or one of its elements is
locked. Therefore, despite having locked all of the visible objects that you touched,
you can be unable to commit.

Specifically, this means that:

 • if an object is either an element of an indexed collection, or participates in an
index (meaning it is a component of an element bearing an index);

 • and another session can access the object, an indexed collection of which the
object is a member, or one of its predecessors along the same indexed path—

then locking the object does not guarantee that you can commit after reading
or writing the object.

Therefore, don’t rely on locking an object if the object participates in an index.

Removing or Releasing Locks
Once you lock an object, its default behavior is to remain locked until you either
log out or explicitly remove the lock; unless you specify otherwise, locks persist
through aborts and commits. In general, remove a lock on an object when you
have used the object, committed the resulting values to the repository, and no
longer foresee an immediate need to maintain control of the object.

Class System provides three lock removal messages: one for removing a lock from
a single object, one for removing locks from each of a collection of objects, and one
for removing all locks held by your session. The following statement removes any
lock you might hold on anObject:

System removeLock: anObject

If anObject is not locked, GemStone does nothing. If another session holds a lock
on anObject, this message has no effect on the other session’s lock.

Transactions and Concurrency Control Controlling Concurrent Access With Locks

July 1996 GemStone Systems, Inc. 6-23

The following statement removes any locks you might hold on the elements of
aCollection.

System removeLockAll: aCollection.

If you intend to continue your session, but the next transaction is to work on a
different set of objects, you might wish to remove all the locks held by your
session. The following statement attempts to commit the present transaction and
removes all locks it holds (even if the commit did not succeed):

System commitTransaction; removeLocksForSession

If you wish to commit your transaction and release all the locks you hold in one
operation, the following statement is optimized to do so as efficiently as possible:

System commitAndReleaseLocks

If your transaction fails to commit, all locks are held instead of released.

Releasing Locks Upon Aborting or Committing

After you have locked an object, you can add it to either of two special sets. One
set contains the locked objects whose locks you wish to release as soon as you
commit your current transaction. The other set contains the locked objects whose
locks you wish to release as soon as you either commit or abort your current
transaction. Executing continueTransaction does not release the locks in
either set.

The following statement adds a locked object to the set of objects whose locks are
to be released upon the next commit:

System addToCommitReleaseLocksSet: aLockedObject

The following statement adds a locked object to the set of objects whose locks are
to be released upon the next commit or abort:

System addToCommitOrAbortReleaseLocksSet: aLockedObject

The following statement adds the locked elements of a collection to the set of
objects whose locks are to be released upon the next commit:

System addAllToCommitReleaseLocksSet: aLockedCollection

The following statement adds the locked elements of a collection to the set of
objects whose locks are to be released upon the next commit or abort:

Controlling Concurrent Access With Locks GemStone Programming Guide

6-24 GemStone Systems, Inc. July 1996

System addAllToCommitOrAbortReleaseLocksSet: aLockedCollection
NOTE

If you add an object to one of these sets and then request an updated lock
on it, the object is removed from the set.

You can remove objects from these sets without removing the lock on the object.
The following statement removes a locked object from the set of objects whose
locks are to be released upon the next commit:

System removeFromCommitReleaseLocksSet: aLockedObject

The following statement removes a locked object from the set of objects whose
locks are to be released upon the next commit or abort:

System removeFromCommitOrAbortReleaseLocksSet: aLockedObject

The following statement removes the locked elements of a collection from the set
of objects whose locks are to be released upon the next commit:

System removeAllFromCommitReleaseLocksSet: aLockedCollection

The following statement removes the locked elements of a collection from the set
of objects whose locks are to be released upon the next commit or abort:

System removeAllFromCommitOrAbortReleaseLocksSet: aLockedCollection

You can also remove all objects from either of these sets with one message. The
following statement removes all objects from the set of objects whose locks are to
be released upon the next commit:

System clearCommitReleaseLocksSet

The following statement removes all objects from the set of objects whose locks are
to be released upon the next commit or abort:

System clearCommitOrAbortReleaseLocksSet

The statement System commitAndReleaseLocks also clears both sets if the
transaction was successfully committed.

Inquiring About Locks
GemStone provides messages for inquiring about locks held by your session and
other sessions. Most of these messages are intended for use by the data curator,
but several can be useful to ordinary applications.

The message sessionLocks gives you a complete list of all the locks held by your
session. This message returns a three-element array. The first element is an array

Transactions and Concurrency Control Controlling Concurrent Access With Locks

July 1996 GemStone Systems, Inc. 6-25

of read-locked objects; the second is an array of write-locked objects; the third is an
array of exclusively locked objects.

The following code uses this information to remove all write locks held by the
current session:

System removeLockAll: (System sessionLocks at: 2)

Another useful lock inquiry message is systemLocks , which reports locks on all
objects held by all sessions currently logged in to the repository. The only
exception is that systemLocks does not report on any locks other sessions are
holding on their temporary objects—that is, objects that they have never
committed to the repository. Because such objects are not visible to you in any
case, this omission is not likely to cause a problem. The message systemLocks
can help you discover the cause of a conflict.

Another lock inquiry message, lockOwners: anObject, is useful if you’ve been
unable to acquire a lock because of conflict with another session. This message
returns an array of SmallIntegers representing the sessions that hold locks on
anObject. The method in the following example uses lockOwners: to build an
array of the userIDs of all users whose sessions hold locks on a particular object.

Example 6.9

classmethod: Dummy
getNamesOfLockOwnersFor: anObject
| userIDArray sessionArray |
sessionArray := System lockOwners: anObject.
userIDArray := Array new.
sessionArray do:
 [:aSessNum | userIDArray add:
 (System userProfileForSession: aSessNum) userId].
^userIDArray
%

Dummy getNamesOfLockOwnersFor: (myEmployees detect: {:e | e.name =
’Conan’ })
%

You can test to see whether an object is included in either of the sets of locked
objects whose locks are to be released upon the next abort or commit operation.

Classes That Reduce the Chance of Conflict GemStone Programming Guide

6-26 GemStone Systems, Inc. July 1996

The following statement returns true if the object provided as an argument is
included in the set of objects whose locks are to be released upon the next commit:

System commitReleaseLocksSetIncludes: anObject

The following statement returns true if the object provided as an argument is
included in the set of objects whose locks are to be released upon the next commit
or abort:

System commitOrAbortReleaseLocksSetIncludes: anObject

For information about the other lock inquiry messages, see the description of class
System in the GemStone Kernel Reference.

6.4 Classes That Reduce the Chance of Conflict
Often, concurrent access to an object is structural, but not semantic. GemStone
detects a conflict when two users access the same object, even when respective
changes to the objects do not collide. For example, when two users both try to add
something to a bag they share, GemStone perceives a write/write conflict on the
second add operation, although there is really no reason why the two users cannot
both add their objects. As human beings, we can see that allowing both operations
to succeed leaves the bag in a consistent state, even though both operations modify
the bag.

A situation such as this can cause spurious conflicts. Therefore, GemStone
provides four reduced-conflict classes that you can use instead of their regular
counterparts in applications that might otherwise experience too many
unnecessary conflicts. These classes are:

 • RcCounter,

 • RcIdentityBag,

 • RcQueue, and

 • RcKeyValueDictionary.

Using these classes allows a greater number of transactions to commit
successfully, improving system performance. However, in order to determine
whether it is appropriate for your application to use these reduced-conflict classes,
you need to be aware of the costs:

 • The reduced-conflict classes use more storage than their ordinary
counterparts.

Transactions and Concurrency Control Classes That Reduce the Chance of Conflict

July 1996 GemStone Systems, Inc. 6-27

 • When using instances of these classes, at times your application may take
longer to commit transactions.

 • Under certain circumstances, instances of these classes can hide conflicts from
you that you indeed need to know about. They are not always appropriate.

 • These classes are not exact copies of their regular counterparts. In certain cases
they may behave slightly differently.

“Reduced conflict” does not mean “no conflict.” The reduced-conflict classes do
not circumvent normal conflict mechanisms; under certain circumstances, you will
still be unable to commit a transaction. These classes use different
implementations or more sophisticated conflict-checking code to allow certain
operations that human analysis has determined need not conflict. They do not
allow all operations. Using these classes eliminates read/write conflicts on their
instances, and significantly reduces write/write conflicts.

NOTE:
Unlike other Dictionaries, the class RcKeyValueDictionary does not
support indexing because of its position in the class hierarchy.

RcCounter
The class RcCounter can be used instead of a simple number in order to keep track
of the amount of something. It allows multiple users to increment or decrement the
amount at the same time without experiencing conflicts.

The class RcCounter is not a kind of number. It encapsulates a number—the
counter—but it also incorporates other intelligence; you cannot use an RcCounter
to replace a number anywhere in your application. It only increments and
decrements a counter.

For example, imagine an application to keep track of the number of items in a
warehouse bin. Workers increment the counter when they add items to the bin,
and decrement the counter when they remove items to be shipped. This
warehouse is a busy place; if each concurrent increment or decrement operation
produces a conflict, work slows unacceptably.

Furthermore, the conflicts are mostly unnecessary. Most of the workers can
tolerate a certain amount of inaccuracy in their views of the bin count at any time.
They do not need to know the exact number of items in the bin at every moment;
they may not even worry if the bin count goes slightly negative from time to time.
They may simply trust that their views are not completely up-to-date, and that
their fellow workers have added to the bin in the time since their views were last
refreshed. For such an application, an RcCounter is helpful.

Classes That Reduce the Chance of Conflict GemStone Programming Guide

6-28 GemStone Systems, Inc. July 1996

Instances of RcCounter understand the messages increment (which increments
by 1), decrement (which decrements by 1), and value (which returns the
number of elements in the counter). Additional protocol allows you to increment
or decrement by specified numbers, to decrement unless that operation would
cause the value of the counter to become negative, in which case an alternative
block of code is executed instead, or to decrement unless that operation would
cause the value of the counter to be less than a specified number, in which case an
alternative block of code is executed instead.

For example, the following operations can all take place concurrently from
different sessions without causing a conflict:

Example 6.10

!session 1
UserGlobals at: #binCount put: RcCounter new.
System commitTransaction.
%
!session 2
binCount incrementBy: 48.
System commitTransaction.
%
!session 1
binCount incrementBy: 24.
System commitTransaction.
%
!session 3
binCount decrementBy: 144
 ifLessThan: -24
 thenExecute: [^'Not enough widgets to ship today.'].
System commitTransaction.
%

RcCounter is not appropriate for all applications—for example, it would not be
appropriate to use in an application that keeps track of the amount of money in a
shared checking account. If two users of the checking account both tried to
withdraw more than half of the balance at the same time, an RcCounter would
allow both operations without conflict. Sometimes, however, you need to be
warned—for example, of an impending overdraft.

Transactions and Concurrency Control Classes That Reduce the Chance of Conflict

July 1996 GemStone Systems, Inc. 6-29

RcIdentityBag
The class RcIdentityBag provides much of the same functionality as IdentityBag,
including the expected behavior for add: , remove: , and related messages.
However, no conflict occurs on instances of RcIdentityBag when:

 • any number of users read objects in the bag at the same time;

 • any number of users add objects to the bag at the same time;

 • one user removes an object from the bag while any number of users are adding
objects; and

 • any number of users remove objects from the bag at the same time, as long as
no more than one of them tries to remove the last occurrence of an object.

When your session and others remove different occurrences of the same object,
you may sometimes notice that it takes a bit longer to commit your transaction.

 The class RcIdentityBag does not implement the entire set of methods
implemented in the class IdentityBag. For example, IdentityBag implements a
suite of methods to perform set arithmetic, which are not implemented in the class
RcIdentityBag. If you wish to use any of these methods, you can copy your
instance of RcIdentityBag as an instance of IdentityBag using the message
asIdentityBag . You can then perform the operation on the resulting instance of
IdentityBag and store the result.

Finally, indexing an instance of RcIdentityBag does diminish somewhat its
“reduced-conflict” nature, because of the possibility of a conflict on the underlying
indexing structure. (See “Indexes and Concurrency Control” on page 6-10 for a
more complete explanation of this possibility.) However, even an indexed instance
of RcIdentityBag reduces the possibility of a transaction conflict, compared to an
instance of IdentityBag, indexed or not.

RcQueue
The class RcQueue approximates the functionality of a first-in-first-out queue,
including the expected behavior for add: , remove: , size , and do: , which
evaluates the block provided as an argument for each of the elements of the queue.
No conflict occurs on instances of RcQueue when:

 • any number of users read objects in the queue at the same time;

 • any number of users add objects to the queue at the same time;

 • one user removes an object from the queue while any number of users are
adding objects.

Classes That Reduce the Chance of Conflict GemStone Programming Guide

6-30 GemStone Systems, Inc. July 1996

If more than one user removes objects from the queue, they are likely to experience
a write/write conflict. When a commit fails for this reason, the user loses all
changes made to the queue during the current transaction, and the queue remains
in the state left by the earlier user who made the conflicting changes.

RcQueue approximates a first-in-first-out queue, but it cannot implement such
functionality exactly because of the nature of repository views during transactions.
The consumer removing objects from the queue sees the view that was current
when his or her transaction began. Depending upon when other users have
committed their transactions, the consumer may view objects added to the queue
in a slightly different order than the order viewed by those users who have added
to the queue. For example, suppose one user adds object A at 10:20, but waits to
commit until 10:50. Meanwhile, another user adds object B at 10:35 and commits
immediately. A third user viewing the queue at 10:30 will see neither object A nor
B. At 10:35, object B will become visible to the third user. At 10:50, object A will also
become visible to the third user, and will furthermore appear earlier in the queue,
because it was created first.

Objects removed from the queue always come out in the order viewed by the
consumer.

Because of the manner in which RcQueues are implemented, reclaiming the
storage of objects that have been removed from the queue actually occurs when
new objects are added. If a session adds a great many objects to the queue all at
once and then does not add any more as other sessions consume the objects,
performance can become degraded, particularly from the consumer’s point of
view. In order to avoid this, the producer can send the message
cleanupMySession occasionally to the instance of the queue from which the
objects are being removed. This causes storage to be reclaimed from obsolete
objects.

NOTE:
If you subclass and reimplement these methods, build in a check for nils.
Because of lazy initialization, the expected subcomponents of the
RcQueue may not exist yet.

Transactions and Concurrency Control Classes That Reduce the Chance of Conflict

July 1996 GemStone Systems, Inc. 6-31

RcKeyValueDictionary
The class RcKeyValueDictionary provides the same functionality as
KeyValueDictionary, including the expected behavior for at: , at:put: , and
removeKey: . However, no conflict occurs on instances of RcKeyValueDictionary
when:

 • any number of users read values in the dictionary at the same time;

 • any number of users add keys and values to the dictionary at the same time,
unless a user tries to add a key that already exists;

 • any number of users remove keys from the dictionary at the same time, unless
more than one user tries to remove the same key at the same time; and

 • any number of users perform any combination of these operations.

Classes That Reduce the Chance of Conflict GemStone Programming Guide

6-32 GemStone Systems, Inc. July 1996

Chapter

July 1996 GemStone Systems, Inc. 7-1

7 Object Security and
Authorization

This chapter explains how to set up the object security required for developing an
application and for running the completed application. It covers:

How GemStone Security Works
describes the Gemstone object security model.

An Application Example and A Development Example
provides two examples for defining and implementing object security for your
projects.

Assigning Objects to Segments
summarizes the messages for reporting your current segment, changing your
current segment, and assigning a segment to simple and complex objects.

Privileged Protocol for Class Segment
defines the system privileges for creating or changing segment authorization.

Segment-related Methods
lists the methods that affect segments.

How GemStone Security Works GemStone Programming Guide

7-2 GemStone Systems, Inc. July 1996

7.1 How GemStone Security Works
GemStone provides security at several levels:

 • Login authorization keeps unauthorized users from gaining access to the
repository;

 • Privileges limit ability to execute special methods affecting the basic
functioning of the system (for example, the methods that reclaim storage
space); and

 • Object level security allows specific groups of users access to individual
objects in the repository.

Login Authorization
You log into GemStone through any of the interfaces provided: the GemStone
Smalltalk Interface, Topaz, the C++ interface, or the C interface (see the
appropriate interface manual for details). Whichever interface you use, GemStone
requires the presentation of a user ID (a name or some other identifying string) and
a password. If the user ID and password pair match the user ID and password pair
of someone authorized to use the system, GemStone permits interaction to
proceed; if not, GemStone severs the logical connection.

The GemStone system administrator, or someone with equivalent privileges (see
below), establishes your user ID and password when he or she creates your
UserProfile. The GemStone system administrator can also configure a GemStone
system to monitor failures to log in, and to note the attempts in the Stone log file
after a certain number of failures have occurred within a specified period of time.
A system can also be configured to disable a user account after a certain number
of failed attempts to log into the system through that account. See the GemStone
System Administration Guide for details.

Object Security and Authorization How GemStone Security Works

July 1996 GemStone Systems, Inc. 7-3

The UserProfile

Each instance of UserProfile is created by the system administrator. The
UserProfile is stored with a set of all other UserProfiles in a set called AllUsers.
The UserProfile contains:

 • Your UserID and Password.

 • A SymbolList (the list of symbols (objects) that the user has access to --
UserGlobal and Globals) for resolving symbols at compile-time. Chapter 6,
“Symbol Resolution and Object Sharing,” discusses these topics, so they are
not talked about in this chapter.

 • The groups to which you belong and any special system privileges you may
have.

 • A defaultSegment to assign your session at login.

 • Your language and character set used for internationalization.

See the GemStone System Administration Guide for instructions about creating
UserProfiles.

System Privileges
Actions that affect the entire GemStone system are tightly controlled by privileges
to use methods or access instances of the System, UserProfile, Segment, and
Repository classes. Privileges are given to individual UserProfile accounts to
access various parts of GemStone or perform important functions such as storage
reclamation.

The privileged messages for the System, UserProfile, Segment and Repository
Classes are described in the GemStone Kernel Reference Guide, and their use is
discussed in the GemStone System Administration Guide.

Object Level Security
GemStone Object Level Security allows you to:

 • abstractly group objects;

 • specify who owns the objects;

 • specify who can read them; and

 • specify who can write them.

How GemStone Security Works GemStone Programming Guide

7-4 GemStone Systems, Inc. July 1996

Each site designs a custom scheme for its data security. Objects can be secured for
selective read or write access by a group or individual users. All objects in the
GemStone system are subject to this object level security, just as all access goes
through the authorization system.

The GemStone Segment class facilitates this security.

Segments

Segments are tags that identify the access various users have to the objects tagged
by the segment. All objects assigned to a segment also have exactly the same
protection; that is, if you can read or write one object assigned to a certain segment,
you can read or write them all. Each segment is owned by a single user, and all
objects assigned to the same segment have the same owner. Groups of users can
have read, write, or no access to a segment. Likewise, any authorized GemStone
user can have read, write, or no access to a segment.

Whenever an application tries to access an object, GemStone compares the object’s
authorization attributes in the segment associated with the object with those of the
user whose application is attempting access. If the user is appropriately
authorized, the operation proceeds. If not, GemStone returns an error notification

The user name, group membership, and segment authorization control access to
objects, as shown by Figure 7.6:

Object Security and Authorization How GemStone Security Works

July 1996 GemStone Systems, Inc. 7-5

Figure 7.1 User Access to Application Segment1

Three users access this application:

 • The System Administrator owns segment1 and can read and write the objects
assigned to it.

 • User3 belongs to the Personnel group, which authorizes read and write access
to Segment1’s objects.

 • User2 doesn’t belong to a group that can access Segment1, but can still read
those objects, because Segment1 gives read authorization to all GemStone
users.

Because segments are objects, access to a segment object is controlled by the
segment it is assigned to, exactly like access to any other object. Segment objects
are usually assigned to the DataCurator segment. The access information stored in
the segment object’s own authorizations instance variable, which controls access to
the objects assigned to that segment, does not control access to the segment object
itself.

User3
Group: Admin
 Personnel

Segment1
Owner (System Admin): Write
World: Read
Group1 (Personnel): Write

User2
Group: Payroll
 Admin

User1
System Admin

How GemStone Security Works GemStone Programming Guide

7-6 GemStone Systems, Inc. July 1996

Objects do not “belong” to a segment. It is more correct to say that objects are
associated with a segment. Although objects know which segment they are
assigned to, segments do not know which objects are assigned to them. Segments
are not meant to organize objects for easy listing and retrieval. For those purposes,
you must turn to symbol lists, which are described in Chapter 3, “Name
Resolution and Object Sharing“.

Default Segment and Current Segment

You are assigned a default segment as part of your UserProfile. When you login to
GemStone, your Session uses this default segment as your current segment. Any
objects you create are assigned to your current segment.

Class UserProfile has the message defaultSegment , which returns your default
Segment. Sending the message currentSegment: to System changes your
current segment:

Example 7.1

| aSegment mySegment |
mySegment := System myUserProfile defaultSegment.
aSegment := Segment newInRepository: SystemRepository.
"change my current segment to aSegment"
System currentSegment: aSegment

If you commit after changing segments, the new segment remains your current
segment until you change the segment or log out. If you abort after changing your
current segment, your current segment is reset from the UserProfile’s default
segment. If the segment has already been committed, the abort operation has no
effect on segment assignment.

Unnamed segments are often stored in a UserProfile, but named segments are
stored in symbol dictionaries like other named objects. Private segments are
typically kept in a user’s UserGlobals dictionary; segments for groups of users are
typically kept in a shared dictionary.

Object Security and Authorization How GemStone Security Works

July 1996 GemStone Systems, Inc. 7-7

You can also put segments in application dictionaries that appear only in the
symbol lists of that application’s users.

Example 7.2

| mySegment |
"get default Segment"
mySegment := System myUserProfile defaultSegment.
"compare with current Seg"
mySegment = System currentSegment

true

Objects and Segments
GemStone Object Security is defined for objects, not just instance variable slots.
Your security scheme must be defined to protect sensitive data in separate objects,
either by itself or as a member object of a customer class. Since each object has
separate authorization, each object must be assigned separately.

Compound Objects

Usually, the objects you are working with are compound, and each part is an object
in its own right, with its own segment assignment. For example, look at
anEmployee in Figure 7.2. The contents of its instance variables (name, salary, and
department) are separate objects that can be assigned to different segments. Salary
is assigned to Segment2, which enforces more restricted access than Segment1.

How GemStone Security Works GemStone Programming Guide

7-8 GemStone Systems, Inc. July 1996

Figure 7.2 Multiple Segment Assignments for a Compound Object

Every GemStone object is associated with a segment, except for objects of classes
True, False, and SmallInteger. When objects are created, they are assigned to a
default (the creator’s current) segment unless specified otherwise.

Collections

When you assign collections of objects to segments, you must distinguish the
container from the items it contains. Each of the items must also be assigned to the
proper segment. Distinguishing between a collection and the objects it contains
allows you to create collections most elements of which are publicly accessible,
while some elements are sensitive.

Segment1
Owner (System Admin): Write
Group1 (Personnel): Write

anEmployee

 name

 salaryHistory

dept.

Segment2
Owner (System Admin): Write
Group1 (Personnel): Read

World: Read

Group2 (Payroll): Write
World: None

Object Security and Authorization How GemStone Security Works

July 1996 GemStone Systems, Inc. 7-9

Read and Write Authorization and Segments
Segments store authorization information that defines what a particular user or
group member can do to the objects assigned to that segment. Three levels of
authorization are provided:

write — means that a user can read and modify any of the segment’s objects and
create new objects associated with the segment.

read — means that a user can read any of the segment’s objects, but cannot modify
(write) them or add new ones.

none — means that a user can neither read nor write any of the segment’s objects.

By assigning an object to a segment, you give the object the access information
associated with that segment. Thus, all objects assigned to a segment have exactly
the same protection; that is, if you can read or write one object assigned to a certain
segment, you can read or write them all.

Controlling authorizations at the segment level rather than storing the information
in each object makes them easy to change. Instead of modifying a number of
objects individually, you just modify one segment object. This also keeps the
repository smaller, eliminating the need for duplicate information in each of the
objects.

How GemStone Responds to Unauthorized Access

GemStone immediately detects an attempt to read or write without authorization
and responds by stopping the current method and issuing an error. When you
successfully commit your transaction, GemStone verifies that you are still
authorized to write in your current segment. If you are no longer authorized to do
so, GemStone issues an error, and your default segment once again becomes your
current segment. If you are no longer authorized to write in your default segment,
GemStone terminates your session, and you are unable to log back in to GemStone.
If this happens, see your system administrator for assistance.

How GemStone Security Works GemStone Programming Guide

7-10 GemStone Systems, Inc. July 1996

Owner Authorization

The user that owns the segment controls what access other users have to it. The
owner authorizes access separately for:

 • a segment’s owner

 • groups of users (by name)

 • the world of all GemStone users

These categories can overlap.

Whenever a program tries to read or write an object, GemStone compares the
object’s authorization attributes with those of the user who is attempting to do the
reading or writing. If the user has authorization to perform the operation, it
proceeds. If not, GemStone returns an error notification.

Groups

Groups are an efficient way to ensure that a number of GemStone users all will
share the same level of access to objects in the repository, and all will be able to
manipulate certain objects in the same ways.

Groups are typically organized as categories of users who have common interests
or needs. In Figure 7.3, for example, Group1 was set up to allow a few users to read
the objects in aSegment, while GemStone users in general aren’t allowed any
access.

Figure 7.3 User Access to a Segment’s Objects

Membership in a group is granted by having the group name in one’s UserProfile,
and a group consists of all users with the group name in their profiles.

aSegment
Owner: Write
Group1: Read
World: None

Object Security and Authorization How GemStone Security Works

July 1996 GemStone Systems, Inc. 7-11

World Authorization

In addition to storing authorization for its owner and for some groups, a segment
can also be told to authorize or to deny access by all GemStone users (the world.)

The message in class Segment that returns the rights of all users is
worldAuthorization .

Changing the Authorization for World

A corresponding message, worldAuthorization: anAuthSymbol, sets the
authorization for all GemStone users:

mySeg worldAuthorization: #read

Because of the way authorizations combine, changing access rights for the world
may not alter a particular user’s rights to a segment.

How GemStone Security Works GemStone Programming Guide

7-12 GemStone Systems, Inc. July 1996

Segments in the Repository
 The initial GemStone repository has three segments:

1. DataCuratorSegment

This segment is defined in the Globals dictionary, and is owned by the
DataCurator. All GemStone users, represented by world access, are
authorized to read, but not write, objects associated with this segment. No
groups are initially authorized to read or write in this segment.

Objects in the DataCuratorSegment include the Globals dictionary, the
SystemRepository object, all Segment objects, AllUsers (the set of all
GemStone UserProfiles), AllGroups (the collection of groups authorized to
read and write objects in GemStone segments), and each UserProfile object.

NOTE:
When GemStone is installed, only the DataCurator is authorized to
write in this segment. To protect the objects in the DataCurator Segment
against unauthorized modification, other users should not write in this
segment.

2. SystemSegment

This segment is defined in the Globals dictionary, and is owned by the
SystemUser (who has write authorization for any of the objects in this
segment). The world access is set to read, but not write, the objects in this
segment. In addition, the group #System is authorized to write in this segment.

3. GcUser

This segment is used by the system for reclaiming storage.

These segments are shown as part of the Repository in Figure 7.4.

Each segment in the Repository contains the following instance variables:
itsRepository; itsOwner; groupIds ; and authorizations (a
SmallInteger that indicates whether each group is authorized to read and/or write
objects in this segment).

Object Security and Authorization How GemStone Security Works

July 1996 GemStone Systems, Inc. 7-13

Figure 7.4 Segments in a GemStone repository

Changing the Segment for an Object

If you have the authorization, you can change the accessibility of an individual
object by assigning it to a different segment. Class Object defines a message that
returns the segment to which the receiver is assigned, and another message that
assigns the receiver to a new segment.

The message segment returns the segment to which the receiver is assigned:

Example 7.3

UserGlobals segment

SystemSegment DataCuratorSegment

GcUser

Segment1 Segmentn

SystemRepository

original segments

. . .

Segment

How GemStone Security Works GemStone Programming Guide

7-14 GemStone Systems, Inc. July 1996

The message changeToSegment: aSegment assigns the receiver to the segment
aSegment. You must have write authorization for both segments: the argument and
the receiver. Assuming the necessary authorization, this example assigns class
Employee to a new segment:

Employee changeToSegment: aSegment.

You may override the method changeToSegment: for your own classes,
especially if they have several components.

For objects having several components, such as collections, you may assign all the
component objects to a specified segment when you reassign the composite object.
You can implement the message changeToSegment: aSegment to perform these
multiple operations. Within the method changeToSegment: for your composite
class, send the message assignToSegment: to the receiver and each object of
which it is composed.

For example, a changeToSegment: method for the class Menagerie might
appear as shown in Example 7.4. The object itself is assigned to another segment
using the method assignToSegment: . Its component objects, the animals
themselves, have internal structure (names, habitats, and so on), and therefore call
Animal’s changeToSegment: method, which in its turn sends the message
assignToSegment: to each component of anAnimal, ensuring that each animal
is properly and completely reassigned to the new segment.

Example 7.4

(Array subclass: 'Menagerie'
instVarNames: #()
inDictionary: UserGlobals) name

method: Menagerie
changeToSegment: aSegment
 self assignToSegment: aSegment.
1 to self size do:

[:eachAnimal | eachAnimal changeToSegment: aSegment.]
%

SmallInteger, Character, Boolean, and nil are assigned the SystemSegment and
cannot be assigned another segment.

Object Security and Authorization How GemStone Security Works

July 1996 GemStone Systems, Inc. 7-15

Segment Ownership

Each segment is owned by one user—by default, the user who created it. A
segment’s owner has control over who can access the segment’s objects. As a
segment’s owner, you can alter your own access rights at any time, even
forbidding yourself to read or write objects assigned to the segment.

You might not be the owner of your default segment. To find out who owns a
segment, send it the message owner . The receiver returns the owner’s UserProfile,
which you may read, if you have the authorization:

Example 7.5

"Return the userId of the owner of the default segment for
the current Session."
| aUserProf myDefaultSeg |
"get default Segment"
myDefaultSeg := System myUserProfile defaultSegment.
"return its owner’s UserProfile"
aUserProf := myDefaultSeg owner.
"request the userId"
aUserProf userId

user1

Every segment understands the message owner: aUserProfile. This message
assigns ownership of the receiver to the person associated with aUserProfile. The
following expression, for example, assigns the ownership of your default segment
to the user associated with aUserProfile:

System myUserProfile defaultsegment owner: aUserProfile

In order to reassign ownership of a segment, you must have write authorization
for the DataCuratorSegment. Because of the way separate authorizations for
owners, groups and world combine, changing access rights for the any one of them
may not alter a particular user’s rights to a segment.

WARNING:
Do not, under any circumstances, attempt to change the authorization of
the SystemSegment.

An Application Example GemStone Programming Guide

7-16 GemStone Systems, Inc. July 1996

Revoking Your Own Authorization—a Side Effect

You may occasionally want to create objects and then take away authorization for
modifying them.

CAUTION:
Do not remove your write authorization for your default segment or your
current segment. If lose write authorization for your default segment,
you will not be able to log in again. If you lose write authorization for
your current segment, Smalltalk execution can halt with an error report
after you commit your transaction.

Losing write authorization to your current segment can create a problem because
the object server creates and modifies objects assigned to the current segment to
keep track of its execution state. If you no longer have write authorization for that
segment after committing your transaction, execution must halt because the object
server can no longer write those temporary objects.

7.2 An Application Example
The structure of the user community determines how your data is stored and
accessed. Regardless of their job titles, users generally fall into three categories:

 • Developers define classes and methods.

 • Updaters create and modify instances.

 • Reporters read and output information.

When you have a group of users working with the same GemStone application,
you need to ensure that everyone has access to the objects that should be shared,
such as the application classes, but you probably want to limit access to certain
data objects. Figure 7.5 shows a typical production situation.

Object Security and Authorization An Application Example

July 1996 GemStone Systems, Inc. 7-17

Figure 7.5 Application Objects Assigned to Three Segments

In this example, all the application users need access to the data, but different users
need to read some objects and write others. So most data goes into Segment1,
which anyone can look at, but only the Personnel group or owner can change.
Segment 2 is set up for sensitive salary data, which only the Payroll group or
owner can change, and only they and the Personnel group can see. You don’t want
anyone to accidentally corrupt the application classes, so they go into Segment3,
which no one can change.

Segment2
Owner (System Admin): Write
Group1 (Personnel): Read

Salary Data

Segment3
Owner (System Admin): Read
World: Read

Application Classes

Group2 (Payroll): Write
World: None

Segment1
Owner (System Admin): Write
Group1 (Personnel): Write

General Employee Data

World: Read

An Application Example GemStone Programming Guide

7-18 GemStone Systems, Inc. July 1996

Look at how the user name, group membership, and segment authorization
control access to objects, as shown by Figure 7.6 and Figure 7.7:

Figure 7.6 User Access to Application Segment1

Four users access this application:

 • The System Administrator owns both segments and can read and write the
objects assigned to them.

 • Leslie belongs to the Personnel group, which authorizes her to read and write
Segment1’s objects and read Segment2’s objects.

 • Jo can read and write the objects assigned to Segment2, because she belongs to
the Payroll group. She doesn’t belong to a group that can access Segment1, but
she can still read those objects, because Segment1 gives read authorization to
all GemStone users.

 • Myron does not belong to a group that can access either segment. He can read
the objects assigned to Segment1 objects, because it allows read access to all
GemStone users. He has no access at all to Segment2.

User4
Leslie
Group1: Admin
Group2: Personnel

Segment1
Owner (System Admin): Write
World: Read
Group1 (Personnel): WriteUser3

Group1: Payroll
Group2: Admin

User2
Myron
Group1: Admin

User1
System Admin

Object Security and Authorization A Development Example

July 1996 GemStone Systems, Inc. 7-19

Leslie and Jo are sometimes updaters and sometimes reporters, depending on the
type of data. Myron is strictly a reporter.

Figure 7.7 User Access to Application Segment2

7.3 A Development Example
Up to now, this discussion has been limited to applications in a production
environment, but issues of access and security arise at each step of application
development. During the design phase you need to consider the segments needed
for the application life cycle: development, testing, and production.

The access required at each stage is a subset of the preceding one, as shown in
Figure 7.8.

User4
Leslie
Group1: Admin
Group2: Personnel

Segment2
Owner (System Admin): Write
World: None
Group1 (Personnel): Write

User2
Myron
Group1: Admin

User1
System Admin

User3
Jo
Group1: Payroll
Group2: Admin

Group2 (Payroll): Write

A Development Example GemStone Programming Guide

7-20 GemStone Systems, Inc. July 1996

Figure 7.8 Access Requirements During an Application’s Life Cycle

1

2

3

Testers : read access to all
classes and methods,
write access to test data

Developers : write access to
all application objects

Users : read access
to classes and
public methods,
read, write, or
no access to
specified data

Object Security and Authorization A Development Example

July 1996 GemStone Systems, Inc. 7-21

Planning Segments for User Access
As you design your application, decide what kind of access different end users will
need for each object.

Protecting the Application Classes

All the application users need read access to the application classes and methods,
so they can execute the methods. You probably want to limit write access,
however, to prevent accidental damage to them. You may even want to change the
owner’s authorization to read, until changes are required.

The application classes do not require a separate segment. You can assign them to
any segment that has read authorization for world and write authorization (or
read, if you prefer) for owner. Like other objects, classes and their methods are
assigned to segments on an object-by-object basis. Each method can have a
different segment, if you want.

Planning Authorization for Data Objects

Authorization for data objects means protecting the instances of the application’s
classes, which will be created by end users to store their data. You can begin the
planning process by creating a matrix of users and their required access to objects.
Table 7.1 shows part of such a matrix, which maps out access to instances of the
class Employee and some of its instance variables.

Security is easier to implement if it is built into the application design at the
beginning, not added later. In the following sections, planning for the third stage,
end user access, comes first. Following the planning discussion comes the
implementation instructions, which explain how to set up segments for the
developers, extend the access to the testers, and finally move the application into
production.

Remember that in effect you have four options, shown on the matrix as:

W — need to write (also allows reading)

R — need to read, must not write

N — must not read or write

blank — don’t need access, but it won’t hurt

A Development Example GemStone Programming Guide

7-22 GemStone Systems, Inc. July 1996

World Access

To begin analyzing your access requirements, check whether the objects have any
Ns. For objects that do, world authorization must be set to none.

If you have people who need read access to nonsensitive information, give world
read authorization to those objects. In this example, world can have read access to
anEmployee, name, position, dept., and manager. The objects can still be protected
from casual browsing by storing them in a dictionary that does not appear in
everyone’s symbol list. This does not absolutely prevent someone from finding an
object, but it makes it difficult. For more information, see Chapter 3, “Name
Resolution and Object Sharing“.

Owner

By default, the owner has write access to the objects in a segment. To choose an
owner, look for a user who needs to modify everything. In terms of the basic user
categories described earlier, the owner could be either an administrator or an
update. This depends on the type of objects that will be assigned to the segment.

In Table 7.1 the system administrator is the user who needs write access. So the
system administrator is made the owner, with full control of all the objects. The

Table 7.1 Access for Application Objects Required by Users

Users

Objects
System
Admin.

Human
Resource

Employee
 Records Payroll Mktg Sales

Customer
Support

anEmployee W W W R R R R

name W W W R R R R

position W W W R R

dept. W W W R R

manager W W W R R

dateHired W W W R N R N

salary W R R W N N N

salesQuarter W R R R N W N

salesYear W R R R N W N

vacationDays W W W N N N N

sickDays W W W N N N N

Object Security and Authorization A Development Example

July 1996 GemStone Systems, Inc. 7-23

DataCurator and SystemUser logins are available to the system administrator. The
DataCurator is not automatically authorized to read and write all objects,
however. Like any other user account, it must be explicitly authorized to access
objects in segments it does not own. Although the SystemUser can read and write
all objects, it should not be used for these purposes.

Planning Groups

The rest of the access requirements must be satisfied by setting up groups. The
thing to remember about groups is that they do not reflect the organization chart;
they reflect differences in access requirements. Because the number of possible
authorization combinations is limited, the number of groups required is also
limited.

First look at the existing access to anEmployee, name, position, dept., and
manager, as shown in Table 7.2. By making the system administrator the owner
with write authorization and assigning read authorization to world, you have
already satisfied the needs of five departments.

You still need to provide authorization for the Human Resources and Employee
Records departments. In every case, they need the same access (see Table 7.1) so
you only have to create one group for the two departments. This group, named
Personnel, requires write authorization for the objects in Table 7.2.

Now look at the existing access to the rest of the objects. These objects store more
sensitive information, so access requirements of different users are more varied.
Assigning write authorization to owner and none to world has completely
satisfied the needs of three departments, as shown in Table 7.3.

Table 7.2 Access to the First Five Objects Through Owner and World Authorization

Users

Objects
System
Admin.

Human
Resource

Employ.
Records

Payroll Mktg. Sales
Customer
Support

Employee W W W R R

name W W W R R

position W W W R R

dept. W W W R R

manager W W W R R

 write access as owner or read access as world

A Development Example GemStone Programming Guide

7-24 GemStone Systems, Inc. July 1996

Two more departments, Human Resources and Employee Records, are already set
up to access as the Personnel group. As shown in Table 7.4, this group needs write
authorization to dateHired, vacationDays, and sickDays, which they must be able
to read and modify. They need read authorization to salary, salesQuarter, and
salesYear, which they must read but cannot modify.

Table 7.3 Access to the Last Six Objects Through Owner and World Authorization

Users

Objects
System
Admin.

Human
Resource

Employ.
Records Payroll Mktg Sales

Customer
 Support

dateHired W W W R N R N

salary W R R W N N N

salesQuarter W R R R N W N

salesYear W R R R N W N

vacationDays W W W N N N N

sickDays W W W N N N N

 write access as owner or no access as world

Table 7.4 Access to the Last Six Objects Through the Personnel Group

Users

Objects
System
Admin.

Human
Resource

Employ.
Records Payroll Mktg Sales

Customer
 Support

dateHired W W W R N R N

salary W R R W N N N

salesQuarter W R R R N W N

salesYear W R R R N W N

vacationDays W W W N N N N

sickDays W W W N N N N

 read or write access as Personnel group

Object Security and Authorization A Development Example

July 1996 GemStone Systems, Inc. 7-25

Now the Payroll and Sales departments still require access to the objects, as shown
in Table 7.3. Because these departments’ needs don’t match anyone else’s, they
must each have a separate group.

In all, this example only requires three groups: Personnel, Payroll, and Sales, even
though it involves seven departments.

Planning Segments

When you have been through this exercise with all your application’s prospective
objects and users, you are ready to plan the segments. For easiest maintenance, use
the smallest number of segments that your required combinations of owner,
group, and world authorizations allow. You don’t need different segments with
duplicate functionality to separate particular objects, like the application classes
and data objects. Remember that symbol lists, not segments, are used to organize
objects for listing and retrieval.

In this example you need six segments, as shown in Figure 7.9. Notice that each
one has different authorization.

Developing the Application
During application development you implement two separate schemes for object
organization: one for sharing application objects by the development team and one
controlling access by the end users. In addition, you may need to allow access for
the testers, who may need different access to objects.

Table 7.5 Access to the Last Six Objects Through the Payroll and Sales Groups

Users

Objects
System
Admin.

Human
Resource

Employ.
Records Payroll Mktg Sales

Customer
 Support

dateHired W W W R N R N

salary W R R W N N N

salesQuarter W R R R N W N

salesYear W R R R N W N

vacationDays W W W N N N N

sickDays W W W N N N N

 read or write access as Payroll or Sales group

A Development Example GemStone Programming Guide

7-26 GemStone Systems, Inc. July 1996

Once you have planned the segments and authorizations you want for your
project, you can refer to procedures in the GemStone System Administration Guide
for implementing that plan.

Setting Up Segments for Joint Development

To make joint development possible, you need to set up authorization and
references so that all the developers have access to the classes and methods that are
being created. Create a new symbol dictionary for the application and put it in
everyone’s symbol list; make sure it includes references to any shared segments. If
only developers are using the repository, you can give world access to shared
objects, but if other people are using the repository, you must set up a group for
developers.

You can organize segment assignments in various ways:

 • Full access to all personal segments. Give all the developers their own default
segments to work in. Give everyone in the team write access to all the
segments. Because the objects you create are typically assigned to your default
segment, this method may be the simplest way to organize shared work.

 • Read access to all personal segments. Set up the same as above, except give
everyone read access to the segments. If each developer is doing a separate
module, read access may be enough. Then everyone can use other people’s
classes, but not change them. This has the advantage of enforcing the line
between application and data.

 • Full access to a shared segment. Give all developers the same default
segment, writable by everyone. This is an easy, informal way to share objects.

 • Full access to a shared segment plus private segments. Developers work in
their own default segments and reassign their objects to the shared segment
when they are finished. This lets you share a collection, for example, but keep
the existing elements private, so that other developers could add elements but
not modify the elements you have already created. To share a collection this
way, assign the collection object itself to the accessible segment. The collection
has references to many other objects, which can be associated with other
segments. Everyone has the references, but they get errors if they try to access
objects assigned to non-readable segments. You might also choose to share an
application symbol dictionary, so that other developers can put objects in it,
without making the objects themselves public.

Object Security and Authorization A Development Example

July 1996 GemStone Systems, Inc. 7-27

Figure 7.9 Segments Required for User Access to Application Objects

salary

Segment1
Owner (System Admin): Write
Group1 (Personnel): Write

Segment2
Owner (System Admin): Write

Group2 (Payroll): Read

Segment3
Owner (System Admin): Write

Segment4
Owner (System Admin): Write

Segment5
Owner (System Admin): Write

Segment6
Owner (System Admin): Read
World: Read

Group3 (Sales): Read

World: Read

Group1 (Personnel): Write

World: None

Group1 (Personnel): Read
Group2 (Payroll): Write
World: None

Group1 (Personnel): Read
Group2 (Payroll): Read
Group3 (Sales): Write
World: None

Group1 (Personnel): Write
World: None

position

name

dept.

anEmployee

manager

dateHired

salesQuarter salesYear

sickDays vacationDays

Employee

A Development Example GemStone Programming Guide

7-28 GemStone Systems, Inc. July 1996

Making the Application Accessible for Testing

Testers need to be able to alternate between two distinct levels of access:

 • Full access. As members of the development team, they need read access to
all the classes and methods in the application, including the private methods.
Testers also need write access to their test data.

 • User-level access. They need a way to duplicate the user environment, or
more likely several environments created for different user groups.

This can be done by setting up a tester group and one or more sample user groups
during the development phase. For testing the user environment, the application
must already be set up for multi-user production use, as explained in the following
section.

Moving the Application into a Production Environment

When you have created the application, it is time to set it up for a multi-user
environment. A GemStone application is developed in the repository, so all you
have to do to install an application is to give other users access to it. This means
implementing the rest of your application design, in roughly the reverse order of
the planning exercise. To give other users authorization to use the objects in the
application:

1. Create the segments.

2. Create the necessary user groups specified in up-front development, if they
don’t exist.

3. Assign the required owner, world, and group authorizations to the segments.

4. Assign testers to the user groups and complete multi-user testing.

5. Assign any end users that need group authorization to the user groups.

6. Assign the application’s objects to the segments you created.

You also have to give users a reference to the application so they can find it. An
application dictionary is usually created with references to the application objects,
including its segments. A reference to this dictionary usually must appear in the
users’ symbol lists. For more information on the use of symbol dictionaries, see the
discussion of symbol resolution and object sharing in Chapter 3, “Name
Resolution and Object Sharing."

Object Security and Authorization Assigning Objects to Segments

July 1996 GemStone Systems, Inc. 7-29

Segment Assignment for User-created Objects
Because segment assignment is on an object-by-object basis, it is important to
know how objects are assigned. When the objects are being created by end users
of an application, as in this example, you may want to partially or fully automate
the process of segment assignment. Depending on the needs of the local site, you
can implement various mechanisms to ensure data security, prevent accidental
damage to existing data, or simply avoid misplaced data.

Assign a Specified Segment to the User Account

Set up users with the proper application segment by default. This is a simple way
to assure that someone who creates objects in a single application segment doesn’t
misplace them. To make it impossible to change segments, rather than just
unlikely, you also have to close write access for group and world to all the other
segments.

This solution would work for the Sales and Payroll groups in the example
(Figure 7.9 on page 7-27). They need read access to several segments, but they only
write in one.

The drawback of this solution is that the user can only use one application.

Develop the Application to Create the Data Objects

Your best choice is to create objects in the correct segment, using the Segment |
setCurrentWhile: method. With this method, the application stores data
objects in the proper segments. This provides the most protection. Besides
guaranteeing that the objects end up in the proper segment, this prevents users
from accidentally modifying objects they have created. It also prevents them from
reading the data that other users enter, even when everyone is creating instances
of the same classes.

7.4 Assigning Objects to Segments
For segment authorizations to have any effect, you must assign some objects to the
segments whose authorizations you have set up.

Segments for New Objects
Your UserProfile stores a reference to a segment that serves as your default segment.
This is the segment to which GemStone normally assigns the new objects you
create.

Assigning Objects to Segments GemStone Programming Guide

7-30 GemStone Systems, Inc. July 1996

Removing Segments
Every object assigned to a segment refers to that segment. Because potentially
many objects can refer to any segment, removing a segment is a more complex
matter than simply executing one method to remove it from the SystemRepository.
You must first decide whether you wish to remove all the objects assigned to it, or
whether you wish to reassign some or all of them to another segment. As long as
an object that you or another user can refer to within your application is assigned
to the segment, GemStone cannot reclaim the storage used by the segment.

Removing a segment, therefore, is a somewhat delicate task related to the manner
in which GemStone reclaims storage. It is a four-step process:

1. Determine which segment you wish to remove.

2. Determine which objects refer to that segment.

3. Remove those objects or assign them to another segment, as required.

4. Remove the segment.

The details of accomplishing this are as follows:

1. Segments are stored in the indexed instance variables of SystemRepository.
Inspect the SystemRepository to determine the index of the segment you wish
to remove.

2. Segments do not know which objects refer to them, but objects know which
segment they refer to. You can determine an object’s segment assignment by
sending the object the message segment . Printing the result provides a
reference to the segment. Determine the objects assigned to the target segment
using this or other mechanisms you may have built into your application.

3. Using changeToSegment: (implemented in class Object and reimplemented
in a few subclasses), reassign objects into other segments if you need to. If you
wish to remove the objects instead, remove all references to the objects.

4. When no objects that you wish to keep refer to the segment, it is safe to remove
it. To do so, execute an expression of the form:

SystemRepository deleteObjectAt: 5

The argument to the messagedeleteObjectAt: must be the index of the segment
you wish to delete, as determined by the inspection of SystemRepository you
performed in the first step, above.

Object Security and Authorization Privileged Protocol for Class Segment

July 1996 GemStone Systems, Inc. 7-31

5. If you still have a reference to that segment through an object, it is also possible
to execute an expression of the form:

SystemRepository removeValue: (anObject segment)

The argument to the messageremoveValue: must be a pointer to the segment you
wish to delete.

After you commit your changes, the segment is available for storage reclamation.

7.5 Privileged Protocol for Class Segment
Privileges stand apart from the segment and authorization mechanism. Privileges
are associated with certain operations: they are a means of stating that, ordinarily,
only the DataCurator or SystemUser is to perform these privileged operations. The
DataCurator can assign privileges to other users at his or her discretion, and then
those users can also perform the operations specified by the particular privilege.

NOTE
Privileges are more powerful than segment authorization. Although the
owner of a segment can always use read/write authorization protocol to
restrict access to objects in a segment, the DataCurator can override that
protection by sending privileged messages to change the authorization
scheme.

The following message to Segment always requires special privileges:

newInRepository: (class method)

You can always send the following messages to the segments you own, but you
must have special privileges to send them to other segments:

group:authorization:
ownerAuthorization:
worldAuthorization:

For changing privileges, UserProfile defines two messages that also work in terms
of the privilege categories described above. The message addPrivilege:
aPrivString takes a number of strings as its argument, including the following:

'DefaultSegment'
'SegmentCreation'
'SegmentProtection'

To add segment creation privileges to your UserProfile, for example, you might do
this:

Segment-related Methods GemStone Programming Guide

7-32 GemStone Systems, Inc. July 1996

System myUserProfile addPrivilege: 'SegmentCreation'.

This gives you the ability to execute Segment newInRepository:
SystemRepository .

A similar message, privileges: , takes an array of privilege description strings
as its argument. The following example adds privileges for segment creation and
password changes:

System myUserProfile privileges:
 #(’SegmentCreation’ ’UserPassword’)

To withdraw a privilege, send the message deletePrivilege: aPrivString. As
in preceding examples, the argument is a string naming one of the privilege
categories. For example:

System myUserProfile deletePrivilege: ’SegmentCreation’

Because UserProfile privilege information is typically stored in a segment that
only the data curator can modify, you might not be able to change privileges
yourself. You must have write authorization to the DataCuratorSegment in order
to do so.

For direction and information about configuring user accounts, adding user
accounts and assigning segments to those accounts, and checking authorization
for user accounts, see the GemStone System Administration Guide.

7.6 Segment-related Methods
Most of the methods used for basic operations on segments are implemented in the
GemStone kernel class Segment. For the protocol of class Segment, see the
GemStone Kernel Reference. Methods for segment-related operations are also
implemented in a few other classes:

Class

Instance Protocol: Authorization

changeToSegment: segment

Assign the receiver and its non-shared components to the given segment. The
segments of class variable values are not changed. The current user must have
write access to both the old and new segments for this method to succeed.

Object Security and Authorization Segment-related Methods

July 1996 GemStone Systems, Inc. 7-33

Object

Instance Protocol: Updating

assignToSegment: aSegment

Reassigns the receiver to aSegment. The user must be authorized to write to both
segments (the receiver’s current segment and aSegment). Generates an error if the
repository containing aSegment is full, if there is an authorization conflict, or if the
receiver is a self-defining object (SmallInteger, AbstractCharacter, Boolean, or
UndefinedObject).

changeToSegment: segment

Assign the receiver to the given segment. This method just calls
assignToSegment: aSegment. You can reimplement it, however, to assign
components of the receiver as well. This has been done for class Class (above). Use
that version as an example for implementations tailored to your own classes.

System

Class Protocol: Session Control

currentSegment

Return the Segment in which objects created in the current session are stored. At
login, the current segment is the default segment of the UserProfile for the session
of the sender.

currentSegment: aSegment

Redefines the Segment in which subsequent objects created in the current session
will be stored. Return the receiver. Exercise caution when executing this method.
If, at the time you attempt to commit your transaction, you no longer have write
authorization for aSegment, an error will be generated, and you will be placed back
into your default Segment.

UserProfile

Instance Protocol: Accessing

defaultSegment

Return the default login Segment associated with the receiver.

Segment-related Methods GemStone Programming Guide

7-34 GemStone Systems, Inc. July 1996

Instance Protocol: Updating

defaultSegment: aSegment

Redefines the default login Segment associated with the receiver, and return the
receiver.

This method requires the #DefaultSegment privilege.

You must have write authorization for the Segment where the UserProfile resides.
Exercise extreme caution when using this method. If, at the time you commit your
transaction, the receiver no longer had write authorization for aSegment, that user’s
GemStone session will be terminated and the user will be unable to log back in to
GemStone.

Class Protocol: Instance Creation

newWithUserId: aSymbol password: aString defaultSegment: aSegment
privileges: anArrayOfStrings inGroups: aCollectionOfGroupSymbols

Return a new UserProfile with the associated characteristics. The default compiler
language is ASCII.

newWithUserId: aSymbol password: aString defaultSegment: aSegment
privileges: anArrayOfStrings inGroups: aCollectionOfGroupSymbols
compilerLanguage: aLangString

Creates a new UserProfile with the associated characteristics. In so doing, creates
a symbol list with two dictionaries: UserGlobals, Globals, and Published. The first
Dictionary (UserGlobals) is created for the user’s private symbols, and initially
contains a single Association whose key is UserGlobals and whose value is the
dictionary itself. Return the new UserProfile.

Before the new user may log in to GemStone, the new UserProfile must be added
to the UserProfileSet AllUsers, and the user must be authorized to read and write
in the specified default Segment.

UserProfileSet

Instance Protocol: Adding

If the receiver is not AllUsers, a new user will be unable to log in to GemStone. In
addition, in order to log into GemStone, a user must be authorized to read and
write in the default Segment that is specified for that user.

Object Security and Authorization Segment-related Methods

July 1996 GemStone Systems, Inc. 7-35

addNewUserWithId: aSymbol password: aPassword

Creates a new UserProfile and adds it to the receiver. The new UserProfile has no
privileges, and belongs to no groups. This method creates a new Segment, which
is owned by the new user and assigned as the user’s default segment. The new
Segment is created with world-read permission.

This default method can be used by the data curator in batch user installations.
Return the new UserProfile.

If the receiver is not AllUsers, the new user will be unable to log in to GemStone.

addNewUserWithId: aSymbol password: aString defaultSegment: aSegment
privileges: anArrayOfStrings inGroups: aCollectionOfGroupSymbols

Creates and return a new UserProfile with the associated characteristics, and adds
it to the receiver. Generates an error if the userId aSymbol duplicates the userId of
any existing element of the receiver.

addNewUserWithId: aSymbol password: aString defaultSegment: aSegment
privileges: anArrayOfStrings inGroups: aCollectionOfGroupSymbols
compilerLanguage: aLangString

Creates a new UserProfile with the associated characteristics and adds it to the
receiver. Generates an error if the userId aSymbol duplicates the userId of any
existing element of the receiver. Return the new UserProfile.

If the receiver is not AllUsers, the new user will be unable to log in to GemStone.
In addition, in order to log in to GemStone, the user must be authorized to read
and write in the specified default Segment.

Segment-related Methods GemStone Programming Guide

7-36 GemStone Systems, Inc. July 1996

Chapter

July 1996 GemStone Systems, Inc. 8-1

8 Class Versions and
Instance Migration

Few of us can design something perfectly the first time. Although you
undoubtedly designed your schema with care and thought, after using it for a
while you will probably find a few things you would like to improve.
Furthermore, the world seldom remains the same for very long. Even if your
design was perfect, real-world changes usually require changes to the schema
sooner or later. This chapter discusses the mechanisms GemStone
Smalltalkprovides to allow you to make these changes.

Versions of Classes
defines the concept of a class version and describes two different approaches
you can take to specify one class as a version of another.

ClassHistory
describes the Smalltalk class that encapsulates the notion of class versioning.

Migrating Objects
explains how to migrate either certain instances, or all of them, from one
version of a class to another while retaining the data that these instances hold.

Versions of Classes GemStone Programming Guide

8-2 GemStone Systems, Inc. July 1996

8.1 Versions of Classes
You cannot create instances of modifiable classes. In order to create instances—in
other words, in order to populate your database with usable data—you defined
your classes as well as you could, and then, when you believed that your schema
was fully defined, you sent the message immediateInvariant to your classes.
They were thereafter no longer modifiable, and instances of them could be created.
You may now have instances of invariant classes populating your database and a
need to modify your schema by redefining certain of these classes.

 To support this inevitable need for schema modification, GemStone allows you to
define different versions of classes. Every class in GemStone has a class
history—an object that maintains a list of all versions of the class—and every class
is listed in exactly one class history. You can define as many different versions of
a class as required, and declare that the different versions belong to the same class
history. You can migrate some or all instances of one version of a class to another
version when you need to. The values of the instance variables of the migrating
instances are retained, if you have defined the new version to do so.

NOTE
Although this chapter discusses schema migration in the context of
GemStone Smalltalk, the various interfaces have tools to make the job
easier. The functionality described in this chapter is common to all
interfaces. Consult your GemBuilder manual for other ways in which
you might lighten your burden.

Class Versions and Instance Migration ClassHistory

July 1996 GemStone Systems, Inc. 8-3

Defining a New Version
In GemStone Smalltalk classes have versions. Each version is a unique class object,
but the versions are related to each other through a common class history. The
classes need not share a similar structure, nor even a similar implementation. The
classes need not even share a name, although it is probably less confusing if they
do, or if you establish and adhere to some naming convention.

You can take one of two approaches to defining a new version:

 • Define a class having the same name as an existing class. The new class
automatically becomes a new version of the previous class. Existing instances
remain unchanged, and have access to the old class’s methods. Instances
created after the redefinition have the new class’s structure and access to the
new class’s methods.

 • Define a new class by another name, and then declare explicitly that it shares
the same class history as the original class. You can do this with any of the class
creation messages that include the keyword newVersionOf: .

8.2 ClassHistory
In GemStone Smalltalk, any class can be associated with a class history,
represented by the system as an instance of the class ClassHistory. A class history
is an array of classes that are meant to be different versions of each other.

Defining a Class with a Class History
When you define a new class whose name is the same as an existing class in one of
your symbol list dictionaries, it is by default created as the latest version of the
existing class and shares its class history.

When you define a new class by a name new to your symbol list dictionaries, it is
by default created with a unique class history. If you use a class creation message
that includes the keyword newVersionOf: , you can specify an existing class
whose history you wish the new class to share.

ClassHistory GemStone Programming Guide

8-4 GemStone Systems, Inc. July 1996

For example, the following expression creates a class named NewAnimal and
specifies that the class shares the class history that the existing class Animal uses.
This action has the effect of renaming the class:

Example 8.1

Object subclass: ’NewAnimal’
 instVarNames: #(’diet’ ’favoriteFood’ ’habitat’ ’name’
 ’predator’)
 classVars: #()
 classInstVars: #()
 poolDictionaries: #[]
 inDictionary: UserGlobals
 constraints: #[]
 instancesInvariant: false
 newVersionOf: Animal
 description: nil
 isModifiable: false

The example below installs the newly defined class Animal as a later version of the
previously defined class Animal:

Example 8.2

Object subclass: 'Animal'
instVarNames: #('habitat' 'name' 'predator')
classVars: #()
classInstVars: #()
poolDictionaries: #[]
inDictionary: UserGlobals
constraints: #[]
instancesInvariant: false
description: nil
isModifiable: false

Class Versions and Instance Migration ClassHistory

July 1996 GemStone Systems, Inc. 8-5

If you wish to define a new class Animal with its own unique class history, you can
add it to a different symbol list dictionary, and specify the argument nil to the
keyword newVersionOf: .

Example 8.3

Object subclass: 'Animal'
instVarNames: #('habitat' 'name' 'predator')
classVars: #()
classInstVars: #()
poolDictionaries: #[]
inDictionary: MoreUserGlobals
constraints: #[]
instancesInvariant: false
newVersionOf: nil
description: nil
isModifiable: false

If you try to define a new class with the same name as an existing class you did not
create, you will most likely get an authorization error, because you will be trying
to modify the class history of that class, an object which you are probably not
authorized to modify. If this restriction becomes a problem, use a subclass creation
message that includes the keyword newVersionOf: , and set it to nil. In this way,
the existing class history remains unmodified and your new class has its own class
history.

CAUTION:
If you try to define a new class with the same name as one of the
GemStone Smalltalk kernel classes, you will definitely get such a write
authorization error. Do not use the above workaround in this case.
Redefining a kernel class can cause aberrant system behavior and even
system failure.

Accessing a Class History
You can access the class history of a given class by sending the message
classHistory to the class. For example, the following expression returns the
class history of the class Employee:

Employee classHistory

You can use an expression such as this to collect all instances of any version of a
class, as you will see in a later example.

ClassHistory GemStone Programming Guide

8-6 GemStone Systems, Inc. July 1996

Assigning a Class History
You can assign a class history by sending the message addNewVersion: to the
class whose class history you wish to use, with the class whose history is to be
reassigned as the argument. For example, suppose that, when we created the class
NewAnimal, we intended to assign it the same class history as Animal, but forgot
to do so. To specify that it is a new version of Animal, we execute the following
expression:

Animal addNewVersion: NewAnimal

Class Histories and Constraints
Class histories are also used to determine which classes can satisfy instance
variable constraints. When you define an instance variable, you can constrain it to
be an instance of a specific class. The class Employee, for example, defined three
instance variables—name, job, and address—all of which were constrained to be
instances of class String. A fourth instance variable, age, was constrained to be an
instance of Integer.

Suppose that an address needs more structure than a simple string. To provide this
structure, you define a new class called Address. Instances of Address contain
variables named street, city, state, and postalCode. You will redefine Employee so
that its instance variable address is constrained to be an instance of Address.

Having defined the class Address, you now want to use it for customer mailings
as well as employees’ addresses. However, the new class Address has notable
omissions. It works well enough for employees, perhaps, but for customers it may
need international address information, or it may need to allow for addresses with
post office boxes instead of street addresses. You must define a new version of the
class Address to include these subtleties, and ensure that it shares the same class
history as the previous version.

Having done so, you need not redefine Employee. Its constraint on the instance
variable address will be satisfied by any object whose class shares a class history
with Address. In general, instance variable constraints are satisfied by the class
specified by the constraint, any subclass of that class, any class that shares the same
class history as one of those classes, or any of its subclasses.

It is possible to define two classes having the same name that do not share the same
class history. If you define a new class named Address, for example, that does not
share a class history with the old class, and you then attempt to store an instance
of the new class Address in the variable address of an instance of Employee, you
will get a GemStone error that reads (in part):

Class Versions and Instance Migration Migrating Objects

July 1996 GemStone Systems, Inc. 8-7

Attempt to store an object of class Address in an instance
variable constrained to hold objects of class Address.

Because the two classes have the same name, the error can appear mystifying.
However, the solution is simple: either assign the new class Address the same class
history as the old one, or use an instance of the old class Address for the
employee’s address instance variable.

How can this situation arise in the first place? How you might define two classes
having the same name, but not sharing the same class history, depends upon the
particular interface to GemStone you are using and the tool you used to define the
subclasses. The most plausible way this situation might arise is when you define
the two classes in two different symbol list dictionaries. Chapter 3, “Name
Resolution and Object Sharing,” describes the purpose and use of symbol list
dictionaries.

8.3 Migrating Objects
Once you define two or more versions of a class, you may wish to migrate
instances of the class from one version to another. Migration in GemStone
Smalltalk is a flexible, configurable operation:

 • Instances of any class can migrate to any other, as long as they share a class
history. The two classes need not be similarly named, or, indeed, have
anything else in common.

 • Migration can occur whenever you so specify.

 • Not all instances of a class need to migrate at the same time—you can migrate
only certain instances at a time. Other instances need never migrate, if that is
appropriate.

 • The manner in which values of the old instance variables are used to initialize
values of the new instance variables is also under your control. A default
mapping mechanism is provided, which you can override if you need to.

Migration Destinations
If you know the appropriate class to which you wish to migrate instances of an
older class, you can set a migration destination for the older class. To do so, send
a message of the form:

OldClass migrateTo: NewClass

Migrating Objects GemStone Programming Guide

8-8 GemStone Systems, Inc. July 1996

This message configures the old class to migrate its instances to become instances
of the new class, but only when it is instructed to do so. Migration does not occur
as a result of sending the above message.

It is not necessary to set a migration destination ahead of time. You can specify the
destination class when you decide to migrate instances. It is also possible to set a
migration destination, and then migrate the instances of the old class to a
completely different class, by specifying a different migration destination in the
message that performs the migration.

You can erase the migration destination for a class by sending it the message
cancelMigration . For example:

OldClass cancelMigration

If you are in doubt about the migration destination of a class, you can query it with
an expression of the form:

MyClass migrationDestination

The message migrationDestination returns the migration destination of the
class, or nil if it has none.

Migrating Instances
A number of mechanisms are available to allow you to migrate one instance, or a
specified set of instances, to either the migration destination, or to an alternate
explicitly specified destination.

No matter how you choose to migrate your data, however, it is a good idea to
migrate data in its own transaction. That is, as part of preparing for migration,
commit your work so far. In this way, if migration should fail because of some
error, you can abort your transaction and you will lose no other work; your
database will be in a consistent state from which you can try again. After migration
succeeds, commit your transaction again before you do any further work. Again,
this technique ensures a consistent database from which to proceed.

Finding Instances and References

To prepare for instance migration, two methods are available to help you find
instances of specified classes or references to such instances. An expression of the
form:

SystemRepository listInstances: anArray

takes as its argument an array of class names, and returns an array of sets. The
contents of each set consists of all instances whose class is equal to the

Class Versions and Instance Migration Migrating Objects

July 1996 GemStone Systems, Inc. 8-9

corresponding element in the argument anArray. Instances to which you lack read
authorization are omitted without notification.

NOTE:
The above method searches the database once for all classes in the array.
Executing allInstances for each class requires searching the
database once per class.

An expression of the form:

SystemRepository listReferences: anArray

takes as its argument an array of objects, and returns an array of sets. The contents
of each set consists of all instances that refer to the corresponding element in the
argument anArray. Instances to which you lack read authorization are omitted
without notification.

Using the Migration Destination

The simplest way to migrate an instance of an older class is to send the instance the
message migrate . If the object is an instance of a class for which a migration
destination has been defined, the object becomes an instance of the new class. If no
destination has been defined, no change occurs.

The following series of expressions, for example, creates a new instance of Animal,
sets Animal’s migration destination to be NewAnimal, and then causes the new
instance of Animal to become an instance of NewAnimal.

Example 8.4

| aLemming |
aLemming := Animal new.
Animal migrateTo: NewAnimal.
aLemming migrate.

Other instances of Animal remain unchanged until they, too, receive the message
to migrate.

If you have collected the instances you wish to migrate into a collection named
allAnimals, execute:

allAnimals do: [:each | each migrate]

Migrating Objects GemStone Programming Guide

8-10 GemStone Systems, Inc. July 1996

Bypassing the Migration Destination

You can bypass the migration destination, if you wish, or migrate instances of
classes for which no migration destination has been specified. To do so, you can
specify the destination directly in the message that performs the migration. Two
methods are available to do this—migrateInstances:to: , and
migrateInstancesTo: . Neither of these messages change the class’s persistent
migration destination. Instead, they specify a one-time-only operation that
migrates the specified instances, or all instances, to the specified class, ignoring
any migration destination set for the class.

The message migrateInstances:to: takes a collection of instances as the
argument to the first keyword, and a destination class as the argument to the
second. For example:

Animal migrateInstances: #[aDugong, aLemming] to: NewAnimal.

The example above migrates the specified instances of Animal to instances of
NewAnimal.

The message migrateInstancesTo: migrates all instances of the receiver to the
specified destination class. For example:

Animal migrateInstancesTo: NewAnimal.

The example above migrates all instances of Animal to instances of NewAnimal.

Class Versions and Instance Migration Migrating Objects

July 1996 GemStone Systems, Inc. 8-11

The following example uses migrateInstances:to: to migrate all instances of
all versions of a class, except the latest version, to the latest version:

Example 8.5

| animalHist allAnimals |
animalHist := Animal classHistory.
allAnimals := SystemRepository listInstances: animalHist.
"Returns an array of the same size as the class history.
 Each element in the array is a set corresponding to one
 version of the class. Each set contains all the
 instances of that version of the class."

1 to: animalHist size-1 do: [:index | (animalHist at: index)
migrateInstances:(allAnimals at: index)
to: (animalHist at: animalHist size)].

Migration Errors

Several problems can occur with migration:

 • you may be trying to migrate an object that the interpreter needs to remain in
a constant state (migrating to self);

 • you may be trying to migrate an instance that is indexed, or participates in an
index;

 • you may lack authorization to read or modify the data.

 Errors also occur when two versions of a class have incompatible constraints on
their elements or instance variables. This error is explored more fully in the next
section, “Instance Variable Mappings” on page 8-13.

Migrating self

Sometimes a requested migration operation can cause the interpreter to halt and
display an error message saying: “The object you are trying to migrate was already
on the stack.” This error occurs when you try to send the message migrate (or one
of its variants) to self. Migration can change the structure of an object. If the
interpreter was already accessing the object whose structure you are trying to
change, the database can become corrupted. To avoid this undesirable
consequence, the interpreter checks for the presence of the object in its stack before
trying to migrate it, and notifies you if it finds it.

Migrating Objects GemStone Programming Guide

8-12 GemStone Systems, Inc. July 1996

If you receive such a notifier, you have several options:

 • If you have explicitly sent the message migrate (or one of its variants) to self,
rewrite the method in which you have done so to accomplish its purpose in
some other manner.

 • If you were unaware that you sent the message migrate (or one of its
variants) to self, finish your work with the object in its older form and commit
the transaction. Then migrate the object in a new transaction.

NOTE:
In order to avoid generating an error, do not send the message migrate
to self. The compiler and interpreter cannot work properly if the class of
self changes during the execution of a method.

Migrating Instances That Participate in an Index

If an instance participates in an index (for example, because it is part of the path on
which that index was created), then the indexing structure can, under certain
circumstances, cause migration to fail. Three scenarios are possible:

 • Migration succeeds. In this case, the indexing structure you have made
remains intact. Commit your transaction.

 • GemStone examines the structures of the existing version of the class and the
version to which you are trying to migrate, and determines that migration is
incompatible with the indexing structure. In this case, GemStone raises an
error notifying you of the problem, and migration does not occur.

You can commit your transaction, if you have done other meaningful work
since you last committed, and then follow these steps:

1. Remove the index in which the instance participates.

2. Migrate the instance.

3. Re-create the index, this time using a constraint appropriate to the
new class version.

4. Commit the transaction.

 • In the final case, GemStone fails to determine that migration is incompatible
with the indexing structure, and so migration occurs and the indexing
structure is corrupted. In this case, GemStone raises an error notifying you of

Class Versions and Instance Migration Migrating Objects

July 1996 GemStone Systems, Inc. 8-13

the problem, and you will not be permitted to commit the transaction. Abort
the transaction and then follow the steps explained above.

NOTE
To avoid loss of work in case you must abort the transaction, always
commit your transaction before you begin data migration.

For more information about indexing, see Chapter 5, “Querying.” For more
information about committing and aborting transactions, see Chapter 6,
“Transactions and Concurrency Control.”

Migration and Authorization

You cannot migrate instances that you are not authorized to read or write. The
migration methods migrateInstancesTo: and migrateInstances: to:
return an array of four collections:

 • objects to which you lack read authorization;

 • objects to which you lack write authorization;

 • objects that are instances of indexed collections; and

 • objects whose class was not identical to the receiver—presumably, incorrectly
gathered instances.

If all four of these collections are empty, all requested migrations have occurred.

Instance Variable Mappings
Earlier, we explained that migration can involve changing the structure of an
object. By now, you are probably wondering what happens to the values of the
variables in that object—the class, class instance, and instance variables.

When an object is migrated, it refers to the class and class instance variables that
have been defined for the new version of the class. These variables have whatever
values have been assigned to them in the class object.

Migrating instances, however, is not terribly helpful unless you can retain the data
they contain. Instance variables, therefore, can retain their values when you
migrate instances. The following discussion describes the default manner in which
instance variables are mapped. This default arrangement can be modified if
necessary.

Migrating Objects GemStone Programming Guide

8-14 GemStone Systems, Inc. July 1996

Default Instance Variable Mappings

The simplest way to retain the data held in instance variables is to use instance
variables with the same names in both class versions. If two versions of a class have
instance variables with the same name, then the values of those variables are
automatically retained when the instances migrate from one class to the other.

Suppose, for example, you create two instances of class Animal and initialize their
instance variables as shown:

Example 8.6

| aLemming aDugong |
aLemming := Animal new.
aLemming name: 'Leopold'.
aLemming favoriteFood: 'grass'.
aLemming habitat: 'tundra'.
aDugong := Animal new.
aDugong name: 'Maybelline'.
aDugong favoriteFood: 'seaweed'.
aDugong habitat: 'ocean'.

You then decide that class Animal really needs an additional instance variable,
predator, which is a Boolean—true if the animal is a predator, false otherwise. You
create a class called NewAnimal, and define it to have four instance variables:
name, favoriteFood, habitat, and predator, creating accessing methods for all four. You
then migrate aLemming and aDugong. What values will they have?

Class Versions and Instance Migration Migrating Objects

July 1996 GemStone Systems, Inc. 8-15

Example 8.7 takes the class and method definitions for granted and performs the
migration. It then shows the results of printing the values of the instance variables.

Example 8.7

| bagOfAnimals |
bagOfAnimals := IdentityBag new.
bagOfAnimals add: aLemming; add: aDugong.
Animal migrateInstances: bagOfAnimals to: NewAnimal.
aLemming name.
Leopold

aLemming favoriteFood.
grass

aLemming habitat.
tundra

aLemming predator.
nil

aDugong name.
Maybelline

aDugong favoriteFood.
seaweed

aDugong habitat.
ocean

aDugong predator.
nil

As you see, the migrated instances retained the data they held. They have done so
because the class to which they migrated defined instance variables that had the
same names as the class from which they migrated. The new instance variable
name was initialized with the value of the old instance variable name, and so on.

The new class also defined an instance variable, predator, for which the old class
defined no corresponding variable. This instance variable therefore retains its
default value of nil.

Migrating Objects GemStone Programming Guide

8-16 GemStone Systems, Inc. July 1996

If the class to which you migrate instances defines no instance variable having the
same name as that of the class from which the instance migrates, the data is
dropped. For example, if you migrated an instance of NewAnimal back to become
an instance of the original Animal class, any value in predator would be lost.
Because Animal defines no instance variable named predator, there is no slot in
which to place this value.

To summarize, then:

 • If an instance variable in the new class has the same name as an instance
variable in the old class, it retains its value when migrated.

 • If the new class has an instance variable for which no corresponding variable
exists in the old class, it is initialized to nil upon migration.

 • If the old class has an instance variable for which no corresponding variable
exists in the new class, the value is dropped and the data it represents is no
longer accessible from this object.

Customizing Instance Variable Mappings

Three different kinds of customization are available to accommodate three
different situations.

 • In one situation, you may wish to initialize a variable having one name with
the value of a variable having a different name.

 • In another situation, you may wish to perform a specific operation on the
value of a given variable before initializing the corresponding variable in the
class to which the object is migrating.

 • You may also have a situation in which the only change to a variable is the
class of which it is constrained to be an instance. If the new constraint class is
not a subclass of the old constraint class, a migration error occurs. Continuing
from this error initializes the variable to nil. If you do not wish to lose data,
therefore, you must perform some custom conversions.

Explicit Mapping by Name

The first situation requires providing an explicit mapping from the instance
variable names of the older class to the instance variable names of the migration
destination. To provide such a customized mapping, override the default mapping

Class Versions and Instance Migration Migrating Objects

July 1996 GemStone Systems, Inc. 8-17

strategy by implementing a class method named instVarMappingTo: in your
destination class.

For example, suppose that you define the class NewAnimal with three instance
variables: species, name, and diet. When instances of Animal migrate to
NewAnimal, the value to which species ought to be initialized cannot be
determined. The value of name can be retained, and the value of diet ought to be
initialized with the value presently held in favoriteFood. In that case, the class
NewAnimal must define a class method that appears as shown in the example
below. However, this example is not portable to future versions of the class.

Example 8.8

instVarMappingTo: anotherClass
| result myNames itsNames |
result := super instVarMappingTo: anotherClass.
"Use the default strategy first to properly fill in inst
vars having the same name."
myNames := self instVarNames.
itsNames := anotherClass instVarNames.
(itsNames includesValue: #diet) ifFalse: [

"No, it uses the old name."
result

at: (myNames indexOfValue: #diet)
put:(itsNames indexOfValue: #favoriteFood)].

^result

Migrating Objects GemStone Programming Guide

8-18 GemStone Systems, Inc. July 1996

To implement the method so that it can be reused (with whatever minimal changes
are required) in version after version, it might be better to do it as shown in
Example 8.9:

Example 8.9

instVarMappingTo: anotherClass
"Use the default strategy first to properly fill in inst
vars having the same name."
| result myNames itsNames dietIndex|
result := super instVarMappingTo: anotherClass.
myNames := self instVarNames.
itsNames := anotherClass instVarNames.
dietIndex := myNames indexOfValue: #diet.
dietIndex >0
 ifTrue: [(result at: dietIndex) = 0
 “No, it still needs one”
 ifTrue:[result at: dietIndex

put:(itsNames indexOfValue: #favoriteFood)]].
^result

Transforming Variable Values

Another kind of customization is required when the format of data changes. For
example, suppose that you have a class named Point, which defines two instance
variables x and y. These instance variables define the position of the point in
Cartesian two-dimensional coordinate space.

Suppose that you define a class named NewPoint to use polar coordinates. The
class has two instance variables named radius and angle. Obviously the default
mapping strategy is not going to be helpful here; migrating an instance of Point to
become an instance of NewPoint loses its data—its position—completely. Nor is it
correct to map x to radius and y to angle. Instead, what is needed is a method that
implements the appropriate trigonometric function to transform the point to its
appropriate position in polar coordinate space.

In this case, the method to override is migrateFrom: instVarMap: , which you
implement as an instance method of the class NewPoint. Then, when you request
an instance of Point to migrate to an instance of NewPoint, the migration code that
calls migrateFrom: instVarMap: executes the method in NewPoint instead of
in Object.

Class Versions and Instance Migration Migrating Objects

July 1996 GemStone Systems, Inc. 8-19

Example 8.10

Object subclass: #oldPoint
 instVarNames: #(#x #y)
 classVars: #()
 poolDictionaries: #()
 inDictionary: UserGlobals
 constraints: #[#[#x, Number],
 #[#y, Number]]
 isInvariant: false

oldPoint compileAccessingMethodsFor: oldPoint.instVarNames

Object subclass: #Point
 instVarNames: #(#radius #angle)
 classVars: #()
 poolDictionaries: #()
 inDictionary: UserGlobals
 constraints: #[#[#radius, Number],
 #[#angle, Number]]
 isInvariant: false

Point compileAccessingMethodsFor: Point.instVarNames

method: Point
migrateFrom: oldPoint instVarMap: aMap

| x y |
x := oldPoint x.
y := oldPoint y.
radius := ((x*x) + (y*y)) asFloat sqrt.
angle := (x/y) asFloat arcTan.
^self

Of course, if you believe there is a chance that you might be migrating instances
from a completely separate version of class Point that does not have the instance
variables x and y, nor use the Cartesian coordinate system, then it is wise to check
for the class of the old instance before you determine which method
migrateFrom: instVarMap: to use.

For example, you could define a class method isCartesian for your old class
Point that returns true. Other versions of class Point could define the same method

Migrating Objects GemStone Programming Guide

8-20 GemStone Systems, Inc. July 1996

to return false. (You could even define the method in class Object to return false.)
You could then incorporate the test in the above method:

Example 8.11

method: Point
migrateFrom: oldPoint instVarMap: aMap
| x y |
oldPoint isCartesian
 ifTrue: [

x := oldPoint x.
y := oldPoint y.
radius := ((x*x) + (y*y)) asFloat sqrt.
angle := (x/y) asFloat arcTan.
^self]

 ifFalse: [^super migrateFrom: oldPoint instVarMap: aMap]

Handling Constraint Errors

If a new version of a class redefines the constraint on an instance variable, and the
new constraint class is not a subclass of the previous version’s constraint class,
then GemStone raises an error when you try to migrate an instance of the previous
version to the new version. This is true for named instance variables as well as
unnamed ones—that is, the elements of a collection.

Class Versions and Instance Migration Migrating Objects

July 1996 GemStone Systems, Inc. 8-21

For example, suppose a manufacturing application defines a class named Part to
have an instance variable named id, constrained to be an instance of Integer as
shown below.

Example 8.12

Object subclass: #Part
 instVarNames: #(#id)
 classVars: #()
 classInstVars: #()
 poolDictionaries: #()
 inDictionary: UserGlobals
 constraints: #[#[#id, Integer]]
 instancesInvariant: false
 newVersionOf: nil
 isModifiable: false
Part compileAccessingMethodsFor: Part.instVarNames

We can now create an instance of Part with an id of 12345:

Example 8.13

UserGlobals at: #myPart put: Part new.
myPart id: 12345.

However, a new vendor comes along who will sell us some parts more cheaply. As
luck would have it, however, the new vendor uses letters of the alphabet in the
part numbers.

Migrating Objects GemStone Programming Guide

8-22 GemStone Systems, Inc. July 1996

We must now create a new class Part whose id instance variable is constrained to
be an instance of String instead.

Example 8.14

Object subclass: #Part2
 instVarNames: #(#id)
 classVars: #()
 classInstVars: #()
 poolDictionaries: #()
 inDictionary: UserGlobals
 constraints: #[#[#id, String]]
 instancesInvariant: false
 newVersionOf: Part
 isModifiable: false
method: Part2
id: String
^id := String
%

Part compileAccessingMethodsFor: Part.instVarNames

We can now set the migration destination for Part to be Part2:

Example 8.15

"set the migration destination"
Part migrateTo: Part2

But String is not a subclass of Integer.

Class Versions and Instance Migration Migrating Objects

July 1996 GemStone Systems, Inc. 8-23

 If we now try to migrate an instance of Part to Part2, therefore, we will get an error
because of these incompatible instance variable constraints:

Example 8.16

myPart migrate.

GemStone: Error Nonfatal
The migration of aPart could not occur because instance
variable #id with value 12345 is not an instance of String
Error Category: [GemStone] Number: 2148 Arg Count: 4
Arg 1: aPart
Arg 2: id
Arg 3: 12345
Arg 4: String

If we continue from this error, the value in id will become nil—tolerable for one
instance of Part, perhaps, but certainly not for a whole factory full! Therefore, we
handle this error by aborting the transaction and considering the matter more
carefully.

The solution for migration problems generally has two parts:

 • Defining a migration method or class method in the new class or version of the
class; and

 • Pulling the old instances through the new class method.

Migrating Objects GemStone Programming Guide

8-24 GemStone Systems, Inc. July 1996

For Part2, a new class method, migrateFrom: aPart, creates an instance of the
new class and converts the instance variable to the new constraint. Prior to
returning the new instance, the OOP for the old object is transferred to the new
instance.

Example 8.17

category: ’Migrating’
classmethod: Part2
migrateFrom: aPart
"Version 1 of Part constrains the Id to be Integer;"
"Version 2 of Part constrains the Id to String. This method"
"should create an instance of Part2 and convert the old"
"Id value to the new value"
| inst |
inst := Part2 new.
"initialize the instance variable to the new constraint."
inst id: ((aPart id) asString).
"then migrates the OOP for aPart to the new object"
inst become: Part2 .
"return the new object."
^ inst
%
Part2 migrateFrom: myPart.
a Part2
 id 12345

Migrating Collection Class Objects

GemStone collection classes treat the elements of their collections as unnamed
instance variables. Therefore, changing the element constraint of a collection class
has the same hazards: if the new constraint class for the elements of a collection is
not a subclass of the previous constraint class, a similar error will be raised. The
remedy is the same, with one difference—in this case, you override the method
invalidElementConstraintWhenMigratingInto: aBag for: anObject.

For example, suppose we want to keep track of all the ID numbers of all the
different parts the manufacturer orders from specific vendors. We implement a
class called IdBag to keep this information; its elements are constrained to be
instances of class Integer. For the same reason that we changed Part, however, we
must make a new version, IdBag2, whose elements are now constrained to be
instances of String. Migrating an instance of IdBag to IdBag2 will raise an error.

Class Versions and Instance Migration Migrating Objects

July 1996 GemStone Systems, Inc. 8-25

The solution parallels the one for an individual part, as shown in Example 8.18:

Example 8.18

IdentityBag subclass: #IdBag
 instVarNames: #()
 classVars: #()
 poolDictionaries: #()
 inDictionary: UserGlobals
 constraints: SmallInteger
 isInvariant: false

IdentityBag subclass: #IdBag2
 instVarNames: #()
 classVars: #()
 classInstVars: #()
 poolDictionaries: #()
 inDictionary: UserGlobals
 constraints: String
 instancesInvariant: false
 newVersionOf: IdBag
 isModifiable: false

method: IdBag
invalidElementConstraintWhenMigratingInto: aBag for: anObject
 "The argument aBag must be an instance of the migration
 destination class. The argument anObject is an element
 contained in the receiver."
(aBag isKindOf: IdBag2)
 ifTrue: [
 "convert the element into an object that can be added to aBag"
 ^ anObject asString
]
 ifFalse: [
 "invoke superclass method to raise error"
 super invalidElementConstraintWhenMigratingInto:aBag for:anObject
]
%
UserGlobals at: #myIdBag put:
 (IdBag new add: 12; add: 34; add: 56; add: 78; add: 90; yourself).
IdBag migrateTo: IdBag2.

Migrating Objects GemStone Programming Guide

8-26 GemStone Systems, Inc. July 1996

We can now migrate instances of IdBag to IdBag2 without encountering the error.
When the migrate message is sent to an instance of IdBag, instead of raising the
migration error we will invoke the new method we’ve just defined.

Chapter

July 1996 GemStone Systems, Inc. 9-1

9 File I/O and
Operating System
Access

As a GemStone application programmer, you’ll seldom need to trouble yourself
with the details of operating system file management. Occasionally, however, you
might wish to transfer GemStone data to or from a text file on the GemStone object
server’s host machine. This chapter explains how such tasks can be accomplished.

Accessing Files
describes the protocol provided by class GsFile to open and close files, read
their contents, and write to them.

Executing Operating System Commands
describes the protocol provided by class System to spawn a new process on the
server’s machine to execute operating system commands.

Storing Objects and Exchanging Data
introduces the class PassiveObject—the mechanism GemStone provides for
storing the objects that represent your data and exchanging data between
GemStone repositories.

Creating and Using Sockets
describes the protocol provided by class GsSocket to create operating system
sockets and exchange data between two independent interface processes.

Accessing Files GemStone Programming Guide

9-2 GemStone Systems, Inc. July 1996

9.1 Accessing Files
The class GsFile provides the protocol to create and access operating system files.
This section provides a few examples of the more common operations for text
files—for a complete description of the functionality available, including the set of
messages for manipulating binary files, see the class GsFile in the GemStone Kernel
Reference.

Specifying Files
Many of the methods in the class GsFile take as arguments a file specification, which
is any string that constitutes a legal file specification in the operating system under
which GemStone is running. Wild card characters are legal in a file specification
if they are legal in the operating system.

Many of the methods in the class GsFile distinguish between files on the client
versus the server machine. In this context, the term client refers to the machine on
which the interface is executing, and the server refers to the machine on which the
Gem is executing. In the case of a linked interface, the interface and the Gem
execute as a single process, so the client machine and the server machine are the
same. In the case of an RPC interface, the interface and the Gem are separate
processes, and the client machine can be different from the server machine.

Specifying Files Using Environment Variables

If you supply an environment variable instead of a full path when using the
methods described in this chapter, how the environment variable is expanded
depends upon whether the process is running on the client or the server machine.
If you are running a linked interface or you are using methods that create
processes on the server, the environment variables accessed by your Smalltalk
methods are those defined in the shell under which the Gem process is running. If
you are running an RPC interface and using methods that create processes on a
separate client machine, the environment variables are instead those defined by
the remote user account on the client machine on which the application process is
running.

NOTE
If you do not wish to concern yourself with such details, supply full path
names and avoid the use of UNIX or DOS environment variables. This
allows your application to work uniformly across different
environments. See your GemBuilder manual.

The examples in this section use a UNIX path as a file specification.

File I/O and Operating System Access Accessing Files

July 1996 GemStone Systems, Inc. 9-3

Creating a File
You can create a new operating system file from Smalltalk using several class
methods for GsFile. For example, to create a new file on the client machine and
open it for writing, execute an expression of the form:

Example 9.1

"Note that mySpec was defined as a variable, you should
use ’pathname’ to a local file.
myFile := GsFile openWrite: mySpec.
UserGlobals at: #mySpec put: mySpec;
 at: #myFile put: myFile
%
! must close a file on a real file system
myFile close
%

The default is text mode.

NOTE

 As a client on a Windows NT system, you need to keep track of whether
the type of a file is TXT or BIN, because of how that OS treats the two
file types for editing. Opening or writing a BIN file in TXT mode may
cause portability problems, because of end-of-line characters are different
in the two file types. On Unix systems, end-of-line is treated
consistently.

To create a new file on the server machine and open it for writing, execute an
expression of the form:

Example 9.2

myFile := GsFile openWriteOnServer: mySpec
%

! must close a file on a real file system
myFile close

Accessing Files GemStone Programming Guide

9-4 GemStone Systems, Inc. July 1996

These methods return the instance of GsFile that was created, or nil if an error
occurred. Common errors include insufficient permissions to open the file for
modification. All GemStone error messages are listed in Appendix B, ”GemStone
Error Messages”.

Opening and Closing a File
GsFile provides a wide variety of protocol to open and close files. For a complete
list, see the GemStone Kernel Reference manual.

Your operating system sets limits the number of files a process can concurrently
access; some systems allow this limit to be changed. Using GemStone classes to
open, read or write, and close files does not lift your application’s responsibility for
closing open files. Make sure you write and close files as soon as possible.

Table 9.1 GsFile Method Summary

GsFile openRead: aFile Opens a file on the client machine for reading,
replacing the existing contents. Returns the instance of
GsFile that was created; nil if an error occurred

GsFile openAppend: aFile Opens a file on the client machine for reading,
appending the new contents instead of replacing the
existing contents. Returns the instance of GsFile that
was created; nil if an error occurred.

GsFile openReadOnServer: Opens a file on the server for reading, replacing the
existing contents. Returns the instance of GsFile that
was created; nil if an error occurred.

GsFile
openAppendOnServer:

Opens a file on the server for reading, appending the
new contents instead of replacing the existing
contents. Returns the instance of GsFile that was
created; nil if an error occurred.

GsFile close Closes the receiver. Returns the receiver if successful;
nil if an error occurred.

GsFile CloseAll Closes all open GsFile instances on the client machine
except stdin, stdout, and stderr. Returns the receiver if
successful; nil if an error occurred.

GsFile closeAllOnServer Closes all open GsFile instances on the server except
stdin, stdout, and stderr. Returns the receiver if
successful; nil if an error occurred.

File I/O and Operating System Access Accessing Files

July 1996 GemStone Systems, Inc. 9-5

Writing to a File
After you have opened a file for writing, you can add new contents to it in several
ways. For example, the instance methods, , addAll: , and nextPutAll: all take
strings as arguments and write the string to the end of the file specified by the
receiver. The method add: takes a single character as argument and writes the
character to the end of the file. And various methods such as cr , lf , and ff write
specific characters to the end of the file—in this case, a carriage return, a line feed,
and a form feed character, respectively.

For example, the following code writes the two strings specified to the file
myFile.txt, separated by end-of-line characters.

Example 9.3

myFile := GsFile openWrite: mySpec.
myFile nextPutAll: 'All of us are in the gutter,'.
myFile cr; lf.
myFile nextPutAll: 'but some of us are looking at the
stars.'.
GsFile closeAll.
myFile := GsFile openRead: mySpec.
myFile contents
GsFile closeAll.

These methods return the number of bytes that were written to the file, or nil if an
error occurs.

Reading From a File
Instances of GsFile can be accessed in many of the same ways as instances of
Stream subclasses. Like streams, GsFile instances also include the notion of a
position, or pointer into the file. When you first open a file, the pointer is
positioned at the beginning of the file. Reading or writing elements of the file
ordinarily repositions the pointer as if you were processing elements of a stream.

A variety of methods allow you to read some or all of the contents of a file from
within Smalltalk. For example, the end of Example 9.3 returns the entire contents
of the specified file and positions the pointer at the end of the file.

Accessing Files GemStone Programming Guide

9-6 GemStone Systems, Inc. July 1996

Example 9.4 returns the next character after the current pointer position and
advances the pointer by one character.

Example 9.4

| myString |
myString := String new.
myFile := GsFile openRead: mySpec.
myFile next: 12 into: myString
myFile close
%

Next: into: returns the twelve characters after the current pointer position and
places them into the specified string object. It then advances the pointer by twelve
characters.

These methods return nil if an error occurs.

Positioning

You can also reposition the pointer without reading characters, or peek at
characters without repositioning the pointer. For example, the following code
allows you to view the next character in the file without advancing the pointer.

Example 9.5

myFile peek

Example 9.6 allows you to advance the pointer by 16 characters without reading
the intervening characters.

Example 9.6

myFile skip: 16

File I/O and Operating System Access Accessing Files

July 1996 GemStone Systems, Inc. 9-7

Testing Files
The class GsFile provides a variety of methods that allow you to determine facts
about a file. For example, the following code test to see whether the specified file
exists on the client machine:

Example 9.7

GsFile exists: '/tmp/myfile.txt'

This method returns true if the file exists, false if it does not, and nil if an error
occurred. To determine if the file exists on the server machine, use the method
existsOnServer: instead.

To determine if a specified file is open, execute an expression of the form:

Example 9.8

myFile isOpen
myFile fileSize
myFile pathName

Removing Files
To remove a file from the client machine, use an expression of the form:

Example 9.9

GsFile closeAll.
GsFile removeClientFile: mySpec.
%

To remove a file from the server machine, use the method removeServerFile:
instead. These methods return the receiver or nil if an error occurred.

Accessing Files GemStone Programming Guide

9-8 GemStone Systems, Inc. July 1996

Examining A Directory
To get a list of the names of files in a directory, send GsFile the message
contentsOfDirectory: aFileSpec onClient: aBoolean. This message acts
very much like the UNIX ls command, returning an array of file specifications for
all entries in the directory.

If the argument to the onClient: keyword is true, GemStone searches on the
client machine. If the argument is false, it searches on the server instead.

 For example:

Example 9.10

GsFile contentsOfDirectory: '/usr/tmp/' onClient: true

If the argument is a directory name, this message returns the full pathnames of all
files in the directory, as shown in Example 9.10 above. However, if the argument
is a file name, this message returns the full pathnames of all files in the current
directory that match the file name. The argument can contain wild card characters
such as *. Example 9.11 shows a different use of this message:

Example 9.11

GsFile
contentsOfDirectory: '/tmp/*.c'
onClient: false

an Array
#1 /user2/ateam/personnel/godel.c
#2 /user2/ateam/personnel/escher.c
#3 /user2/ateam/personnel/bach.c

If you wish to distinguish between files and directories, you can use the message
contentsAndTypesOfDirectory: onClient: instead. This method returns
an array of pairs of elements. After the name of the directory element, a value of
true indicates a file; a value of false indicates a directory. For example:

File I/O and Operating System Access Executing Operating System Commands

July 1996 GemStone Systems, Inc. 9-9

Example 9.12

GsFile
contentsAndTypesOfDirectory: '/tmp/personal/'
onClient: true

an Array
/user2/ateam/personnel/tom true
/user2/ateam/personnel/dick true
/user2/ateam/personnel/harry true
/user2/ateam/personnel/Temps false

All the above methods return nil if an error occurs.

9.2 Executing Operating System Commands
System also understands the message performOnServer: aString, which causes
the UNIX shell commands given in aString to execute in a subprocess of the current
GemStone process. The output of the commands is returned as a Smalltalk string.
For example:

Example 9.13

System performOnServer: 'date'
Sat Jan 1 1:22:56 PST 1994

The commands in aString can have exactly the same form as a shell script; for
example, new lines or semicolons can separate commands, and the character “\”
can be used as an escape character. The string returned is whatever an equivalent
shell command writes to stdout. If the command or commands cannot be executed
successfully by the subprocess, the interpreter halts and GemStone returns an
error message.

File In, File Out, and Passive Object GemStone Programming Guide

9-10 GemStone Systems, Inc. July 1996

9.3 File In, File Out, and Passive Object
To archive your application or transfer GemStone classes to another repository
you can file out Smalltalk source code for classes and methods to a text file. To port
your application to another repository, you can file in that text file, and the source
code for your classes and methods is immediately available in the new repository.

Objects representing your data are stored for transfer to another repository with
the GemStone class PassiveObject. PassiveObject starts with a root object and
traces through its instance variables, and their instance variables, recursively until
it reaches atomic objects (characters, integers, booleans, or nil), or classes that can
be reduced to atomic objects (strings and numbers that are not integers), creating
a representation of the object that preserves all of the values required to re-create
it. The resulting network of object descriptions can be written to a file, stream, or
string. Each file can hold only one network—you cannot append additional
networks to
an existing passive object file, stream, or string.

A few objects and aspects of objects are not preserved:

 • Instances of UserProfile cannot be preserved in this way, for obvious security
reasons.

 • Instances of Segment and SystemRepository cannot be preserved.

 • Blocks that refer to globals or other variables outside the scope of the block
cannot be reactivated correctly.

 • Segment assignments and blocks that can be associated with objects (such as
the sort block in SortedCollections) are not preserved.

 • Any indexes you have created on the object are lost as well.

The relationship between two objects is conserved only so long as they are
described in the same network. Similarly, if two separate objects A and B both
refer to the same third object C, then making A and B passive in two separate
operations will result in duplicating the object C, which will be represented in both
A’s and B’s network. Because the resulting network of objects can be quite large
anyway, you want to avoid such unnecessary duplication. For this reason, it is
usually a good idea to create one collection to hold all the objects you wish to
preserve before invoking one of the PassiveObject methods.

The class PassiveObject implements the method passivate: anObject
toStream: aGsFileOrStream to write objects out to a stream or a file. To write the
object bagOfEmployees out to the file allEmployees.obj in the current directory,
execute an expression of the form shown in Example 9.14.

File I/O and Operating System Access File In, File Out, and Passive Object

July 1996 GemStone Systems, Inc. 9-11

Example 9.14

run
| bagOfEmployees empFile |
UserGlobals at: #bagOfEmployees put: myEmployees;
 at: #empFile put: (GsFile openWrite: 'allEmployees.obj').
%
expectvalue %GsFile
run
PassiveObject passivate: bagOfEmployees toStream: empFile.
empFile close.
%

The class PassiveObject implements the method newOnStream: aGsFileOrStream
to read objects from a stream or file into a repository. The method activate then
restores the object to its previous form.

The following example reads the file allEmployees.obj into a GemStone repository:

Example 9.15

expectvalue %GsFile
run
empFile := GsFile openRead: 'allEmployees.obj'.
bagOfEmployees := (PassiveObject newOnStream: empFile) activate.
empFile close.
%

Examples 9.14 and 9.15 use streams rather than files to actually move the data.
This is useful, as streams do not create temporary objects that occupy large
amounts of memory before the garbage collector can reclaim their storage.

If you wish to write the contents directly to a file on either the client or the server
machine, you can use a method such as the following:

Example 9.16

(bagOfEmployees passivate) toClientTextFile: 'allEmployees.obj'

Creating and Using Sockets GemStone Programming Guide

9-12 GemStone Systems, Inc. July 1996

You can use the method toServerTextFile: to specify a file on the server
machine instead. The passive object can be read into another repository with an
expression like the one in Example 9.17:

Example 9.17

((PassiveObject new) fromServerTextFile: 'allEmployees.obj')activate

Expressions of the form in Examples 9.16 and 9.17 allow you to specify files on
specific machines, but they have the disadvantage of creating large temporary
objects which occupy inconvenient amounts of storage until the garbage collector
reclaims it.

A third strategy allows you to save passive objects in strings that can then be sent
through a socket. To do so, use an expression of the form:

Example 9.18

expectvalue %SetOfEmployees
run
|theString|
theString := bagOfEmployees passivate contents.
theString toClientTextFile: 'allEmployees.obj'.
((PassiveObject newWithContents: theString)
 fromClientTextFile: 'allEmployees.obj') activate
%

9.4 Creating and Using Sockets
Sockets open a connection between two processes, allowing a two-way exchange
of data. The class GsSocket provides a mechanism for manipulating operating
system sockets from within Smalltalk.

Methods in the class GsSocket do not use the terms client and server in the same
way as the methods in class GsFile. Instead, these terms refer to the roles that two
processes play with respect to the socket: the server process creates the socket,
binds it to a port number, and listens for the client, while the client connects to an
already created socket. Both client and server are processes created (or spawned)
by a Gem process.

File I/O and Operating System Access Creating and Using Sockets

July 1996 GemStone Systems, Inc. 9-13

In the Class definition for GsSocket, under the Examples category, are two
examples you can use to create a GsSocket. The example methods work together;
they require two separate sessions running from two independently executing
interfaces, one running the server example and one running the client example.
You can copy the methods to your GemBuilder workspace, change any machine
names as necessary, and run them in your workspace. As written, the two
processes — server and client — run on the same host machine. However,
assuming that two machines are already networked together properly, you need
only replace the string 'localhost' in the clientExample method with
another string specifying a remote host to run the client example on a different
machine from the server example.

The examples create a socket, establish a connection between them, exchange data
using instances of PassiveObject, and then close the socket.

NOTE
The method serverExample will take control of the interface that
invokes it, allowing no further user input until the socket it creates
succeeds in connecting to the client socket. If this happens you need to
interrupt the command.

To run this example, execute the expression GsSocket serverExample from
one interface before invoking the expression GsSocket clientExample from
the other interface.

Creating and Using Sockets GemStone Programming Guide

9-14 GemStone Systems, Inc. July 1996

Chapter

July 1996 GemStone Systems, Inc. 10-1

10 Signals and
Notifiers

This chapter discusses how to communicate between one session and another, and
between application and another.

Communicating Between Sessions
introduces two ways to communicate between sessions.

Object Change Notification
describes the process used to enable object change notification for your
session.

Gem-to-Gem Signaling
describes one way to pass signals from one session to another.

Performance Considerations
describes areas of concern for developers tuning the performance of their
applications.

Communicating Between Sessions GemStone Programming Guide

10-2 GemStone Systems, Inc. July 1996

10.1 Communicating Between Sessions
Applications that handle multiple sessions often find it convenient to allow one
session to know about other sessions’ activities. GemStone provides two ways to
send information from one current session to another:

 • Object change notification

Reports the changes recorded by the object server. You set your session to be
notified when specific objects are modified. Once enabled, notification is
automatic, but a signal is not sent until the changed objects are committed.

 • Gem-to-Gem signaling

Reports events that happen outside the transaction space. Currently logged in
users signal to send messages to each other. Gems can also pass information
that is not necessarily visible to users, such as the name of a queue that needs
servicing. Sending a signal requires a specific action by the other Gem; it
happens immediately.

Object change notification and Gem-to-Gem signals only reach logged in sessions.
For applications that need to track processes continuously, you can create a Gem
that runs independently of the user sessions and monitors the system. See the
instructions on creating a custom Gem in the GemBuilder for C manual.

Signals and Notifiers Object Change Notification

July 1996 GemStone Systems, Inc. 10-3

10.2 Object Change Notification
Object change notifiers are signals that can be generated by the object server to
inform you when specified objects have changed. You can request that the object
server inform you of these changes by adding objects to your notify set.

When a reference to an object is placed in a notify set, you receive notification of
all changes to that object (including the changes you commit) until you remove it
from your notify set or end your GemStone session. The notification you receive
can vary in form and content, depending on which interface to GemStone you are
running and how the notification action was defined.

Your application can respond in several ways:

 • Prompt users to abort or commit for an updated image

 • Log the information in an object change report.

 • Use the notifiers to trigger another action. For example, a package for
managing investment portfolios might check the stock that triggered the
notifier and enter a transaction to buy or sell if the price went below or above
preset values.

To set up a simple notifier for an object:

1. Create the object and commit it to the object server.

2. Add the object to your session’s notify set with the messages:

System addToNotifySet: aCommittedObject
System addAllToNotifySet: aCollectionofCommittedObjects

3. Define how to receive the notifier with either a notifier message or by polling.

4. Define what your session will do upon receiving the notifier.

Before discussing each of these steps in detail, the following section outlines the
object server’s role in monitoring committed objects.

How the Object Server Notifies a Session
After a commit, each session view is updated. The object server also updates its list
of committed objects. This list of objects is compared with the contents of the notify
set for each session, and a set of the changed objects for each notify set is compiled.

Object Change Notification GemStone Programming Guide

10-4 GemStone Systems, Inc. July 1996

Figure 10.1 The Object Server Tracks Object Changes

In Figure 10.1, both Session 1 and Session 2 want to track changes to Object 1.
When Object 1 is committed to the repository, the object server checks the notify
sets for Session 1 and Session 2. The object server then sends the signal
#rtErrSignalCommit . If your session has enabled this signal, your session
receives this signal. Upon receiving this signal, you choose what action to take.

At this point, your session only knows that some object you are interested in has
changed. To find out which objects in your notify set have changed, you need to
ask the object server to send you the changed object set. If you choose not to enable
the signal, you can ask the object server for your session’s set of changed objects at
any time.

To receive the set of changed objects, your session sends System |
signaledObjects . This method returns the OOP for objects in the signaled
object set, then clears the signaled object set.

Object Server
Session 1

Session 2

Object 1
Object 2
Collection2

Object 3

Notify Set Notify Set

Session 1 Session 2

Object 1
Object 1

 (All Sessions)

 Changed Object Set:

Object 3, Object 1

Session 2Session 1
Changed
Object Set:

Object 1 Object 1

Changed
Object Set:

Collection2

Signals and Notifiers Object Change Notification

July 1996 GemStone Systems, Inc. 10-5

Your session can now use an exception handler to perform some action concerning
the specific objects that changed.

Setting Up a Notify Set
GemStone supplies a notify set for each user session to which you add or remove
objects. Except for a few special cases discussed later, any object you can refer to
can be added to a notify set.

Notify sets persist through transactions, living as long as the GemStone session in
which they were created. When the session ends, the notify set is no longer in
effect. If you need notification regarding the same objects for your next session,
you must once again add those objects to the notify set.

Adding Objects to a Notify Set

You can add an object to your notify set with an expression of the form:

System addToNotifySet: aCommittedObject

When you add an object to the notify set, GemStone begins monitoring changes to
it immediately.

Most GemStone objects are composite objects, made up of a root object and a few
subobjects. Usually you can just ignore the subobjects. However, if notification is
not working on a composite object in your notify set, look at the code and see
which objects are actually modified during common operations such as add: or
remove: . For some classes, both the root object and the subobjects must appear
in the notify set.

Object Change Notification GemStone Programming Guide

10-6 GemStone Systems, Inc. July 1996

Example 10.1 creates a dictionary of stock holdings and then creates a notify set for
the stocks in the holding. Lastly, the session is set to automatically receive the
notifier.

Example 10.1 Adding a New Object to the Notify Set

" Create a Class to record stock name, number and price: "
(Object subclass: #Holding
 instVarNames: #(’name’ ’number’ ’price’)
 classVars: #()
 poolDictionaries: #[]
 inDictionary: PublicDictionary
 constraints: #[]
 instancesInvariant: false
 isModifiable: false) name
%
Holding compileAccessingMethodsFor: Holding instVarNames
" Add an Instance of Holding to the UserGlobals dictionary
 as a StringKeyValue Dictionary: "
UserGlobals
 at: #MyHoldings put: StringKeyValueDictionary new
! Add some stocks to my dictionary:
MyHoldings at: #USSteel put:
 (Holding new name: #USSteel;
 number: 100000; price: 120.00).
MyHoldings at: #SallieMae put:
 (Holding new name: #SallieMae;
 number: 1000; price: 95.00).
%
MyHoldings at: #ATT put:
 (Holding new name: #ATT;
 number: 100000; price: 150.00).
%
commit
“Add the collection object to the notify set”
System addToNotifySet: MyHoldings.
(System notifySet) includesIdentical: MyHoldings
%
run
System enableSignaledObjectsError.
%

Signals and Notifiers Object Change Notification

July 1996 GemStone Systems, Inc. 10-7

Objects That Cannot Be Added

Not every object can be added to a notify set. Objects in a notify set must be visible
to more than one session; otherwise, other sessions could not change them. So,
objects you have created for temporary use or have not committed cannot be
added to a notify set. GemStone responds with an error if you try to add such
objects to the notify set.

You also receive an error if you attempt to add objects whose values cannot be
changed. This includes atomic objects such as instances of Character, SmallInteger,
Boolean, or nil.

Collections

You can add a collection of objects to your notify set with an expression like this:

System addAllToNotifySet: aCollectionOfCommittedObjects

This expression adds the elements of the collection to the notify set.

You don’t have to add the collection object itself, but if you do, use
addToNotifySet: rather than addAllToNotifySet:. When a collection
object is in the notify set, adding elements to the collection or removing elements
from it trigger notification. Modifications to the elements do not trigger
notification on the collection object; add the elements to the notification set if you
want to know when they change.

Example 10.2 shows the notify set containing both the collection object and the
elements in the collection.

Example 10.2

| notifyObjs |
“Add the stocks in the collection to the notify set”
System addAllToNotifySet: MyHoldings.
notifyObjs := System notifySet.
notifyObjs includesIdentical: (MyHoldings at: #SallieMae);
 includesIdentical: (MyHoldings at: #ATT);
 includesIdentical: (MyHoldings at: #USSteel)
%
“Add the collection object to the notify set”
System addToNotifySet: MyHoldings.
(System notifySet) includesIdentical: MyHoldings
%

Object Change Notification GemStone Programming Guide

10-8 GemStone Systems, Inc. July 1996

Very Large Notify Sets

You can register any number of objects for notification, but very large notify sets
can degrade system performance. GemStone can handle up to 2,000 objects for a
single session or a total of 5,000 objects across all sessions without significant
impact. Beyond that, test whether the response times are acceptable for your
application.

If performance is a problem, you can set up a more formal system of change
recording. Have each session maintain its own list of the last several objects
updated. The list is a collection written only by that session. Create a global
collection of collections that contains every session’s list of changes. Put the global
collection and its elements in your modify set, so you receive notification when a
session commits a modified list of changed objects. Then you can check for
changes of interest. Keeping a global collection of changes in your modify set
preserves the order of the additions, so the new objects can be serviced in the
correct order. Notification on a batch of changed objects is received in OOP order.

Listing Your Notify Set

To determine the objects in your notify set, execute:

System notifySet

Removing Objects From Your Notify Set

To remove an object from your notify set, use an expression of the form:

System removeFromNotifySet: anObject

To remove a collection of objects from your notify set, use an expression of the
form:

System removeAllFromNotifySet: aCollection

This exprtession removes the elements of the collection. If the collection object
itself is also in the notify set, remove it separately, using
removeFromNotifySet:.

To remove all objects from your notify set, execute:

System clearNotifySet
NOTE:

D not clear your notify set after each transaction. If you clear the notify
set, and then add some of the same objects to it again, you may miss
intermediate changes to those objects.

Signals and Notifiers Object Change Notification

July 1996 GemStone Systems, Inc. 10-9

Notification of New Objects
In a multi-user environment, objects are created in various sessions, committed,
and immediately open to modification. To receive notifiers on the objects that
existed at the beginning of your session may not be enough. You may also need
notification concerning new objects.

You cannot put unknown objects in your notify set, but you can create a collection
for those kinds of objects and add that collection to the notify set. Then when the
collection changes, meaning that objects have been added or removed, you can
stop and look for new objects. For example, suppose you want notification when
the price of any stock in your portfolio changes. Use the following steps:

1. Create a globally known collection (for example, MyHoldings) and add your
existing stock holdings (instances of class Holding) to it.

2. Place these stocks in your notify set:
System addAllToNotifySet: MyHoldings

3. Place MyHoldings in your notify set, so you receive notification that the
collection has changed when a stock is bought or sold:
System addToNotifySet: MyHoldings

4. Place new stock purchases in MyHoldings by adding code to the instance
creation method for class Holding.

5. When you receive notification that MyHoldings has been changed, compare
the new MyHoldings with the original.

6. When you find new stocks, add them to your notify set, so you will be notified
if they are changed.

Object Change Notification GemStone Programming Guide

10-10 GemStone Systems, Inc. July 1996

Example 10.3 shows one way to do steps 5 and 6.

Example 10.3 Adding New Objects to Another Session’s Notify Set

"Make a temporary copy of the set."

| tmp newObjs |
tmp := MyHoldings copy.
"Refresh the view (commit or abort)."
System commitTransaction.
"Get the difference between the old and new sets."
newObjs := (MyHoldings - tmp).
"Add the new elements to the notify set."
newObjs size > 0 ifTrue: [System addAllToNotifySet: newObjs].

You can also identify objects to remove from the notify set by doing the opposite
operation:

tmp - MyHoldings

This method could be useful if you are tracking a great many objects and trying to
keep the notify set as small as possible.

Receiving Object Change Notification

You can receive notification of committed changes to the objects in your notify set
in two ways:

 • Enabling automatic notification, which is faster and uses less CPU

 • Polling for changes

Automatic Notification of Object Changes

For automatic notification, you enable your session to receive the event signal
#rtErrSignalCommit. By default, #rtErrSignalCommit is disabled (except in
GemBuilder for Smalltalk, which enables the signal as part of GSSession |
notificationAction:).

To enable the event signal for your session, execute:

System enableSignaledObjectsError

To disable the event signal, send the message:

System disableSignaledObjectsError

Signals and Notifiers Object Change Notification

July 1996 GemStone Systems, Inc. 10-11

To determine whether this error message is enabled or disabled for your session,
send the message:

System signaledObjectsErrorStatus

This method returns true if the signal is enabled, and false if it is disabled.

This setting is not affected by commits or aborts. It remains until you change it, you
end the session, or you receive the signal. The signal is automatically disabled
when you receive it so the exception handler can take appropriate action.

The receiving session traps the signal with an exception handler. Your exception
handler is responsible for reading the set of signaled objects (by sending the
message System signaledObjects) as well as taking the appropriate action.

System | signaledObjects

The System | signaledObjects method reads the incoming changed object
signals. This method returns an array. The array includes all the objects in your
notify set that have changed since the last time you sent signaledObjects in
your current session. The array contains objects changed and committed by all
sessions, including your own. If more than one session has committed, the OOPs
are OR’d together. The elements of the array are arranged in OOP order, not in the
order the changes were committed. If none of the objects in your notify set have
been changed, the array is empty.

NOTE:
Objects that participate in indexes are considered changed if an index is
created or removed. You may therefore sometimes receive notification of
changes that are normally invisible to you and irrelevant to your
purposes.

Use a loop to call signaledObjects repeatedly, until it returns a null. The
nullguarantees that there are no more signals in the queue.

NOTE:
If users are frequently committing many changes to the objects in your
notify set, you may not receive notification for each change. You may not
be able to poll frequently enough, or your exception handler may not be
able to process the errors it receives fast enough. In such cases, you may
miss intermediate values of frequently changing objects.

Object Change Notification GemStone Programming Guide

10-12 GemStone Systems, Inc. July 1996

Polling for Changes to Objects
You also use System | signaledObjects to poll for changes to objects in your
notify set.

 Example 10.4 uses the polling method to inform you if anyone has added objects
to a set or changed an existing one. Notice that the set is created in a dictionary that
is accessible to other users, not in UserGlobals.

Example 10.4

System disableSignaledObjectsError;
 signaledObjectsErrorStatus
 "Create a set."
UserGlobals at: #Changes put: IdentitySet new.
System commitTransaction

System addToNotifySet: Changes
%
Changes add: 'here is a change'.
System commitTransaction
| newSymbols count |
System abortTransaction.
count := 0 .
[newSymbols := System signaledObjects.
 newSymbols size = 0 and:[count < 50]
]
 whileTrue: [
 System sleep: 10 .
 count := count + 1
].
^ newSymbols.
%
Changes segment worldAuthorization: #write.
System commitTransaction

Signals and Notifiers Object Change Notification

July 1996 GemStone Systems, Inc. 10-13

Troubleshooting
Notification on object changes may occasionally produce unexpected results. The
following sections outline areas of concern:

Indexes

Objects that participate in indexes are considered changed if an index is created or
removed. You may, therefore, sometimes receive notification of changes that are
normally invisible to you and irrelevant to your purposes.

Frequently Changing Objects

If users are committing many changes to objects in your notify set, you may not
receive notification of each change. You might not be able to poll frequently
enough, or your exception handler might not process the errors it receives fast
enough. In such cases, you can miss some intermediate values of frequently
changing objects.

Special Classes

Most GemStone objects are composite objects, but for the purposes of notification
you can usually ignore this fact. They are almost always implemented so that
changes to subobjects affect the root, so only the root object needs to go into the
notify set. For example, these common operations trigger notification on the root
object:

Example 10.5

!common operations that trigger notifers

"assignment to an instance variable"
name := ' dowJones '

"updating the indexable portion of an object"
self at: 3 put: ' active '

"adding to a collection"
self add: 3

Object Change Notification GemStone Programming Guide

10-14 GemStone Systems, Inc. July 1996

In a few cases, however, the changes are made only to subobjects. For the following
GemStone kernel classes, both the object and the subobjects must appear in the
notification set:

 • RcQueue

 • RcIdentityBag

 • RcCounter

 • KeyValueDictionary.

You can also have the problem with your own application classes. Wherever
possible, implement objects so that changes modify the root object, although you
also have to balance the needs of notification with potential problems of
concurrency conflicts.

If you are not being notified of changes to a composite object in your notify set,
look at the code and see which objects are actually modified during common
operations such as add: or remove: . When you are looking for the code that
actually modifies an object, you may have to check a lower-level method to find
where the work is performed.

Once you know the object’s structure and have discovered which elements are
changed, add the object and its relevant elements to the notify set. For cases where
elements are known, you can add them just like any other object:

System addToNotifySet: anObject

Example 10.6 shows a method that creates an object and automatically adds it to
the notify set in the process.

Example 10.6

!Adding Subobjects to the Notify Set
method: SetOfHoldings
add: anObject

System addToNotifySet: anObject.
^super add: anObject

%

Signals and Notifiers Gem-to-Gem Signaling

July 1996 GemStone Systems, Inc. 10-15

Methods for Object Notification
Methods related to notification are implemented in class System. Browse the class
System and read about these methods.

addAllToNotifySet:
addToNotifySet:
clearNotifySet
removeAllFromNotifySet:
removeFromNotifySet:
notifySet
signaledObjects
enableSignaledObjectsError
disableSignaledObjectsError
signaledObjectsErrorStatus

Class Exception provides the behavior for capturing signals. Look at these
methods related to exception handling:

installStaticException: category: number: subtype:
removeStaticException:
category: number: do:
remove

10.3 Gem-to-Gem Signaling
GemStone enables you to send a signal from your Gem session to any other current
Gem session. GsSession implements several methods for communicating between
two sessions. Unlike object change notification, inter-session signaling operates on
the event layer and deals with events that are not being recorded in the repository.
Signaling happens immediately, without waiting for a commit.

An application can use signals between sessions for situations like a queue, when
you want to pass the information quickly. Signals can also be a way for one user
who is currently logged in to send information to another user who is logged in.

NOTE:
A signal is not exactly an interrupt, and it does not automatically
awaken an idle session. The signal can be received only when your
GemBuilder interface is active.

Gem-to-Gem Signaling GemStone Programming Guide

10-16 GemStone Systems, Inc. July 1996

You can receive a signal from another session by polling for the signal or by
receiving automatic notification.

When the signal is received by polling, the session sends out the message System
signalFromGemStoneSession at regular intervals.

The receiving session processes the signal with an exception handler. Figure 10.2
shows the type of Gem-to-Gem signaling where the Stone sends an error to the
receiving session. The receiving session processes the signal with an exception
handler.

Figure 10.2 Communicating from Session to Session

Class Exception provides the behavior for capturing signals. Look at these
methods related to exception handling:

session 1 session 2

Stone

R
T

_
E

R
R

_
S

IG
N

A
L
_
G

E
M

S
T

O
N

E
_
S

E
S

S
IO

N
System enable-

S
ys

te
m

 s
en

dS
ig

na
l:t

o:
w

ith
M

es
sa

ge

1

SignaledGemstone-
SessionError

3

2

Signals and Notifiers Gem-to-Gem Signaling

July 1996 GemStone Systems, Inc. 10-17

installStaticException: category: number: subtype:
removeStaticException:
category: number: do:
remove

Sending a Signal
To communicate, one session must send a signal and the receiving session must be
set up to receive the signal.

Finding the Session ID

To send a signal to another Gem session, you must know its session identification
number. To see a description of currently logged in sessions, execute the following
method:

System currentSessions

This message returns an array of SmallInteger representing session identification
numbers for all current sessions. Example 10.7 uses this method to find the session
ID for user1 and send a message.

Example 10.7

| sessionId serialNum aGsSession otherSession signalToSend|
 sessionId := System currentSessions
 detect:[:each |(((System descriptionOfSession: each)
at: 1)
 userId = 'user1')]
 ifNone: [nil].
sessionId notNil ifTrue: [
 serialNum := GsSession serialOfSession: sessionId .
 otherSession := GsSession sessionWithSerialNumber:
serialNum .
 signalToSend :=
 GsInterSessionSignal signal: 4
 message:'reinvest form is here'.
"one of two ways to send it"
 signalToSend sendToSession: otherSession .
"ALTERNATIVE CODE:
 otherSession sendSignalObject: signalToSend ."
]

Gem-to-Gem Signaling GemStone Programming Guide

10-18 GemStone Systems, Inc. July 1996

The other session needs to receive the message, as shown in this example:

Example 10.8

GsSession currentSession signalFromSession message

reinvest form is here

Sending the Message

When you have the session identification number, use the method
GsInterSessionSignal | signal: aSignalNumber message:
aMessage .

aSignalNumber is determined by the particular protocol you arranged at your site
and the specific message you wish to send. Sending the integer “1,” for example,
doesn’t convey a lot unless everyone has agreed that ”1” means “Ready to trade.”
You could set up an application-level symbol dictionary of meanings for the
different signal numbers, similar to the standard GemStone error dictionary
discussed in “Signaling Errors to the User” on page 11-1.

aMessage is a String object with up to 1023 characters.

Instead of assigning meanings to aSignalNumber, your site might agree that the
integer is meaningless, but the message string is to be read as a string of characters
conveying the intended message, as in Example 10.9.

For more complex information, the message could be a code where each symbol
conveys its own meaning.

You can use signals to broadcast a message to every user logged in to GemStone.
In Example 10.9, one session notifies all current sessions that it has created a new
object to represent a stock that was added to the portfolio. In applications that
commit whenever a new object is created, this code could be part of the instance
creation method for class Holding. Otherwise, it could be application-level code,
triggered by a commit.

Signals and Notifiers Gem-to-Gem Signaling

July 1996 GemStone Systems, Inc. 10-19

Example 10.9

 System currentSessions do: [:each |
 System sendSignal: 8 to: each
 withMessage: 'new Holding: SallieMae'.]

If the message is displayed to users, they can commit or abort to get a new view of
the repository and put the new object in their notify sets. Or the application could
be set up so that signal 8 is handled without user visibility. The application might
do an automatic abort, or automatically start a transaction if the user is not in one,
and add the object to the notify set. This enables setting up a notifier on a new
unknown object. Also, because signals are queued in the order received, you can
service them in order.

Receiving a Signal

You can receive a signal from another session in either of two ways: you can poll
for such signals, or you can enable a signal from GemStone. Signals are queued in
the receiving session in the order in which they were received. If the receiving
session has inadequate heap space for an incoming signal, the contents of the
signal is written to stdout, whether the receiving session has enabled receiving such
signals or not. (Both the structure of the signal contents and the process of enabling
signals are described in detail in the next sections.)

The System | signalFromGemStoneSession method reads the incoming
signals, whether you poll or receive a signal. If there are no pending signals, the
array is empty.

Use a loop to call signalFromGemStoneSession repeatedly, until it returns a
null. This guarantees that there are no more signals in the queue. If signals are
being sent quickly, you may not receive a separate
RT_ERR_SIGNAL_GEMSTONE_SESSION for every signal. Or, if you use polling,
signals may arrive more often than your polling frequency.

Gem-to-Gem Signaling GemStone Programming Guide

10-20 GemStone Systems, Inc. July 1996

Polling

To poll for signals from other sessions, send the following message as often as you
require:

System signalFromGemStoneSession

If a signal has been sent, this method returns a three-element array containing:

 • the session identification number of the session that sent the signal (a
SmallInteger),

 • the signal value (a SmallInteger), and

 • the string containing the signal message.

If no signal has been sent, this method returns an empty array.

Example 10.10 shows how to poll for Gem-to-Gem signals. If the polling process
finds a signal, it immediately checks for another one until the queue is empty. Then
the process sleeps for 10 seconds.

Example 10.10

run
| response |
[response := System signalFromGemStoneSession.
 response size = 0] whileTrue:[System sleep: 10].
^response
%

Receiving an Error Message from the Stone

To use the error mechanism to receive signals from other Gem sessions, you must
enable the error #rtErrSignalGemStoneSession. This error has three arguments:

 • the session identification number of the session that sent the signal (a
SmallInteger)

 • the signal value (a SmallInteger)

 • the string containing the signal message

By default, the error #rtErrSignalGemStoneSession is disabled, except in the GSI
interface, which enables the error as part of GSSession | gemSignalAction: .

Signals and Notifiers Performance Considerations

July 1996 GemStone Systems, Inc. 10-21

To enable this error, execute:

System enableSignaledGemStoneSessionError

To disable the error, send the message:

System disableSignaledGemStoneSessionError

To determine whether receiving this error message is presently enabled or
disabled, send the message:

System signaledGemStoneSessionErrorStatus

This method returns true if the error is enabled, and false if it is disabled.

This setting is not affected by commits or aborts. It remains until you change it, you
end the session, or you receive the error. The error is automatically disabled when
you receive it so the exception handler can take appropriate action without further
interruption.

10.4 Performance Considerations
GemStone notifiers and Gem-to-Gem signals use the same underlying
implementation. You can use the suggestions in this section to improve the
performance of applications that depend on either mechanism.

Increasing Speed

Signals and notifiers require a few milliseconds to get to their destination, no
matter how you set up your application. You can improve the speed by using
linked Gems, rather than separate RPC sessions.

Receiving the signal can also be delayed. GemStone is not an interrupt-driven
application programming interface. It is designed to make no demands on the
application until the application specifically requests service. Therefore, Gem-to-
Gem signals and object change notifiers are not implemented as interrupts, and
they do not automatically awaken an idle session. They can only be received when
GemBuilder is running, not when you are running client code, sitting at the Topaz
prompt, writing to a socket connection, or waiting for a child process to complete.
The signals are queued up and wait until you read them, which can create a
problem with signal overflow if the delay is too long and the signals are coming
rapidly.

Performance Considerations GemStone Programming Guide

10-22 GemStone Systems, Inc. July 1996

You can receive signals at reliable intervals by regularly performing some
operation that activates Gembuilder. For example, in a Smalltalk application you
could set up a polling process that periodically sends out GSSession |
pollForSignal . The pollForSignal method causes GemBuilder to poll the
repository. GemBuilder for C also provides a wrapper for the function
GciPollForSignal.

You should also check in your application to make sure the session does not hang.
For instance, use GsSocket | readReady to make sure your session won’t be
waiting for nonexistent input at a socket connection.

See “Using Signals and Notifiers with RPC Applications” on page 10-23.

Dealing With Signal Overflow
Gem-to-Gem signals and object change notification signals are queued separately
in the receiving session. The queues maintain the order in which the signals are
received.

NOTE:
For object change notification, the queue does not preserve the order in
which the changes were committed to the repository. Each notification
signal contains an array of OOPs, and these changes are arranged in
OOP order. See “Receiving Object Change Notification” on page 10-10.

If the receiving session has inadequate heap space for an incoming signal, the
contents of the signal are written to stdout whether the receiving session has
enabled such signals or not. The internal buffer for Gem-to-Gem signals is
approximately 9 KBytes per receiving session. This 9 KBytes must accommodate
any strings sent as part of the signal, along with some other things like message
headers. If the receiving side is completely idle, 9 KBytes is the maximum size of
signal data that another session could send. If the receiving side is receiving, there
is no hard limit, but if the sending side is running slightly faster, then eventually
the sender will overflow the buffer.

When the output buffer from the Stone to the target session is full, error 2254,
#errSesBlockedOnOutput, is raised. Set your application so the sender gracefully
handles this error. For example, the sender might try to send the signal five times,
and finally display a message of the form:

Receiver not responding.

The most effective way to prevent signal overflow is to keep the session in a state
to receive signals regularly, using the techniques discussed in the preceding
section. When you do receive signals, make sure you read all the signals off the

Signals and Notifiers Performance Considerations

July 1996 GemStone Systems, Inc. 10-23

queue. Repeat signaledObjects or signalFromGemStoneSession until it
returns a null. You can postpone the problem by sending very short messages,
such as an OOP pointing to some string on disk or perhaps an index into a global
message table. Check System | sendSignal: to: withMessage: for a better
idea of how the message queue works.

Using Signals and Notifiers with RPC Applications

RPC user applications need to call GciPollForSignal regularly to receive the signal
from the Gem. For linked applications, this call is not necessary, because the
applications run as part of the same process as the Gem. See your GemBuilder
interface manual for more information.

Sending Large Amounts of Data

If you want to pass large amounts of data between sessions, sockets are more
appropriate than Gem-to-Gem signals. Chapter 9, "File I/O and Operating System
Access" describes the GemStone interface to TCP/IP sockets. That solution does
not pass data through the Stone, so it does not create system overload when you
send a great many messages or very long ones.

Maintaining Signals and Notification When Users Log Out
Object change notification and Gem-to-Gem signals only reach logged in sessions.
For applications that need to track processes continuously, you can create a Gem
that runs independently of the user sessions and monitors the system. In
manufacturing, such a Gem can monitor a machine and send a warning to all
current sessions when something is out of tolerance. Or it might receive the
information that all the users need and store it where they can find it when they
log in.

Performance Considerations GemStone Programming Guide

10-24 GemStone Systems, Inc. July 1996

Example 10.11 shows some of the code executed by an error handler installed in a
monitor Gem. It traps Gem-to-Gem signals and writes them to a log file.

Example 10.11 Logging Gem-to-Gem Signals

run
| gemMessage logString |
gemMessage := System signalFromGemStoneSession.
logString := String new.
logString add:
'---
The signal ';

add: (gemMessage at: 2) asString;
add: ' was received from GemStone sessionId = ';
add: (gemMessage at: 1) asString;
add: ' and the message is ';
addAll: (gemMessage at: 3).

logString toServerTextFile: ’user2/trading/logdir’ +
'/gemmessage.txt'.

%

Chapter

July 1996 GemStone Systems, Inc. 11-1

11 Error Handling

GemStone provides several mechanisms that allow you to deal with errors in your
programs.

Signaling Errors to the User
describes the mechanism whereby an application can halt execution and
report errors to the user.

Handling Errors in Your Application
describes the class Exception, which allows you to define categories of errors
and install handlers in your application to cope with them without halting
execution.

11.1 Signaling Errors to the User
Class System provides a facility to help you trap and report errors in your
Smalltalkprograms. When you send a message of the form:

System signal: anInt args: anArray signalDictionary: aDict

 System looks up an object identified by the number anInt in the SymbolDictionary
aDict. Using that object and any information you included in anArray, it builds a

Signaling Errors to the User GemStone Programming Guide

11-2 GemStone Systems, Inc. July 1996

string that it passes back to the user interface code as an error description. The
Smalltalk interpreter halts.

Suppose, for example, that you create a SymbolDictionary called MyErrors in
which the string 'Employee age out of range' is identified by the number 1. The
following method causes that string to be passed back to the user interface
whenever the method’s argument is out of range.

Example 11.1

method: Employee
age: anInt
(anInt between: 15 and: 65)
 ifFalse: [System signal: 1 args: #() signalDictionary:
MyErrors].
age := anInt.
%

The SymbolDictionary containing error information is actually keyed on symbols
such as #English or #Kwakiutl that name natural languages. Each key is associated
with an array of error-describing objects. Here, in Example 11.2, is a
SymbolDictionary containing English and Pig Latin error descriptions:

Example 11.2

| signalDict |
signalDict := SymbolDictionary new.
signalDict at: #English put: Array new;
 at: #PigLatin put: Array new.
(signalDict at: #English)
 at: 1 put: #('Employee age out of range');
 at: 2 put: #('Distasteful input').
(signalDict at: #PigLatin)
 at: 1 put: #('Employeeay ageay outay ofay angeray');
 at: 2 put: #('Istastefulday inputay').
UserGlobals at: #MyErrors put: signalDict.
%

The error string to be returned in response to a particular signal number depends
on the value of instance variable nativeLanguage in your UserProfile. The message
nativeLanguage lets you read the value of that variable, and the message

Error Handling Signaling Errors to the User

July 1996 GemStone Systems, Inc. 11-3

nativeLanguage: lets you change it. Assuming you have the necessary
authorization, the following code causes GemStone to respond to you in Pig Latin:

System myUserProfile nativeLanguage: #PigLatin

If you define the method Employee | age: as shown above, then this
expression:

myEmployee age: -1

 elicits the error report ’Employeeay ageay outay ofay angeray’.

NOTE:
Signal 0 (zero) is reserved for use by GemStone. Do not use it.

As the previous examples have shown, each error object is an array. Although the
arrays in the previous example contained only strings, they can also include
SmallIntegers that act as indexes into the parameter to args: . When the error
string is constructed, each positive SmallInteger in the error object is replaced by
the result of sending asString to the corresponding element of the args: array.
This lets you capture and report some diagnostic information from the context of
the error.

Suppose, for example, that you wanted to report the actual argument to age: that
triggered the “out of range” error. You can define your error dictionary this way:

Example 11.3

| signalDict |
signalDict := SymbolDictionary new.
signalDict at: #English put: Array new;
 at: #PigLatin put: Array new.
(signalDict at: #English)
 at: 1 put: #('Employee age ' 1 ' out of range');
 at: 2 put: #('Distasteful input').
(signalDict at: #PigLatin)
 at: 1 put: #('Employeeay ageay ' 1 ' outay ofay
angeray');
 at: 2 put: #('Istastefulday inputay').
UserGlobals at: #MyErrors put: signalDict.

and then define age: like this:

Signaling Errors to the User GemStone Programming Guide

11-4 GemStone Systems, Inc. July 1996

Example 11.4

method: Employee
age: anInt
(anInt between: 15 and: 65)
 ifFalse: [System signal: 1 args: #[anInt]
signalDictionary: MyErrors].
age := anInt.
%

When an argument to age: is out of range, System looks up the array representing
the error for signal 1 and begins building a string. The first part of that string is
’Employee age’ (the first element of the array), the second part is the result of
sending asString to anInt, and the final part is ’ out of range’ (the third element
of the array). The resulting string has the form ’Employee age –1 out of range’.

The following examples show how you can use a two-element argument array:

Example 11.5

(MyErrors at: #English)
 at: 1 put: #('The employee named ' 2 ' cannot be ' 1 ' years
old');
 at: 2 put: #('Distasteful input'). . . .
method: Employee
age: anInt
 (anInt between: 15 and: 65)
 ifFalse: [System signal: 1 args: #[anInt, self name]
 signalDictionary: MyErrors].
 age := anInt.
%

This mechanism’s use of asString in building error reports does not work if the
error involves an authorization problem. For example, then sending asString to
the object for which you have no authorization only compounds the problem. To
help you circumvent this, GemStone also gives you the means to report an object’s
identifier.

If one of the SmallIntegers in the error object is negative, the absolute value of that
number is used for indexing into the args: array. Then, when the error string is
constructed, the negative SmallInteger is replaced by the identifier of the

Error Handling Handling Errors in Your Application

July 1996 GemStone Systems, Inc. 11-5

corresponding object. For example, if the error object contains the SmallInteger -
3, then the error string contains the identifier of the third element of the args:
array. Because GemStone can report an object’s identifier even if you have no read
authorization for the object, the error mechanism can’t be halted by an
authorization error.

In the following examples, the error-handling code given earlier is modified to
report the identifier of any employee receiving the message age: with an
inappropriate argument.

Example 11.6

(MyErrors at: #English)
 at: 1 put: #('The employee with object identifier ' -2
 ' cannot be ' 1 ' years old');
 at: 2 put: #('Distasteful input').
method: Employee
age: anInt
 (anInt between: 15 and: 65)
 ifFalse: [System signal: 1 args: #[anInt, self]
 signalDictionary: MyErrors].
 age := anInt.
%

Invoking age: with an out-of-range argument now elicits an error report of the
form “The employee with object identifier 77946 cannot be –1 years old.”

11.2 Handling Errors in Your Application
Unless an error is fatal to GemStone, it can be handled in your application without
halting execution with the class Exception. You define a category of errors to which
your application must respond, raise the error under appropriate circumstances,
and execute additional Smalltalkcode to recover from the error gracefully.

If no GemStone Smalltalk exception handler is defined for a given error, control
returns to the interface you are using. For example, in the GemBuilder for C
interface, you handle the error through GciErr, and in the GemBuilder for
Smalltalk interface you program the notificationBlock: in GSSession with actions
to take upon notification. See your particular interface manual for details of its
behavior in response to errors. To handle errors in the interface, RPC applications

Handling Errors in Your Application GemStone Programming Guide

11-6 GemStone Systems, Inc. July 1996

need to call GciPollForSignal regularly to receive the error from the Gem. See
your interface manual for more information.

GemStone Smalltalk allows you to define two kinds of exceptions: static exceptions
and Activation exceptions.

Activation Exceptions
A activation exception is associated with a method and the associated state in which
the Smalltalk virtual machine is presently executing. These exceptions live and die
with their associated method contexts—when the method returns, control is
passed to the next method and the exception is gone.

Each exception is associated with one method context, but each method context
can have a stack of associated exceptions. The relationship is diagrammed in
Figure 11.1.

Figure 11.1 Method Contexts and Associated Exceptions

Static Exceptions
A static exception is a final line of defense—if you define one, it will take control in
the event of any error for which no other handler has been defined. A static
exception executes without changing in any way the stack, or the return value of
the method that called it. Static exception handlers are therefore useful for

method
Exception

top

next

Exception

next = nil

Exception

next

Exception

context

method
context

method
context

Exception

next

S
ta

ck

resignal:

.

.

.

Error Handling Handling Errors in Your Application

July 1996 GemStone Systems, Inc. 11-7

handling errors that appear at unpredictable times, like the errors listed in
Table 11.1. You can use a static exception handler as you would an interrupt
handler, coding it to change the value of some global variable, perhaps, so that you
can determine that an error did, in fact, occur.

The errors in Table 11.1 are sometimes called event errors. Although they are not
true errors, their implementation is based on the GemStone error mechanism. For
examples that use these event errors, also called signals, see Chapter 11, “Signals
and Notifiers”.

Handling Errors in Your Application GemStone Programming Guide

11-8 GemStone Systems, Inc. July 1996

Table 11.1 GemStone Event Errors

Name Num
ber

Description

#rtErrSignalAbort 6009 While running outside a transaction,
Stone requested Gem to abort. This
error is generated only if you have
executed the method
enableSignaledAbortError .
No arguments.

#abortErrLostOtRoot 3031 While running outside a transaction,
Stone requested Gem to abort. Gem
did not respond in the allocated
time, and Stone was forced to
revoke access to the object table. No
arguments.

#rtErrSignalCommit 6008 An element of the notify set was
committed and added to the
signaled objects set. This error is
received only if you have executed
the method
enableSignaledObjectsError .
No arguments.

#rtErrSingalGemStoneSession 6010 Your session received a signal from
another GemStone session. This
error is received only if you have
executed the method
enableSignaledGemstoneSes-
sionError . Arguments:

1. The session ID of the session that
sent the signal.

 2. An integer representing the
signal.

3. A message string.

Error Handling Handling Errors in Your Application

July 1996 GemStone Systems, Inc. 11-9

Defining Exceptions
Instances of class Exception represent specific exception handlers—the code to
execute in the event that the error occurs.

An exception handler—an instance of class Exception—consists of:

 • an optional category to which the error belongs;

 • an optional error number to further distinguish errors within a category;

 • the code to execute in the event that the specific error is raised; and

in activation exception handlers, a pointer to the next exception handler associated
with this method context, as shown in Figure 11.1 on page 11-6. If this pointer is
nil, the interpreter searches the previous method context for its stack of exception
handlers instead.

 The interpreter decides to give control to a specific exception handler based upon
its category and error number. These ideas are explained in detail below.

Categories and Error Numbers

Errors are defined in an instance of LanguageDictionary. Each
LanguageDictionary represents a specific category of errors. Your application can
include any number of such error dictionaries, each representing a given category
of error. However, each such category of errors must be defined in UserGlobals or
some other dictionary to which your application has access.

Like the SignalDict SymbolDictionary described earlier, the dictionary that defines
your errors is keyed on symbols such as #English or #Kwakiutl that name natural
languages. Each key is associated with an array of error-describing objects.

The index into the array is a specific error number, and the value is either a string
or another array.

If it is a string, the string represents the text of an error message. Using an array,
however, allows you to capture and report diagnostic information from the
context of the error. This works just as it did using the signaling mechanism
described earlier; SmallIntegers interspersed with strings act as indexes into an
array of arguments passed back from the specific error that was raised. When the
error string is constructed, each positive SmallInteger in the error object is replaced
by the result of sending asString to the corresponding element of the args:
array specified when the exception is raised. (This array is discussed in detail in
the next section.)

Handling Errors in Your Application GemStone Programming Guide

11-10 GemStone Systems, Inc. July 1996

The GemStone system itself uses this mechanism. GemStone errors are defined in
the dictionary GemStoneError, and all GemStone system errors belong to this
category. This dictionary is accessible to all users by virtue of being defined in the
dictionary Globals. The dictionary GemStoneError contains one key: #English.
The value of this key is an array.

It is not, however, an array of error numbers. Numbers are not the most useful
possible way to refer to errors; sprinkling code with numbers does not lead to an
application that can be easily understood and maintained. For this reason,
GemStoneError defines mnemonic symbols for each error number in a
SymbolDictionary called ErrorSymbols. The keys in this dictionary are the
mnemonic symbols, and their values are the error numbers. These numbers, in
turn, are used to map each error to the appropriate index of the array that holds
the error text. This structure is diagrammed in Figure 11.2.

Figure 11.2 Defining Error Dictionaries

If your application needs only one exception handler, you need not define your
own error dictionary. You can instead use the generic error already defined for you
in the GemStone ErrorSymbols dictionary as #genericError.

For example, suppose we define the class Cargo as follows:

LanguageDictionary (error category)

key: value: Array

#English index: value:

1
2
3
4

error text —

SymbolDictionary

key: value:

#aSymbol
#anotherSymbol

error

error

String or Array of
strings and arguments

numbers

numbers

.

.

.

1
2
3
4
.
.
.

Error Handling Handling Errors in Your Application

July 1996 GemStone Systems, Inc. 11-11

Example 11.7

Object subclass: #Cargo
 instVarNames: #(#name #diet #kind)
 classVars: #()
 poolDictionaries: #()
 inDictionary: UserGlobals
 constraints: #[#[#name, Symbol],

#[#diet, Symbol], #[#kind, Symbol]]
 instancesInvariant: false
 isModifiable: false
%

We give our new class the following instance creation method:

Example 11.8

classMethod: Cargo
named: aName diet: aDiet kind: aKind

| result |

result := self new.
result name: aName.
result diet: aDiet.
result kind: aKind.
^result.

%

And we create accessing and updating methods for its instance variables:

Example 11.9

run
Cargo compileAccessingMethodsFor: (Cargo instVarNames).
^true
%

Handling Errors in Your Application GemStone Programming Guide

11-12 GemStone Systems, Inc. July 1996

Now we can make some instances:

Example 11.10

run
UserGlobals at: #Sheep put:

(Cargo named: #Sheep diet: #Vegetarian kind #animal).
UserGlobals at: #Cabbage put:

(Cargo named: #Cabbage diet: #Photosynthesis kind: #plant).
UserGlobals at: #Wolf put:

(Cargo named: #Wolf diet: #Carnivore kind: #animal).
^true
%

We wish all the errors in this application to belong to the category CargoErrors, so
we define a LanguageDictionary by that name and a SymbolDictionary to contain
the mnemonic symbols for its errors:

Example 11.11

run
UserGlobals at: #CargoErrors put: LanguageDictionary new.
UserGlobals at: #CargoErrorSymbols put: SymbolDictionary new.
^true
%

Error Handling Handling Errors in Your Application

July 1996 GemStone Systems, Inc. 11-13

We then populate these dictionaries with error symbols and error text:

Example 11.12

run
| errorMsgArray |
CargoErrorSymbols at: #VegetarianError put: 1.
CargoErrorSymbols at: #CarnivoreError put: 2.
CargoErrorSymbols at: #PlantError put: 3.
errorMsgArray := Array new.
CargoErrors at: #English put: errorMsgArray.
errorMsgArray at: 1 put: #('Sheep can''t eat wolves!').
errorMsgArray at: 2 put: #('Wolves won''t eat cabbage!').
errorMsgArray at: 3 put: #('Cabbages don''t eat animals!').
^true
%

We can now define some more meaningful methods for Cargo:

Example 11.13

method: Cargo
eat: aCargo
^name , ' ate ' , (self swallow: aCargo) , '.'
%
method: Cargo
swallow: aFood
^aFood name
%

And finally, we can verify that our example so far works as we expect:

Example 11.14

Wolf eat: Sheep
'Wolf ate Sheep. '

Handling Errors in Your Application GemStone Programming Guide

11-14 GemStone Systems, Inc. July 1996

Handling Exceptions
Keep the handler as simple as possible, because you cannot receive any additional
errors while the handler executes. Normally your handler should never terminate
the ongoing activity and change to some other activity.

To define an exception handler for an activation exception, use the class method
Exception category: number: do: .

 • The argument to the category: keyword is the specific error category of the
error you wish to catch—the instance of LanguageDictionary in which the
error is defined.

 • The argument to the number: keyword is the specific error number you wish
to catch.

 • The argument to the do: keyword is a four-argument block you wish to
execute when the error is raised.

The first argument to the four-argument block is the instance of Exception you
are currently defining.

The second argument to the four-argument block is the error category, which
can be nil.

The third argument to the four-argument block is the error number, which can
be nil.

The fourth argument to the four-argument block is the information the error
passes to the exception handler in the form of arguments.

If your exception handler does not specify an error number (an error number of
nil), then it receives control in the event of any error of the specified category. If
your exception handler does not specify a category (a category of nil), then it
receives control in the event of any error at all. If your exception handler specifies
an error number but the error category is nil, the error number is ignored and this
exception handler receives control in the event of any error at all.

Error Handling Handling Errors in Your Application

July 1996 GemStone Systems, Inc. 11-15

For example, the following exception handler defines #VegetarianError so that,
when it is raised, it changes the result returned, changing the object eaten from
Wolf to Cabbage:

Example 11.15

method: Cargo
eat: aCargo
 Exception

category: CargoErrors
number: (CargoErrorSymbols at: #VegetarianError)
do: [:ex:cat:num:args | aCargo == Wolf

ifTrue: ['Cabbage']].

^name , ' ate ' , (self swallow: aCargo) , '.'
%

To define an exception handler for static exceptions, use the Exception class
method installStaticException: category: number: instead.

 • The argument to the installStaticException: keyword is the block you
wish to execute when the error is raised.

 • The argument to the category: keyword is the specific error category of the
error you wish to catch—the instance of LanguageDictionary in which the
error is defined.

 • The argument to the number: keyword is the specific error number you wish
to catch.

The same rules about error categories and error numbers apply to static exceptions
as to activation exceptions.

Raising Exceptions
To raise an exception, use the class method System signal:args:
signalDictionary: .

 • The argument to the signal: keyword is the specific error number you wish
to signal.

The argument to the args: keyword is an array of information you wish to pass
to the exception handler. This is the array whose elements can be used to build the
error messages described in the section entitled “Defining Exceptions” on

Handling Errors in Your Application GemStone Programming Guide

11-16 GemStone Systems, Inc. July 1996

page 11-9. The integers interspersed with strings in the error message defined with
your exceptions index into this array. When the error string is constructed, each
positive SmallInteger in the error object is replaced by the result of sending
asString to the corresponding element of this array.

 • The argument to the signalDictionary: keyword is the specific error
category of the error you wish to signal—the instance of LanguageDictionary
in which the error is defined.

To raise the generic exception defined for you in ErrorSymbols as #genericError,
use the class method System genericSignal: text: args: , or one of its
variants.

 • The argument to the genericSignal: keyword is an object you can define
to further distinguish between errors, if you wish. If you do not wish, it can be
nil.

 • The argument to the text: keyword is a string you can use for an error
message. It will appear in GemStone’s error message when this error is raised.
It can be nil.

The argument to the args: keyword is an array of information you wish to pass
to the exception handler. This is the array whose elements can be used to build the
error messages described in the section entitled “Defining Exceptions” on
page 11-9. The integers interspersed with strings in the error message defined with
your exceptions index into this array. When the error string is constructed, each
positive SmallInteger in the error object is replaced by the result of sending
asString to the corresponding element of this array.

Other variants of this message are System genericSignal: text: arg: for
errors having only one argument, or System genericSignal: text: for
errors having no arguments.

Error Handling Handling Errors in Your Application

July 1996 GemStone Systems, Inc. 11-17

For example, we can now raise the exception #VegetarianError for which we
defined a handler in the previous example:

Example 11.16

method: Cargo
swallow: aFood
diet = #Vegetarian ifTrue: [

aFood kind = #plant ifFalse: [
^System signal: (CargoErrorSymbols at: #VegetarianError)

args: #() signalDictionary: CargoErrors
]

].
^aFood name
%

When we test this exception, we get:

Example 11.17

run
Sheep eat: Wolf
'Sheep ate Cabbage.'
%

Flow of Control
Exception handlers with no explicit return operate like interrupt handlers—they
return control directly to the method from which the exception was raised. All
static exception handlers should be written this way, because the stack usually
changes by the time they catch an error. Activation exception handlers can also be
written to behave that way, like the one in Example 11.15. So in Examples 11.16
and 11.17 control returns directly to the method swallow: as shown in
Figure 11.3.

Handling Errors in Your Application GemStone Programming Guide

11-18 GemStone Systems, Inc. July 1996

Figure 11.3 Default Flow of Control in Exception Handlers

Sometimes, however, this is not useful behavior—the application may simply have
to raise the same error again. In activation exception handlers it can be useful
instead to return control to the method that defined the handler, such as method
eat: in Example 11.15.

You can accomplish this by defining an explicit return (using the return character
^) in the block that is executed when the exception is raised. For example, the
following method redefines how the exception #VegetarianError is to be handled.
It explicitly returns a string. Code that follows after this exception is raised is
therefore never executed, because control returns to the sender of this message
instead:

top

to interface

Exception
without ^

executed
code

aCargo
swallow:

aCargo
eat:

System
signal:

args:

Error Handling Handling Errors in Your Application

July 1996 GemStone Systems, Inc. 11-19

Example 11.18

method: Cargo
eat: aCargo

Exception
category: CargoErrors
number: (CargoErrorSymbols at: #VegetarianError)
do: [:ex:cat:num:args | ^ 'The sheep is not hungry.'].

^name + ' ate ' + (self swallow: aCargo)
%

If we leave the method swallow: as defined as in Example 11.16, then the code
below produces the following result:

Example 11.19

run
Sheep eat: Wolf
'The sheep is not hungry.'
%

Figure 17.4 shows the flow of control in Examples 11.18 and 11.19.

Handling Errors in Your Application GemStone Programming Guide

11-20 GemStone Systems, Inc. July 1996

Figure 11.4 Activation Exception Handler With Explicit Return

When you raise an error in a user action, you need to install an exception handler
that explicitly returns, or the exception block may not leave the activation record
stack in the correct state for continued execution. If the exception block does not
contain an explicit return, the call to userAction should be placed by itself inside a
method similar to this:

Example 11.20

callAction: aSymbol withArgs: args
^ System userAction: aSymbol withArgs: args
%

top

to interface

executed
code

aCargo
swallow:

aCargo
eat:

System
signal:

args:

Exception
with ^

Error Handling Handling Errors in Your Application

July 1996 GemStone Systems, Inc. 11-21

Signaling Other Exception Handlers

Under certain circumstances, your exception handler can choose to pass control to
a previously defined exception handler, one that is below the present exception
handler on the stack. To do so, your exception handler can send the message
resignal: number: args: .

 • The argument to the resignal: keyword is the specific error category of the
error you wish to signal—the instance of LanguageDictionary in which the
error is defined.

 • The argument to the number: keyword is the specific error number you wish
to signal.

 • The argument to the args: keyword is an array of information you wish to
pass to the exception handler. This is the array whose elements can be used to
build the error messages described above. The integers interspersed with
strings in the error message defined with your exceptions index into this array.
When the error string is constructed, each positive SmallInteger in the error
object is replaced by the result of sending asString to the corresponding
element of this array.

For example, imagine we compile a method that defines an exception handler as
follows:

Example 11.21

method: Cargo
eat: aCargo

Exception
category: CargoErrors
number: nil
do: [:ex:cat:num:args |

(num == (CargoErrorSymbols at: #VegetarianError))
ifTrue: [ex resignal: cat number: num args:

args]
ifFalse: [^ 'The sheep is not hungry.']
].

^name + ' ate ' + (self swallow: aCargo)
%

Handling Errors in Your Application GemStone Programming Guide

11-22 GemStone Systems, Inc. July 1996

We then execute the following code:

Example 11.22

run
Exception

category: CargoErrors
number: nil
do: [:ex:cat:num:args |

^'Shepherd intervened with a resignal.'].
Sheep eat: Wolf.

%
'Shepherd intervened with a resignal.'.

The resignal: message in the previously defined method (see Example 17.21)
means that, when the VegetarianError is raised, control passes to the exception
handler defined in the executed code instead. This means that the result of
executing Sheep eat: Wolf will be a return of the string 'Shepherd
intervened with a resignal.' .

Figure 11.5 shows the flow of control in Examples 11.21 and 11.22.

Error Handling Handling Errors in Your Application

July 1996 GemStone Systems, Inc. 11-23

Figure 11.5 Activation Exception Handler Passing Control to Another Handler

Removing Exception Handlers

You can define an exception so that it removes itself after it has been raised, using
the Exception instance method remove . In conjunction with the resignal:
mechanism described above, remove allows you to set up your application so that
successive occurrences of the same error (or category of errors) are handled by
successively older exception handlers that are associated with the same context.

Exception
with ^

Exception
with resignal

to interface

top

executed
code

aCargo
swallow:

aCargo
eat:

System
signal:

args:

Handling Errors in Your Application GemStone Programming Guide

11-24 GemStone Systems, Inc. July 1996

 For example, suppose we define the eat: method as shown in Example 17.21 and
then execute the following code:

Example 11.23

run
Exception

category: CargoErrors
number: nil
do: [:ex:cat:num:args |ex remove.'clover'].

Exception
category: CargoErrors
number: nil
do: [:ex:cat:num:args | ex remove.'grass'].

^(Sheep eat: Wolf) + ', ' + (Sheep eat: Wolf) + '.'
%
'Sheep ate grass, Sheep ate clover.'

The first occurrence of VegetarianError executes the most recent exception
defined, which returns the string 'grass' . The exception then removes itself, so
that the next occurrence of the same error executes the exception handler stacked
previously within the same method context. This exception handler returns the
string 'clover' .

Recursive Errors
If you define an exception handler broadly to handle many different errors, and
you make a programming mistake in your exception handler, the exception
handler may then raise an error that calls itself repeatedly. Such infinitely
recursive error handling eventually reaches the stack limit. The resulting stack
overflow error is received by whichever interface you are using.

If you receive such an error, check your exception handler carefully to determine
whether it includes errors that are causing the problem.

Uncontinuable Errors
Some errors are sufficiently complex or serious that execution cannot continue.
Exception handlers cannot be defined for these errors—instead, control returns to
whichever interface you are using.

Error Handling Handling Errors in Your Application

July 1996 GemStone Systems, Inc. 11-25

Table 11.2 lists uncontinuable errors.

Table 11.2 Uncontinuable Errors

bkupErrRestoreSuccessful

abortErrFinishedObjAudit

rtErrStep

rtErrCommitAbortPending

rtErrHardBreak

rtErrStackLimit

rtErrUncontinuable

rtErrMethodBreakpoint

rtErrMessageBreakpoint

Handling Errors in Your Application GemStone Programming Guide

11-26 GemStone Systems, Inc. July 1996

Chapter

July 1996 GemStone Systems, Inc. 12-1

12 Tuning
Performance

Smalltalk includes several tools to help you tune your applications for faster
performance.

Clustering Objects for Fast Retrieval
discusses how you can cluster objects that are often accessed together so that
many of them can be found in the same disk access. Unnecessarily frequent
disk access is ordinarily the worst culprit when application performance is not
up to expectations.

Optimizing for Faster Execution
describes the profiling tool that allows you to pinpoint the problem areas in
your application code and rewrite it to use more efficient mechanisms.

Modifying Cache Sizes for Better Performance
explains how to increase or decrease the size of various caches in order to
minimize disk access and storage reclamation, both of which can significantly
slow your application.

Generating Native Code
defines how and when native code is generated for your application.

Clustering Objects for Faster Retrieval GemStone Programming Guide

12-2 GemStone Systems, Inc. July 1996

12.1 Clustering Objects for Faster Retrieval
As you’ve seen, GemStone ordinarily manages the placement of objects on the disk
automatically—you’re never forced to worry about it. Occasionally, you might
choose to group related objects on secondary storage to enable GemStone to read
all of the objects in the group with as few disk accesses as possible.

Because an access to the first element usually presages the need to read the other
elements, it makes sense to arrange those elements on the disk in the smallest
number of disk pages. This placement of objects on physically contiguous regions
of the disk is the function of class Object’s clustering protocol. By clustering small
groups of objects that are often accessed together, you can sometimes improve
performance.

Clustering a group of objects packs them into disk pages, each page holding as
many of the objects as possible. The objects are contiguous within a page, but
pages are not necessarily contiguous on the disk.

Although different kinds of objects require different amounts of disk space, it’s not
unreasonable to take as a rule of thumb that a page can accommodate about 100–
250 simple pointer objects with up to eight instance variables each.

Will Clustering Solve the Problem?
Clustering objects solves a specific problem—slow performance due to excessive
disk accessing. However, disk access is not the only factor in poor performance.
In order to determine if clustering will solve your problem, you need to do some
diagnosis. GemStone provides methods in class System to tell you how many
times your application is accessing the disk. To find out how many pages your
session has read from the disk since the session began, execute:

System pageReads

To find out how many pages your session has written to the disk since the session
began, execute:

System pageWrites

You can use these methods to build a tracer into your application. You execute
these expressions before you commit each transaction to learn whether your
application has written large temporary objects to disk, or to discover how many
pages it read in order to perform a particular query. You then execute these
expressions after you commit each transaction to determine the number of disk
accesses required by the process of committing the transaction.

Tuning Performance Clustering Objects for Faster Retrieval

July 1996 GemStone Systems, Inc. 12-3

For example, the Topaz script in Example 12.1 reveals how many disk pages were
written as a result of committing a transaction (represented by your Smalltalk code).
Because these methods tell you how many pages were written to disk since the
beginning of the session, you must subtract the first result from the second in order
to determine the disk accesses performed only by the most recent
commitTransaction .

Example 12.1

run
your Smalltalk DB code
%
run
System pageWrites
%
run
System commitTransaction
%
run
System pageWrites
%

It is tempting to ignore these issues until you experience a problem such as an
extremely slow application, but of you keep track of such statistics on a regular
(even if intermittent) basis, you will have a better idea of what is “normal”
behavior when a problem crops up.

Cluster Buckets
You can think of clustering as writing the components of their receivers on a
stream of disk pages. When a page is filled, another is randomly chosen and
subsequent objects are written on the new page. A new page is ordinarily selected
for use only when the previous page is filled, or when a transaction ends. Sending
the message cluster to objects in repeated transactions will, within the limits
imposed by page capacity, place its receivers in adjacent disk locations. (Sending
the message cluster to objects repeatedly within a transaction has no effect.)

The stream of disk pages used by cluster and its companion methods is called a
bucket. GemStone captures this concept in the class ClusterBucket.

If you determine that clustering will improve your application’s performance, you
can use instances of the class ClusterBucket to help. All objects assigned to the

Clustering Objects for Faster Retrieval GemStone Programming Guide

12-4 GemStone Systems, Inc. July 1996

same instance of ClusterBucket are to be clustered together. When the objects are
written, they are moved are moved to contiguous locations on the same page, if
possible. Otherwise the objects are written to contiguous locations on several
pages.

Once an object has been clustered into a particular bucket and committed, that
bucket remains associated with the object until you specify otherwise. When the
object is modified, it continues to cluster with the other objects in the same bucket,
although it might move to another page within the same bucket.

Cluster Buckets and Extents

Cluster buckets can be defined to cluster objects on a specific extent—either a file
in the file system or a raw partition, a range of physical blocks on the disk. For this
purpose, they define an instance variable called extentId. If you do not specify an
extent, pages are allocated to the disk as they ordinarily would be. In other words,
an extentId of nil specifies that you don’t care to which extent objects are clustered.

NOTE:
Cluster buckets for which no extent is specified are allocated pages
according to the DBF_ALLOCATION_MODE parameter of the Stone
configuration file. For details on this parameter, see the GemStone
System Administration Guide.

If you wish to know what extents are available, execute the expression
SystemRepository fileSizeReport . This expression returns a string
describing the extents that are available to you, as well as other information. For
example:

SystemRepository fileSizeReport

returns a report of the form:

'Extent #1

 Filename = !TCP@servio#dbf!/servio1/user/davidm/extent0.dbf
 Replicate = NONE
 File size = 20.0 Megabytes
 Space available = 0.23 Megabytes
Totals

 Repository size = 20.0 Megabytes
 Free Space = 0.23 Megabytes
'

Tuning Performance Clustering Objects for Faster Retrieval

July 1996 GemStone Systems, Inc. 12-5

Extents can be of varying sizes. If your system administrator has specified no
upper limit on the size of a given extent, then it can grow until the disk is filled. If
the extent is already full and cannot accommodate the objects you wish to cluster,
then the specified extent is ignored and objects are clustered on another extent.

You can determine the extentId of a given cluster bucket by executing an
expression of the form:

aClusterBucket extentId

You can change the extentId of a cluster bucket by executing an expression of the
form:

aClusterBucket extentId: 2

Assuming that aClusterBucket previously used extent 1, the expression above
changes the extent to which objects clustered in aClusterBucket will be written,
when they are next written to disk. If you then commit this transaction, objects
clustered in aClusterBucket will move to extent 2 when they are next modified by
subsequent transactions.

Using Existing Cluster Buckets

By default, a global array called AllClusterBuckets defines seven instances of
ClusterBucket. Each can be accessed by specifying its offset in the array. For
example, the first instance, AllClusterBuckets at: 1 , is the default bucket
when you log in. It specifies an extentId of nil. This bucket is invariant—you
cannot modify it.

The second, third, and seventh cluster buckets in the array also specify an extentId
of nil. They can be used for whatever purposes you require and can all be
modified.

The GemStone system makes use of the fourth, fifth, and sixth buckets of the array
AllClusterBuckets:

 • The fourth bucket in the array is the bucket used to cluster the methods
associated with kernel classes.

 • The fifth bucket in the array is the bucket used to cluster the strings that define
source code for kernel classes.

 • The sixth bucket in the array is the bucket used to cluster other kernel objects
such as globals.

You can determine how many cluster buckets are currently defined by executing:

System maxClusterBucket

Clustering Objects for Faster Retrieval GemStone Programming Guide

12-6 GemStone Systems, Inc. July 1996

A given cluster buckets offset in the array specifies its clusterId. A cluster bucket’s
clusterId is an integer in the range of 1 to (System maxClusterBucket) .

NOTE:
For compatibility with previous versions of GemStone, you can use a
clusterId as an argument to any keyword that takes an instance of
ClusterBucket as an argument.

You can determine which cluster bucket is currently the system default by
executing:

System currentClusterBucket

You can access all instances of cluster buckets in your system by executing:

ClusterBucket allInstances

You can change the current default cluster bucket by executing an expression of
the form:

System clusterBucket: aClusterBucket

Creating New Cluster Buckets

You are not limited to these predefined instances. With write authorization to the
DataCurator segment, you can create new instances of ClusterBucket with the
simple expression:

ClusterBucket new

This expression creates a new instance of ClusterBucket and adds it to the array
AllClusterBuckets (which resides on the DataCurator segment). You can then
access the bucket in one of two ways. You can assign it a name:

UserGlobals at: #empClusterBucket put: (ClusterBucket new)

You could then refer to it in your application as empClusterBucket. Or you can use
the offset into the array AllClusterBuckets. For example, if this is the first cluster
bucket you have created, you could refer to it this way:

AllClusterBuckets at: 8

You can determine the clusterId of a cluster bucket by sending it the message
clusterId . For example:

empClusterBucket clusterId
8

Tuning Performance Clustering Objects for Faster Retrieval

July 1996 GemStone Systems, Inc. 12-7

You can access an instance of ClusterBucket with a specific clusterId by sending it
the message bucketWithId: . For example:

ClusterBucket bucketWithId: 8
empClusterBucket

You can create a new cluster bucket and specify the extent it must use for
clustering. For example, the following expression creates a new instance of cluster
bucket whose objects will be clustered in extent 3, and adds it to the array
AllClusterBuckets.

ClusterBucket newForExtent: 3

Arguments to the newForExtent: keyword must be in the range of 1 to
(SystemRepository numberOfExtents) .

You can create and use as many cluster buckets as you need, up to thousands, if
necessary.

NOTE:
For best performance and disk space usage, use no more than 32 cluster
buckets in a single session.

Cluster Buckets and Concurrency

Cluster buckets are designed to minimize concurrency conflicts. As many users as
necessary can cluster objects at the same time, using the same cluster bucket,
without experiencing concurrency conflicts. Each cluster operation only reads the
associated cluster bucket.

However, creating a new instance of ClusterBucket automatically adds it to the
global array AllClusterBuckets. Adding an instance to AllClusterBuckets causes a
concurrency conflict when more than one transaction tries to create new cluster
buckets at the same time, since all the transactions are all trying to write the same
array object.

You should design your clustering when you design your application to avoid
concurrency conflicts. Create all the instances of ClusterBucket you anticipate
needing and commit them in one or few transactions.

To facilitate this kind of design, GemStone allows you to associate descriptions
with specific instances of ClusterBucket. In this way, you can communicate to
your fellow users the intended use of a given cluster bucket with the message
description: . For example:

Clustering Objects for Faster Retrieval GemStone Programming Guide

12-8 GemStone Systems, Inc. July 1996

Example 12.2

UserGlobals at: #empClusterBucket put: (ClusterBucket new)
empClusterBucket description: 'Use this bucket for

clustering employees and their instance variables.'

As you can see, the message description: takes a string of text as an argument.

Changing the attributes of a cluster bucket, such as its description, clusterId, or
extentId, writes that cluster bucket and can cause concurrency conflict. Only
change these attributes when necessary.

NOTE:
For best performance and disk space usage as well as avoiding
concurrency conflicts, create the required instances of ClusterBucket all
at once, instead of on a per-transaction basis, and update their attributes
infrequently.

Cluster Buckets and Indexing

Indexes on a nonsequenceable collection are created and modified using the
cluster bucket associated with the specific collection, if any. To change the
clustering of a nonsequenceable collection:

1. Remove its index.

2. Recluster the collection.

3. Re-create its index.

Clustering Objects
Class Object defines several clustering methods. One method is simple and
fundamental, and another is more sophisticated and attempts to order the
receiver’s instance variables as well as writing the receiver itself.

The Basic Clustering Message

The basic clustering message defined by class Object is cluster . For example:

myObject cluster

This simplest clustering method simply assigns the receiver to the current default
cluster bucket—it does not attempt to cluster the receiver’s instance variables.

Tuning Performance Clustering Objects for Faster Retrieval

July 1996 GemStone Systems, Inc. 12-9

When the object is next written to disk, it will be clustered according to the
attributes of the current default cluster bucket.

If you wish to cluster the instance variables of an object, you can define a special
method to do so.

CAUTION:
Do not redefine the method cluster in the class Object, because other
methods rely on the default behavior of the cluster method. You can,
however, define a cluster method for classes in your application if
required.

Suppose, for example, that you defined class Name and class Employee like this:

Example 12.3

Object subclass: 'Name'
 instVarNames: #('first' 'middle' 'last')
 classVars: #()
 poolDictionaries: #[]
 inDictionary: UserGlobals
 constraints: #()
 isInvariant: false.
Object subclass: 'Employee'
 instVarNames: #('name' 'job' 'age' 'address')
 classVars: #()
 poolDictionaries: #[]
 inDictionary: UserGlobals
 constraints: #[
 #['name', Name],
 #['job', String],
 #['age', SmallInteger],
 #['address', String]
]
 isInvariant: false.

The method shown in Example 12.4 might be a suitable clustering method for class
Employee. (A more purely object-oriented approach would embed the
information on clustering first, middle, and last names in the cluster method for
name, but such an approach does not exemplify the breadth-first clustering
technique we wish to show here.)

Clustering Objects for Faster Retrieval GemStone Programming Guide

12-10 GemStone Systems, Inc. July 1996

Example 12.4

method: Employee
clusterBreadthFirst
 self cluster.
 name cluster.
 job cluster.
 address cluster.
 name first cluster.
 name middle cluster.
 name last cluster.
 ^false

The elements of byte objects such as instances of String and Float are always
clustered automatically. A string’s characters, for example, are always written
contiguously within disk pages. Consequently, you need not send cluster to
each element of each string stored in job or address—clustering the strings
themselves is sufficient. Sending cluster to individual atomic objects such as
characters, Booleans, SmallIntegers, and UndefinedObjects has no effect. Hence
no clustering message is sent to age in the previous example.

The result of executing Employee cluster might look like this:

anEmp aName job address first middle last

cluster returns a Boolean value. You can use that value to eliminate the
possibility of infinite recursion when you’re clustering the variables of an object
that can contain itself. Here are the rules that cluster follows in deciding what
to return:

 • If the receiver has already been clustered during the current transaction or if
the receiver is an atomic object, cluster declines to cluster the object and
returns true to indicate that all of the necessary work has been done.

 • If the receiver is a byte object that has not been clustered in the current
transaction, cluster writes it on a disk page and, as in the previous case,
returns true to indicate that the clustering process is finished for that object.

 • If the receiver is a pointer object that has not been clustered in the current
transaction, cluster writes the object and returns false to indicate that the
receiver might have instance variables that could benefit from clustering.

Tuning Performance Clustering Objects for Faster Retrieval

July 1996 GemStone Systems, Inc. 12-11

Clustering and Authorization

You must have write authorization for an object’s segment in order to cluster the
object.

Depth-first Clustering

clusterDepthFirst differs from cluster only in one way: it traverses the tree
representing its receiver’s instance variables (named, indexed, or unordered) in
depth-first order, assigning each node to the current default cluster bucket as it’s
visited. That is, it writes the receiver’s first instance variable, then the first instance
variable of that instance variable, then the first instance variable of that instance
variable, and so on to the bottom of the tree. It then backs up and visits the nodes
it missed before, repeating the process until the whole tree has been written.

This method clusters an Employee as shown below:

anEmp aName first middle last job address

Assigning Cluster Buckets

The clustering methods described above use the current default cluster bucket. If
you wish to use a specific cluster bucket instead, you can use the method
clusterInBucket: . For example, the following expressions clusters
aBagOfEmployees using the specific cluster bucket empClusterBucket:

aBagOfEmployees clusterInBucket: empClusterBucket

In order to determine the cluster bucket associated with a given object, you can
send it the message clusterBucket . For example, after executing the example
above, the following example would return the value shown below:

aBagOfEmployees clusterBucket
empClusterBucket

Clustering vs. Writing to Disk

The clustering methods described so far specify that objects are to be clustered
when they are next written to disk. Ordinarily, this happens when you commit the
transaction, and not before. If you wish to write certain objects to disk
immediately, send them the message moveToDisk or moveToDiskInBucket: .
The latter message takes as its argument an instance of ClusterBucket.

Using Several Cluster Buckets

The availability of several cluster buckets instead of a single one is convenient
when you want to write a loop that clusters parts of each object in a group into

Clustering Objects for Faster Retrieval GemStone Programming Guide

12-12 GemStone Systems, Inc. July 1996

separate pages. Suppose that you had defined class SetOfEmployees and class
Employee as in Chapter 4, “Collection and Stream Classes.” Suppose, in addition,
that you wanted a clustering method to write all employees contiguously and then
write all employee addresses contiguously. If you had only one cluster bucket at
your disposal, you would need to define your clustering method this way:

Example 12.5

method: SetOfEmployees
clusterEmployees
 self do: [:n | n cluster].
 self do: [:n | n address cluster].

With multiple buckets, you can write the method as a single loop, as shown in the
following example (which assumes that the currentClusterBucket and the
maxClusterBucket are not the same):

Example 12.6

method: SetOfEmployees
clusterEmployees
self do: [:n | n clusterInBucket: System currentClusterBucket.
 n address clusterInBucket: System maxClusterBucket.
].

In the previous version of this method, each employee had to be fetched once for
clustering, then fetched again in order to cluster the employee’s address. The new
version is probably more efficient despite its greater complexity, because it fetches
each employee only once.

Clustering Class Objects

Clustering provides the most benefit for small groups of objects that are often
accessed together. It happens that a class with its instance variables is just such a
group of objects. Those instance variables of a class that describe the class’s
variables and their constraints are often accessed in a single operation, as are the
instance variables that contain a class’s methods. Therefore, class Behavior defines
the following special clustering methods for classes:

Tuning Performance Clustering Objects for Faster Retrieval

July 1996 GemStone Systems, Inc. 12-13

The following code clusters class Employee’s structure-describing variables, then
its class methods, and finally its instance methods.

Example 12.7

| behaviorBucket descriptionBucket |
behaviorBucket := AllClusterBuckets at: 4.
descriptionBucket := AllClusterBuckets at: 5.
System clusterBucket: descriptionBucket.
Employee clusterDescription.
System clusterBucket: behaviorBucket.
Employee class clusterBehavior.
Employee clusterBehavior.

The next example clusters all of class Employee’s instance methods except for
address and address:

 Employee clusterBehaviorExceptMethods: #(#address #address:).

Table 12.1 Clustering Protocol

clusterBehavior Clusters in depth-first order the parts of the
receiver required for executing Smalltalk code (the
receiver and its method dictionary). Returns true if
the receiver was already clustered in the current
transaction.

clusterDescription Clusters in depth-first order those instance
variables in the receiver that describe the structure
of the receiver’s instances. (Does not cluster the
receiver itself.) The instance variables clustered are
instVarNames, classVars, categories, class histories,
and constraints.

clusterBehaviorExceptMethods:
aCollectionOfMethodNames

This method can sometimes provide a better
clustering of the receiving class and its method
dictionary by omitting those methods that are
seldom used. This omission allows often-used
methods to be packed more densely.

Clustering Objects for Faster Retrieval GemStone Programming Guide

12-14 GemStone Systems, Inc. July 1996

Maintaining Clusters
Once you have clustered certain objects, they do not necessarily stay that way
forever. You may therefore wish to check an object’s location, especially if you
suspect that such declustering is causing your application to run more slowly than
it used to.

Determining an Object’s Location

To enable you to check your clustering methods for correctness, Class Object
defines the message page , which returns an integer identifying the disk page on
which the receiver resides. For example:

anEmp page
2539

Disk page identifiers are returned only for temporary use in examining the results
of your custom clustering methods—they are not stable pointers to storage
locations. The page on which an object is stored can change for several reasons,
discussed in the next section.

For atomic objects (instances of SmallInteger, Character, Boolean, or
UndefinedObject) the page number returned is 0.

To enable you to check whether your object is in the correct extent, Class
Repository defines the message extentForPage , which returns an integer
identifying the extent in which a given disk page resides. The following example
determines the extent for page 2539, as revealed above:

SystemRepository extentForPage: (anEmp page)
7

If you need to know how many extents are available to you, execute the
expression:

SystemRepository numberOfExtents

Tuning Performance Optimizing for Faster Execution

July 1996 GemStone Systems, Inc. 12-15

Why Do Objects Move?

The page on which an object is stored can change for any of the following reasons:

 • A clustering message is sent to the object or to another object on the same page.

 • The current transaction is aborted.

 • The object is modified.

 • Another object on the page with the object is modified.

 • The extent in which you requested the object be clustered had insufficient
room.

As your application updates clustered objects, new values are placed on secondary
storage using GemStone’s normal space allocation algorithms. When objects are
moved, they are automatically reclustered within the same clusterId. If a specific
clusterId was specified, it continues to be used; if not, the default clusterId is used.

If, for example, you replace the string at position 2 of the clustered array
ProscribedWords, the replacement string is stored in a page separate from the one
containing the original, although it will still be within the same clusterId.
Therefore, it might be worthwhile to recluster often-modified collections
occasionally to counter the effects of this fragmentation. You’ll probably need
some experience with your application to determine how often the time required
for reclustering is justified by the resulting performance enhancement.

12.2 Optimizing for Faster Execution
 As stated earlier in the chapter, disk access ordinarily has the greatest impact on
application performance. However, your Smalltalk code can also affect the speed
of your application—as with other programming languages, some code is more
efficient than other code. In order to help you determine how you can best
optimize your application, Smalltalk provides a profiling tool, defined by the class
ProfMonitor.

The Class ProfMonitor
The class ProfMonitor allows you to sample the methods that are executed in a
given block of code and to estimate the percentage of total execution time
represented by each method. ProfMonitor starts a timer that determines which
method is executing at specified intervals for a specified period of time. When it
is done, it collects the results and returns them in the form of a string formatted as
a report.

Optimizing for Faster Execution GemStone Programming Guide

12-16 GemStone Systems, Inc. July 1996

To do so, ProfMonitor stores the results temporarily in a file. The default file name
used for this file is /tmp/gemprofile.tmp. If you wish, you can use ProfMonitor’s
instance method fileName: to specify that a different file name be used instead.

You can also specify the interval at which ProfMonitor checks to see which method
is executing. By default, ProfMonitor checks execution every 10 ms. You can use
ProfMonitor’s instance method interval: to specify a shorter or longer interval
in milliseconds.

By default, ProfMonitor reports every method it found executing, even once. If
you are interested only in methods that execute a certain number of times or more,
you can change the lower bound on this tally. ProfMonitor’s instance method
reportDownTo: anInteger allows you to specify that methods executed fewer
times than the argument are to be omitted from the report.

Profiling Your Code
To determine the execution profile for a piece of code, you must format it as a
block. It can then be provided as the argument to monitorBlock: . Example 12.8
uses the default interval of 10 ms and includes every method it finds in its results,
even those executing only once:

Example 12.8

ProfMonitor monitorBlock: [10 timesRepeat:
[System myUserProfile dictionaryNames]]

As a convenience to Smalltalk programmers, the method spyOn: is also available
to perform the same function as monitorBlock: . Example 12.9 is exactly
equivalent to 12.8.

Example 12.9

ProfMonitor spyOn: [10 timesRepeat:
[System myUserProfile dictionaryNames]]

Tuning Performance Optimizing for Faster Execution

July 1996 GemStone Systems, Inc. 12-17

Example 12.10 uses a variant of monitorBlock: to check every 20 ms and
include only methods that were found executing at least five times.

Example 12.10

ProfMonitor
monitorBlock: [10 timesRepeat:

[System myUserProfile dictionaryNames]]
downTo: 5
interval: 20

Profiling can be started and stopped using the instance methods
startMonitoring and stopMonitoring . The instance method
gatherResults tallies the methods that were found, and the instance method
report returns a string formatting the results. Using these methods, you can
profile any arbitrary sequence of Smalltalk statements; they need not be a block.
Example 12.11 creates a new instance of ProfMonitor and changes the default file
it will use to tally the results. It then starts profiling, executes the code to be
profiled, stops profiling, tallies the methods encountered, and reports the results.

Example 12.11

| aMonitor |
aMonitor := ProfMonitor newWithFile: 'profile.tmp'.
aMonitor startMonitoring.
10 timesRepeat: [System myUserProfile dictionaryNames].
aMonitor stopMonitoring; gatherResults; report.

Optimizing for Faster Execution GemStone Programming Guide

12-18 GemStone Systems, Inc. July 1996

The class method profileOn also starts profiling. You can use it, for example, to
profile code contained in a file-in script. Example 12.12 shows how to do this using
Topaz format.

Example 12.12

! get a profile report on a filein script
run
UserGlobals at: #Monitor put: ProfMonitor profileOn
%
input testFileScript.gs
! turn off profiling and get a report
run
Monitor profileOff
%

If you simply want to know how long it takes a given block to return its value, you
can use the familiar Smalltalk method millisecondsToRun: , defined in class
System. It takes a zero-argument block as its argument and returns the time in
milliseconds required to evaluate the block.

Tuning Performance Optimizing for Faster Execution

July 1996 GemStone Systems, Inc. 12-19

The Profile Report
The profiling methods discussed in Examples 12.8 through 12.12 return a string
formatted as a report. The report has three sections, as shown in the sample run:

Figure 12.1

 topaz 1> run
ProfMonitor monitorBlock:[
 10 timesRepeat:[System myUserProfile dictionaryNames]
]
%
STATISTICAL SAMPLING RESULTS
elapsed cpu time: 420 ms
monitoring interval: 10 ms

 tally % class and method name
------ ----- --------------------------------------
 35 83.33 IdentityDictionary >> associationsDo:
 4 9.52 AbstractDictionary >>
associationsDetect:ifNone:
 2 4.76 SymbolList >> namesReport
 1 2.38 SymbolList >> names
 42 100.00 Total

STATISTICAL METHOD SENDERS RESULTS
elapsed cpu time: 420 ms
monitoring interval: 10 ms

 % tally class and method name
------ ------ --------------------------------------
 83.3% 35 IdentityDictionary >> associationsDo:
 35 times sender was AbstractDictionary >>
associationsDetect:ifNone:

 35 times receiver class was SymbolDictionary

 9.5% 4 AbstractDictionary >> associationsDetect:ifNone:
 3 times sender was IdentityDictionary >>
associationsDo:

Optimizing for Faster Execution GemStone Programming Guide

12-20 GemStone Systems, Inc. July 1996

 3 times receiver class was ComplexBlock

 4.8% 2 SymbolList >> namesReport
 2 times sender was UserProfile >>
dictionaryNames

 2 times receiver class was SymbolList

 2.4% 1 SymbolList >> names

OBJECT CREATION PROFILING Not Enabled

METHOD INVOCATION COUNTS

 tally class and method name
------ --------------------------------------
 10660 Object >> _at:
 4367 ComplexBlock >> value:
 2660 String >> at:put:
 1960 Association >> value
 1872 Object >> at:
 1113 String >> addAll:
 976 SmallInteger >> >
 793 Object >> size
 654 String >> size
 542 SmallInteger >> <
 510 ProfMonEntry >> tally
 453 Behavior >> new
 353 Behavior >> new:
 345 String >> add:
 330 Object >> class
 327 Array >> add:
 320 ProfMonEntry >> tally:
 306 CharacterCollection >> width:
 306 Number >> abs
 297 SequenceableCollection >> atAllPut:
 297 CharacterCollection >> speciesForConversion
 275 Object >> _basicSize
 264 SmallInteger >> \\

Tuning Performance Optimizing for Faster Execution

July 1996 GemStone Systems, Inc. 12-21

 231 Object >> at:put:
 213 IdentityKeyValueDictionary >> hashFunction:
 213 Object >> identityHash
 213 KeyValueDictionary >> keyAt:
 209 Object >> _basicAt:
 209 KeyValueDictionary >> valueAt:
 .
 .
 .

As you can see, the report lists the methods that the profile monitor encountered
when it checked the execution stack every 10 ms. It sorts the methods according
to the number of times they were found, with the most-often-used methods first.
The ProfMonitor also calculates the percentage of total execution time represented
by each method—useful information if you need to know where optimizing can
do you the most good.

Optimization Hints
While optimization is an application-specific problem, we can provide a few ideas
for improving application performance:

 • Arrays tend to be faster than sets. If you do not need the particular semantics
that a set affords, use an array instead.

 • Prefer integers to floating-point numbers.

 • Avoid coercing integers to floating point numbers. Although Smalltalk can
easily handle mixing integers and floating point numbers in computations, the
coercion required can be time-consuming.

 • If you create an instance of a Dictionary class (or subclass) that you intend to
load with values later, create it to be approximately the final required size in
order to avoid rehashing, which can significantly slow performance.

 • Prefer methods that invoke primitives, if possible, or methods that cause
primitives to be invoked after fewer intermediate message-sends. (See the
GemStone C Interface manual for information on writing your own primitive
methods.)

 • Prefer message-sends over path notation, where possible. (This is not possible
for associative access, however.)

Optimizing for Faster Execution GemStone Programming Guide

12-22 GemStone Systems, Inc. July 1996

 • Use the linkable interface when possible. Interfaces that run remotely incur
interprocess communication overhead.

 • Avoid assigning membership in more than 2000 groups to a given user.

 • Avoid having a given segment participate in authorizations for more than
2000 groups.

 • Prefer simpler blocks to more complex blocks. The most efficient blocks refer
only to one or more literals, global variables, pool variables, class variables,
local block arguments, or block temporaries; they also do not include a return
statement.

Less efficient blocks include a return statement and can also refer to one or
more of the pseudovariables super or self, instance variables of self, arguments
to the enclosing method, temporary variables of the enclosing method, block
arguments, or block temporaries of an enclosing block.

The least efficient blocks enclose a less efficient block of the kind described in
the above paragraph.

NOTE
Blocks provided as arguments to the methods ifTrue: , ifFalse: ,
ifTrue:ifFalse: , ifFalse:ifTrue: , whileFalse: , and
whileTrue: are specially optimized. Unless they contain block
temporary variables, you need not count them when counting levels of
block nesting.

 • Avoid concatenating strings, instead use the add: method to dynamically
resize strings. This is much more efficient.

 • If you have a choice between a method that modifies an object and one that
returns a modified copy, use the method that modifies the object directly if
your application allows it. This creates fewer temporary objects whose storage
will have to be reclaimed. For example, String , creates a new string to use
in modifying the old one, whereas String add: modifies a string.

 • Avoid generating temporary objects whose storage will need to be reclaimed.
Storage reclamation can slow your application significantly. The class
Repository defines an instance method findDisconnectedObjects ,
whose purpose is to help determine the kinds of objects that are dead in the
repository and thus allow application developers to learn ways to prevent
unnecessary objects from being stored on disk. This method returns an array
containing a list of objects that are not directly or indirectly connected to any
permanent object. (This array is based on the state of the repository as viewed

Tuning Performance Optimizing for Faster Execution

July 1996 GemStone Systems, Inc. 12-23

by the transaction in which it is executed.) These objects are most likely no
longer used and could be reclaimed by executing markForCollection .

CAUTION
To avoid having dead objects be inadvertently connected to the
repository, disconnect this array after examining it.

NOTE
In order to execute the method findDisconnectedObjects you
must have GarbageCollection privileges.

 • Keep repository files on a disk reserved for their use, if possible. Particularly
avoid putting repository files on the disk used for swapping.

 • Commit transactions often enough so that the amount of new or modified data
created in a transaction can fit within the shared page cache. For a rough
estimate of the amount of space in the shared page cache available for your
transactions, divide the size of the shared page cache by the number of users
currently on the system who are also committing large transactions.

The commit operation incurs a certain amount of overhead—it takes roughly
between 50 and 1000 times longer than an operation on an individual data
item. Therefore, if you are manipulating large amounts of data, such as
modifying or loading large numbers of objects, you obtain best performance
by committing only after a significant number of modifications or loads. For
example, if you are bulk-loading 10,000 employees into the object server, you
probably want to commit after each 500 or 1000 employees have been loaded.

Certain operations create or modify more objects than are visible to you.
Creating or removing indexes can touch a large number of objects, depending
upon the length of the path and the size of the collections you are indexing.
For this reason, performance can increase dramatically if you commit more
frequently in such cases, such as after creating or removing only one, or a very
few, indexes.

Cache sizes are discussed in more detail in the following section. The shared
page cache, in particular, is described in “Tuning the Shared Page Cache” on
page 12-27.

Modifying Cache Sizes for Better Performance GemStone Programming Guide

12-24 GemStone Systems, Inc. July 1996

12.3 Modifying Cache Sizes for Better Performance
GemStone uses four kinds of caches: temporary object space, the Gem private page
cache, the Stone private page cache, and the shared page cache. The size of these
caches are set by GemStone configuration files and can affect how often the system
must access the disk or reclaim storage, both operations that can slow your
application significantly.

 • The temporary object space cache is used to store temporary objects created by
your application. Some of these objects may ultimately become permanent
and reside on the disk, but probably not all of them. Temporary objects that
your application creates merely in order to do its work reside in temporary
object space until they are no longer needed, when the Gem’s garbage collector
reclaims the storage they use. Each Gem session has temporary object space
associated with it.

 • The Gem private page cache is also used to store objects created by your
application. While the temporary object space reads and writes memory on a
per-object basis, the Gem private page cache reads or writes a page at a time.
When you commit objects created by your application, they move first from
temporary object space to the Gem private page cache. Your application also
moves objects to your Gem private page cache if you overflow your temporary
object space. Each Gem session has its own private page cache associated with
it.

 • The Stone private page cache is used to maintain lists of allocated object
identifiers and pages for each active Gem process that the Stone is monitoring.
The single active Stone process per repository has one Stone private page
cache.

 • The shared page cache is used to hold the object table—a structure containing
pointers to all the objects in the repository—and copies of the disk pages that
hold the objects with which users are presently working. The system
administrator must enable the shared page cache in the configuration file for
a host. The single active Stone process per repository has one shared page
cache per host machine. The shared page cache is automatically enabled for
the host machine on which the Stone process is running. Enabling the shared
page cache is optional, however, for Gem processes running remotely on other
hosts.

Configuration File Cache Size Parameters
Two of the four kinds of caches are associated with Gem processes: the temporary
object space and the Gem private page cache. The other two are associated with

Tuning Performance Modifying Cache Sizes for Better Performance

July 1996 GemStone Systems, Inc. 12-25

the Stone (although both the Gem and the Stone make use of the shared page
cache). The size of each kind of cache can be set by means of the appropriate
GemStone configuration file. The configuration file for each process sets the size
of the associated temporary object space and Gem private page cache. The
configuration file for the Stone process sets the size of the shared page cache and
the Stone private page cache—only the system administrator is privileged to set
these parameters. However, if a Gem session is running remotely and it is the first
Gem session on its host, its configuration file sets the size of the shared page cache
on that host.

 • The amount of memory allocated for the temporary object space is determined
by the GEM_TEMPOBJ_CACHE_SIZE parameter. The default size is 585 KB;
the minimum is 200 KB; the maximum is 10000 KB.

 • The amount of memory allocated for the Gem private page cache is
determined by the GEM_PRIVATE_PAGE_CACHE_KB parameter. The
default size is 500 KB; the minimum is 496 KB; the maximum is 65536 KB.

 • The amount of memory allocated for the Stone private page cache is
determined by the STN_PRIVATE_PAGE_CACHE_KB parameter. The
default size is 1000 KB; the minimum is 496 KB; the maximum is 65536 KB.

 • The amount of memory allocated for the shared page cache is determined by
the SHR_PAGE_CACHE_SIZE_KB parameter. The default size is 10000 KB;
the minimum is 512 KB; the maximum is limited by the available system
memory and the kernel configuration.

Tuning Cache Sizes
The default cache sizes assume a small repository; you will probably benefit from
increasing some or all of them when your repository grows to industrial
proportions.

Tuning the Temporary Object Space

If your application creates a great many temporary objects, you may need to
increase the temporary object space size. If your application makes heavy use of
the reduced conflict classes, it is more likely to create large numbers of temporary
objects. (See “Classes That Reduce the Chance of Conflict” on page 6-26 for more
information about the reduced conflict classes.)

You will probably need to experiment somewhat before you determine the
optimum size of the temporary object space for your application. In general, keep
the size somewhere between 400 KB and 3 MB. Large applications probably
require a temporary object space size of at least 1–1.5 MB.

Modifying Cache Sizes for Better Performance GemStone Programming Guide

12-26 GemStone Systems, Inc. July 1996

Tuning the Gem Private Page Cache

The shared page cache can be disabled for remote Gem processes. If the shared
page cache is disabled, the Gem reads into its private page cache the entire page
on which the object resides whenever it needs to read an object. If it then needs to
access another object, GemStone first checks to see if the object is already in its
private cache. If it is, no further disk access is necessary. If it is not, it reads another
page into its private cache.

When temporary object space overflows, objects are written into the Gem private
page cache. Objects in the temporary object space can be reclaimed before being
flushed to disk, but objects in the Gem private page cache cannot. Storage for
unnecessary or obsolete objects in this cache cannot be reclaimed until the objects
are written to the disk. Overflowing temporary object space can therefore can
therefore prevent objects from being reclaimed, leading to inefficient storage.

Therefore, if you need to increase either temporary object space or the Gem private
page cache, increase the temporary object space first. Because it deals with objects
one at a time instead of in page-size increments, and because its storage can be
reclaimed, it can deal more effectively with temporary space requirements.

If a typical transaction commits more data than the sum of the default size of the
temporary object space and the Gem private page cache, then it is a good idea to
set larger values for these caches.

NOTE
If more than one Gem process is running remotely on a single host, we
recommend that you enable the shared page cache on that host.

Tuning the Stone Private Page Cache

The Stone uses two pages in its private page cache for each Gem session—one page
for the session’s object pointers, and one page for the session’s page allocation.
This information is by its nature ephemeral; none of it is ever needed on disk in the
repository, as it changes with each user who logs in or logs out. Nevertheless, if
the Stone private page cache overflows, the information is flushed to the shared
page cache, where it can waste valuable storage. It is therefore desirable never to
overflow the Stone private page cache.

To avoid doing so, configure the Stone private page cache so that it can use at least
16 KB per user (one page is 8 KB). If users are using locks, increase the Stone
private page cache by 8 KB for each kind of lock used by each user. For example,
one user using read locks requires an additional 8 KB; two users using read locks
require an additional 16 KB; one user using read locks and write locks requires an

Tuning Performance Modifying Cache Sizes for Better Performance

July 1996 GemStone Systems, Inc. 12-27

additional 16 KB; and one user using read locks and two users using both read
locks and write locks require an additional 40 KB.

Tuning the Shared Page Cache

Whenever the Gem needs to read an object, it reads into the shared page cache the
entire page on which an object resides. If the Gem then needs to access another
object, GemStone first checks to see if the object is already in the shared page cache.
If it is, no further disk access is necessary. If it is not, it reads another page into the
shared page cache.

Ideally, the shared page cache should be much larger than required to hold the
entire object table.

The average object is between 50–150 bytes. A 300 MB repository probably
contains approximately three million objects. For such a repository, the shared
page cache should be at least 12 MB plus additional memory for each user.
However, it is undesirable to make the shared page cache large enough to force
excessive swapping. Therefore, a rule of thumb to start with is that the shared
page cache should use approximately one-third to one-half the RAM on the host
machine. This rule assumes, however, that your system is dedicated to running
GemStone. If it is not, you may need to decrease the shared page cache size.

In any case, the shared page cache ought to be able to hold at least a quarter of the
object table in memory, so for the 300 MB repository posited above, allocate at least
5 MB for the shared page cache.

You will get the best performance when the shared page cache is large enough to
hold all the pages on which all currently used objects reside. Therefore, clustering
objects appropriately can allow a smaller shared page cache.

For more information about caches, see the GemStone System Administration Guide.

Generating Native Code GemStone Programming Guide

12-28 GemStone Systems, Inc. July 1996

12.4 Generating Native Code
You may generate platform native code instead of portable code for frequently
used code. Native Code Generation works in the run time environment, based on
the size of individual methods and the frequency that the virtual machine calls the
method.

By using native code, you can increase the performance of your application,
especially is your design is compute-bound. Improvements can be as low as 10%
or very dramatic, depending on the type of computation required.

In GemStone, native code is as transparent as possible. As a user, you should not
really be able to tell is a method executes using native code or portable code.

Enabling Native Code
You control native code generation with the GemNativeCodeMax and the
GemNativeCodeThresold parameters, set in the Gem (or as environment
variables). These parameters combine to determine when the virtual machine uses
native code and either one can disable native code generation.

Table 12.2 GemNativeCodeMax Values

Negative Integers No limit on the size of the native code; generate the
code regardless of its size

0 Native code size is zero, disabling its generation

1-2048 Set a maximum byte size for the resulting native code

Table 12.3 GemNativeCodeThreshold Values

Negative Integers Native code is not generated

0 Always generate native code.

Positive integers Generate native code when the method is invoked this
number of times; Default: 4.

Tuning Performance Generating Native Code

July 1996 GemStone Systems, Inc. 12-29

Implications of Native Code
Although native code is generally transparent, there are some considerations you
should be aware of:

 • Significant overhead exists for machines with separate data and instruction
caches (especially on multi-processor machines). If you set the
GemNativeCodeThresold to a low value for these types of clients, the native
code may actually run slower than portable code.

 • Size of the native code is larger compared with the portable code (uses more
RAM space). If your system is memory limited, native code may adversely
affect performance.

 • Native code methods are always forced back to portable code for debugging.

 • Native code for some platforms may have size limits that the portable code
doesn’t. For example, a branch may only be 8K bytes away on some systems.
If the native code is too large, it may never be converted to native code.

 • ProfMonitor results will be inaccurate unless native code is disabled. For
efficiency, native code does not accurately maintain ProfMonitor statistics.

In most circumstances, native code generation will provide a measurable
improvement in performance. Applications with time-critical or space-critical
resources may need to tune the native code generation parameters or even have
portions of code rewritten to better utilize this feature.

Generating Native Code GemStone Programming Guide

12-30 GemStone Systems, Inc. July 1996

Chapter

July 1996 GemStone Systems, Inc. 13-1

13 Advanced Class
Protocol

A class responds to messages defined and stored by its class and its class’s
superclasses. The classes named Object, Class, and Behavior are superclasses of
every class. Although the mechanism involved may be a little confusing, the
practical implication is easy to grasp — every class understands the instance
messages defined by Object, Class, and Behavior.

You’re already familiar with Object’s protocol, that enables a class to represent
itself as a string, to return the segment it occupies. The class named Class defines
the familiar subclass creation message (subclass:instVarNames:...) and
some protocol for adding and removing class variables and pool dictionaries.
Class Behavior defines by far the largest number of useful messages that you may
not yet have encountered. This chapter presents a brief overview of Behavior’s
methods.

Adding and Removing Methods
describes the protocol in class Behavior for adding and removing methods.

Examining a Class’s Method Dictionary
describes the protocol in class Behavior for examining the method dictionary
of a class.

Adding and Removing Methods GemStone Programming Guide

13-2 GemStone Systems, Inc. July 1996

Examining, Adding, and Removing Categories
describes the protocol in class Behavior for examining, adding, and removing
method categories.

Accessing Variable Names and Pool Dictionaries
describes the protocol in class Behavior for accessing the variables and pool
dictionaries of a class.

Testing a Class’s Storage Format
describes the protocol in class Behavior for testing the storage format of a class.

13.1 Adding and Removing Methods
Class Behavior defines three messages for adding or removing selectors.

Defining Simple Accessing and Updating Methods
Class Behavior provides an easy way to define simple methods for establishing
and returning the values of instance variables. For each instance variable named
by a symbol in the argument array, the message
compileAccessingMethodsFor: arrayOfSymbols creates one method that sets
the instance variable’s value and one method that returns it. Each method is
named for the instance variable to which it provides access.

For example, this invocation of the method:

Animal compileAccessingMethodsFor: #(#name)

has the same effect as the Topaz script in Example 13.1:

Advanced Class Protocol Adding and Removing Methods

July 1996 GemStone Systems, Inc. 13-3

Example 13.1

category: 'Accessing'
method: Animal
name

 ^name

%
category: 'Updating'
method: Animal
name: aName
 name := aName
%

All of the methods created in this way are added to the categories named
“Accessing” (return the instance variable’s value) and “Updating” (set its value).

You can also use compileAccessingMethodsFor: to define methods for
accessing pool variables and class variables. The only important difference is that
to define class methods for getting at class variables, you must send
compileAccessingMethodsFor: to the class of the class that defines the class
variables of interest. The following code, for example, defines class methods that
access the class variables of the class Menagerie:

 Menagerie class compileAccessingMethodsFor: #(#BandicootTally)

This is equivalent to the Topaz script in Example 13.2:

Adding and Removing Methods GemStone Programming Guide

13-4 GemStone Systems, Inc. July 1996

Example 13.2

category: 'Accessing'
classmethod: Menagerie
BandicootTally

 ^BandicootTally

%
category: 'Updating' classmethod: Menagerie
BandicootTally: aNumber

 BandicootTally := aNumber

%

Removing Selectors
You can send removeSelector: aSelectorSymbol to remove any selector and
associated method that a class defines. The following example removes the
selector habitat and the associated method from the class Animal’s method
dictionary.

Animal removeSelector: #habitat

To remove a class method, send removeSelector: to the class of the class
defining the method. The following example removes one of the class Animal’s
class methods:

Animal class removeSelector:
#newWithName:favoriteFood:habitat:

Modifying Classes
You can send varyingConstraint: aClass to change the constraint on the
unnamed (indexed or unordered) instance variables of the receiver. The argument
aClass must be a kind of class. The receiver, and any subclasses for which a
constraint change will result, must be variant.

Two methods defined by Class can help you determine the nature of a class that
you are considering modifying; these are definition and hierarchy . The
definition method displays the structure of the class, and hierarchy shows
its place in the class hierarchy.

Advanced Class Protocol Adding and Removing Methods

July 1996 GemStone Systems, Inc. 13-5

This example shows how to query GemStone for the definition of Employee:

Example 13.3

Employee definition
Object subclass: 'Employee'
instVarNames: #('name' 'job' 'age' 'address')
classVars: #('subclasses')
poolDictionaries: #[]
inDictionary: UserGlobals
constraints: #[#[#name, Name],

#[#job, String],
#[#age, SmallInteger],
#[#address, String]]

instancesInvariant: false
isModifiable: true

The following example shows that Employee is a subclass of Object:

Example 13.4

Employee hierarchy
Object

Employee('name' 'job' 'age' 'address')

The Basic Compiler Interface
Class Behavior defines the basic method for compiling a new method for a class
and adding the method to the class’s method dictionary. The programming
environments available with Smalltalk provide much more convenient facilities
for run-of-the-mill compilation jobs, so you’ll probably never need to use this
method. It’s provided mainly for sophisticated programmers who want to build a
custom programming environment, or those who need to generate Smalltalk
methods automatically in Smalltalk.

An invocation of the method has this form:

aClass compileMethod: sourceString
 dictionaries: arrayOfSymbolDicts
 category: aCategoryNameString

Examining a Class’s Method Dictionary GemStone Programming Guide

13-6 GemStone Systems, Inc. July 1996

The first argument, sourceString, is the text of the method to be compiled,
beginning with the method’s selector. The second argument, arrayOfSymbolDicts,
is an array of SymbolDictionaries to be used in resolving the source code symbols
in sourceString. Under most circumstances, you will probably use your symbol list
for this argument. The final argument simply names the category to which the
new method is to be added.

The following code compiles a short method named habitat for the class
Animal, adding it to the category “Accessing”:

Example 13.5

Animal compileMethod:
 'habitat
 "Return the value of the receiver''s habitat
 instance variable"

 ^habitat'
 dictionaries: (System myUserProfile symbolList)
 category: #Accessing

When you write methods for compilation in this way, remember to double each
apostrophe as in the example given above.

If compileMethod:.. executes successfully, it adds the new method to the
receiver and returns nil.

If the source string contains errors, this method returns an array of two-element
arrays. The first element of each two-element array is an error number, and the
second element is an integer describing where in the source string the compiler
detected the error. The GemStone C Interface Manual describes the Smalltalk
compiler errors by number, all the error messages are listed in
$GEMSTONE/doc/errormessages.txt.

13.2 Examining a Class’s Method Dictionary
Class Behavior defines messages that let you obtain a class’s selectors and
methods. Methods are available in either source code or compiled form. Other
methods let you test for the presence of a selector in a class or in a class’s superclass
chain. See Table 13.1.

Advanced Class Protocol Examining a Class’s Method Dictionary

July 1996 GemStone Systems, Inc. 13-7

Table 13.1 Method Dictionary Access

allSelectors Returns an array of symbols, consisting of all of the
message selectors that instances of the receiver can
understand, including those inherited from
superclasses. The symbol for keyword messages
concatenates the keywords.

canUnderstand: aSelector Returns true if the receiver can respond to the message
indicated by aSelector, returns false otherwise. The
selector (a string) can be in the method dictionary of
the receiver or any of the receiver’s superclasses.

compiledMethodAt: aSelector Returns the compiled method associated with the
argument aSelector (a string). The argument must be a
selector in the receiver’s method dictionary; if it is not,
this method generates an error.

includesSelector: aString Returns true if the receiver defines a method for
responding to aString.

selectors Returns an array of symbols, consisting of all of the
message selectors defined by the receiver. (Selectors
inherited from superclasses are not included.) The
symbol for keyword messages concatenates the
keywords.

sourceCodeAt: aSelector Returns a string representing the source code for the
argument, aSelector. If aSelector (a string) is not a
selector in the receiver’s method dictionary, this
generates an error.

whichClassIncludesSelector:
aString

If the selector aString is in the receiver’s method
dictionary, returns the receiver. Otherwise, returns the
most immediate superclass of the receiver where
aString is found as a message selector. Returns nil if
the selector is not in the method dictionary of the
receiver or any of its superclasses.

Examining a Class’s Method Dictionary GemStone Programming Guide

13-8 GemStone Systems, Inc. July 1996

Example 13.6 uses selectors and sourceCodeAt: in a method that produces a
listing of the receiver’s methods:

Example 13.6

classmethod: SomeClass
listMethods
"Returns a string listing the source code for the receiver’s class
and instance methods."
| selectorArray outputString |
outputString := String new.
"First, concatenate all instance methods defined by the receiver."
outputString add: ’************ Instance Methods *************’;
 lf;
 lf.
selectorArray := self selectors.
selectorArray do: [:i | outputString
 add: (self sourceCodeAt: i);lf;lf].
"Now add the class methods."
outputString add: ’************* Class Methods *************’;
 lf;lf.
selectorArray := self class selectors.
selectorArray do: [:i | outputString
 add: (self class sourceCodeAt: i);lf;lf].
^outputString
%

Suppose that you defined a subclass of SymbolDictionary called
CustomSymbolDictionary and used instances of that class in your symbol list for
storing objects used in your programs.

Advanced Class Protocol Examining a Class’s Method Dictionary

July 1996 GemStone Systems, Inc. 13-9

The method in Example 13.7, using includesSelector: , would be able to tell
you which of the classes in a CustomSymbolDictionary implemented a particular
selector.

Example 13.7

method: CustomSymbolDictionary
whichClassesImplement: aSelector
"Returns a string describing which classes in the receiver
(a subclass of SymbolDictionary) implement a method whose selector is
aSelector. Distinguishes between class and instance methods."
| outputString newline |
outputString := String new.
self values do: [:aValue | (aValue isKindOf: Class)
 ifTrue: [(aValue includesSelector: aSelector)
 ifTrue: [outputString add: aValue name;
 add: ' (as instance method)';
 lf.
].
 (aValue class includesSelector: aSelector)
 ifTrue: [outputString add: aValue name;
 add: ' (as class method)';
 lf.
].
].
].
^outputString
%

Examining, Adding, and Removing Categories GemStone Programming Guide

13-10 GemStone Systems, Inc. July 1996

13.3 Examining, Adding, and Removing Categories
Class Behavior provides a nice set of tools for dealing with categories and for
examining and organizing methods in terms of categories. See Table 13.2.

Notice that removeCategory: removes not only a category but all of the
methods in that category.

Table 13.2 Category Manipulation

addCategory: aString Adds aString as a method category for the receiver, and
returns the receiver. If aString is already a method
category, generates an error.

categoryNames Returns an array of symbols. The elements of the array
are the receiver’s category names (excluding names
inherited from superclasses).

moveMethod: aSelector
toCategory: categoryName

Moves the method aSelector (a string) from its current
category to the specified category (also a string).
Returns the receiver. If either aSelector or categoryName
is not in the receiver’s method dictionary, or if aSelector
is already in categoryName, this generates an error.

removeCategory:
 categoryName

Removes the specified category and all its methods
from the receiver’s method dictionary. Returns the
receiver. If categoryName is not in the receiver’s method
dictionary, generates an error.

renameCategory: categoryName
to: newCategoryName

Changes the name of the specified category to
newCategoryName (a string), and returns the receiver. If
categoryName is not in the receiver’s method dictionary,
or if newCategoryName is already in the receiver’s
method dictionary, generates an error.

selectorsIn: categoryName Returns an array of all selectors in the specified
category. If categoryName is not in the receiver’s
method dictionary, generates an error.

Advanced Class Protocol Examining, Adding, and Removing Categories

July 1996 GemStone Systems, Inc. 13-11

Example 13.8 shows how you might move methods to another category before
deleting their original category:

Example 13.8

Animal addCategory: 'Munging'.
(Animal selectorsIn: 'Accessing') do: [:i | Animal moveMethod: i
 toCategory: 'Munging'].
Animal removeCategory: 'Accessing'.

The next example demonstrates how you use these methods to lists instance
methods in a format that can be read and compiled automatically by Topaz with
the input function. This partially duplicates the Topaz fileout function.

Example 13.9

classmethod: SomeClass
listMethodsByCategory
"Produces a string describing the receiver’s instance methods by
category in FILEOUT format."
| outputString newline className |
outputString := String new.
className := self name.
self categoryNames do: "For each category..."
 [:aCatName | outputString add: 'category: ''';
 add: aCatName;
 add: '''';
 lf.
 (self selectorsIn: aCatName) do: "For each selector..."
 [:aSelector |
 outputString add: 'method: ';

add:className; lf;
 add: (self sourceCodeAt: aSelector);
 add: newline;
 add: '%'; lf;lf.
].
].
^outputString

%

Examining, Adding, and Removing Categories GemStone Programming Guide

13-12 GemStone Systems, Inc. July 1996

Here is how this method behaves if it were defined for class Animal. (The output
is truncated.)

Example 13.10

Animal listMethodsByCategory
category: 'Accessing'
method: Animal
name: aName

name := aName
%

method: Animal
name

^name

%

Advanced Class Protocol Accessing Variable Names and Pool Dictionaries

July 1996 GemStone Systems, Inc. 13-13

13.4 Accessing Variable Names and Pool Dictionaries
Class Behavior’s methods provide access to the names of all of a class’s variables
(instance, class, class instance, and pool). Two methods access each kind of
variable name—one method retrieves the variables defined by the receiver, and
one retrieves the names of inherited variables as well. A more general method
(scopeHas:) asks whether a variable (instance, class, or pool) is defined for a
class’s methods. See Table 13.3.

Table 13.3 Access to Variable Names

allClassVarNames Returns an array of the names of class variables addressable
by this class. Variables inherited from superclasses are
included; contrast with classVarNames.

allInstVarNames Returns an array of symbols, consisting of the names of all the
receiver’s instance variables, including those inherited from
superclasses. The ordering of the names in the array follows
the ordering of the superclass hierarchy; that is, instance
variable names inherited from Object are listed first, and those
peculiar to the receiver are last.

allSharedPools Returns an array of pool dictionaries used by this class and its
superclasses. Contrast with sharedPools .

classVarNames Returns a (possibly empty) array of class variables defined by
this class. Superclasses are not included; contrast with
allClassVarNames .

instVarNames Returns an array of symbols naming the instance variables
defined by the receiver, but not including those inherited from
superclasses. Contrast with allInstVarNames .

scopeHas: aVariableName
ifTrue: aBlock

If aVariableName (a string) is an instance, class, or pool variable
in the receiver or in one of its superclasses, this evaluates the
zero-argument block aBlock and returns the result of
evaluating aBlock. Otherwise, returns false.

sharedPools Returns an array of pool dictionaries used by this class.
Superclasses are not included; contrast with
allSharedPools .

Accessing Variable Names and Pool Dictionaries GemStone Programming Guide

13-14 GemStone Systems, Inc. July 1996

To access class instance variables, send the message instVarNames or
allInstVarNames to the class of the class you are searching. For example:

Animal class instVarNames

returns an array of symbols naming the class instance variables defined by the
receiver (Animal), not including those inherited from superclasses. The method in
Example 13.11 uses this protocol to return a string giving the names and types of
the named instance variables stored in elements of the receiver (a constrained
collection).

Example 13.11

classmethod: BagOfEmployees
schemeAsString
| bagConstraintClass outputString |
outputString := String new.
"Get the constraint on the receiver."
bagConstraintClass := self varyingConstraint.
outputString add: self name;
 add: ' is constrained to hold instances of ';
 add: bagConstraintClass name;
 add: (Character lf).
outputString add: 'Instance variables of ';
 add: bagConstraintClass name;
 add: ' are:';
 add: (Character lf).
self allInstVarnames do:
 [:aVarName | "For each instvarname in the receiver’s elements"
 outputString add: aVarname; "Add the instance var name"
 add: ' ';
 add: 'constraint: ';
 "Add the constraint on that instance var"
 add: ((bagConstraintClass constraintOn: aVarName)
 name);
 add: (Character lf).
].
^outputString
%

This method does not need not be rewritten when its class is redefined to add or
remove instance variables or constraints.

Advanced Class Protocol Accessing Variable Names and Pool Dictionaries

July 1996 GemStone Systems, Inc. 13-15

The next method, defined for the class CustomSymbolDictionary (discussed
earlier in this chapter), returns a list of all classes named by the receiver that define
some name as an instance, class, class instance, or pool variable.

Example 13.12

method: CustomSymbolDictionary
listClassesThatReference: aVarName
"Lists the classes in the receiver, a subclass of SymbolDictionary,
that refer to aVarName as an instance, class, class instance, or pool
variable."
| theSharedPools outputString |
outputString := String new.
self valuesDo: [:aValue | "For each value in the receiver’s
Associations..."
 (aValue instVarNames includesValue: aVarName)
 ifTrue: [outputString add: aValue name;
 add: ' defines as instance variable.';
 lf.
].
 (aValue classVarNames includesValue: aVarName)
 ifTrue:
 [outputString add: aValue name;
 add: ' defines as class variable.';
 lf.
].
theSharedPools:= aValue sharedPools.
theSharedPools do: [:poolDict |
 (poolDict includesKey: aVarName)
 ifTrue:
 [outputString add: aValue name;
 add: ' defines as pool variable'.
].
].
].
^outputString
%

Testing a Class’s Storage Format GemStone Programming Guide

13-16 GemStone Systems, Inc. July 1996

13.5 Testing a Class’s Storage Format
Each class defines or inherits for instances the ability to store information in a
certain format. Thus, instances of Array can store information in indexed
variables, and instances of Bag can store information in unordered instance
variables. Table 13.4 describes Behavior’s protocol for testing a class’s storage
format.

Table 13.4 Storage Format Protocol

format Returns the value of Behavior’s format instance variable, a
SmallInteger. The following methods provide easier ways to get
at the information encoded in format. If you really need details
about format, see the description of class Behavior in the
GemStone Kernel Reference.

instSize Returns the number of named instance variables in the receiver.

isBytes Returns true if instances of the receiver are byte objects.
Otherwise returns false.

isIndexable Returns true if instances of the receiver have indexed variables.
Otherwise returns false.

isInvariant Returns true if instances of the receiver cannot change value.
Otherwise returns false.

isNsc Returns true if instances of the receiver are nonsequenceable
collections (IdentityBags or IdentitySets). Otherwise returns
false.

isPointers Returns true if instances of the receiver are pointer objects.
Otherwise returns false.

Advanced Class Protocol Testing a Class’s Storage Format

July 1996 GemStone Systems, Inc. 13-17

Example 13.13 below uses several of these messages to construct a string
describing the storage format of the receiver.

Example 13.13

method: Object
describeStorageFormat
"Returns a string describing the receiver’s format and the kinds
and numbers of its instance variables."
| outputString |
outputString := String new.
outputString add: 'The receiver is an instance of ';
 add: self class name;
 add: '.';
 lf;
 add: 'Its storage format is '.
self class isPointers "Is the receiver pointers?"
 ifTrue: [self class isIndexable
 ifTrue: [outputString add: 'pointer with indexed vars. ';
 add: 'The number of indexed vars is ';
 add: self size asString;
 lf;
 add: 'The number of named instvars is ';
 add: self class instSize asString;
 add: '.';
 lf.
]
 ifFalse: [outputString add: 'pointer with no indexed vars.';
 lf;
 add: 'The number of named instvars is ';
 add: self class instSize asString;
 add: '.';lf.
].
]
 "If the object has no pointers, then it must be a nonsequenceable
 collection or a byte object."

Testing a Class’s Storage Format GemStone Programming Guide

13-18 GemStone Systems, Inc. July 1996

 ifFalse:
 [self class isNSC
 ifTrue: [outputString add: 'NSC. ';
 add:'The number of unordered inst vars is:';
 add: self size asString;
 add: '.'.
]
 ifFalse: [outputString add: 'bytes. ';
 add: 'The number of byte inst vars is: ';
 add: self size asString;
 add: '.'.
].
].
^outputString
%

Here’s what happens if you define describeStorageFormat for class Animal
and send it to an instance of Animal:

Example 13.14

Animal new describeStorageFormat
The receiver is an instance of Animal.
Its storage format is pointer with no indexed vars.
The number of named instvars is 3.

Appendix

July 1996 GemStone Systems, Inc. A-1

A Basic Smalltalk
Syntax

This chapter outlines the syntax for GemStone Smalltalk and introduces some
important kinds of Smalltalk objects.

 The Smalltalk Class Hierarchy
Every object is an instance of a class, taking its methods and its form of data storage
from its class. Defining a class thus creates a kind of template for a whole family of
objects that share the same structure and methods. Instances of a class are alike in
form and in behavioral repertoire, but independent of one another in the values of
the data they contain.

Classes are much like the data types (string, integer, etc.) provided by
conventional languages; the most important difference is that classes define
actions as well as storage structures. In other words, Algorithms + Data Structures
= Classes.

Smalltalk provides a number of predefined classes that are specialized for storing
and transforming different kinds of data. Instances of class Float, for example,
store floating-point numbers, and class Float provides methods for doing floating-
point arithmetic. Floats respond to messages such as +, -, and reciprocal.

GemStone Programming Guide

A-2 GemStone Systems, Inc. July 1996

Instances of class Array store sequences of objects and respond to messages that
read and write array elements at specified indices.

The Smalltalk classes are organized in a treelike hierarchy, with classes providing
the most general services nearer the root, and classes providing more specialized
functions nearer the leaves of the tree. This organization takes advantage of the
fact that a class’s structure and methods are automatically conferred on any classes
defined as its subclasses. A subclass is said to inherit the properties of its parent
and its parent’s ancestors.

How to Create a New Class
The following message expression makes a new subclass of class Object, the class
at the top of the class hierarchy:

Example 0.1

Objectsubclass: 'Animal'
instVarNames: #()
inDictionary: UserGlobals.

This subclass creation message establishes a name (’Animal’) for the new class and
installs the new class in a Dictionary called UserGlobals. The String used for the
new class’s name must follow the general rule for variable names — that is, it must
begin with an alphabetic character and its length must not exceed 64 characters.
Installing the class in UserGlobals makes it available for use in the future—you
need only write the name Animal in your code to refer to the new class.

Case-Sensitivity
Smalltalk is case-sensitive; that is, names such as “SuperClass,” “superclass,” and
“superClass” are treated as unique items by the Smalltalk compiler.

Statements
The basic syntactic unit of a Smalltalk program is the statement. A lone statement
needs no delimiters; multiple statements are separated by periods:

a := 2.
b := 3.

In a group of statements to be executed en masse, a period after the last statement
is optional.

Basic Smalltalk Syntax

July 1996 GemStone Systems, Inc. A-3

A statement contains one or more expressions, combining them to perform some
reasonable unit of work, such as an assignment or retrieval of an object.

Comments
Smalltalk usually treats a string of characters enclosed in quotation marks as a
comment—a descriptive remark to be ignored during compilation. Here is an
example:

"This is a comment."

 A quotation mark does not begin a comment in the following cases:

 • within another comment. You cannot nest comments.

 • within a string literal (see String Literals below). Within a Smalltalk string
literal, a “comment” becomes part of the string.

 • when it immediately follows a dollar sign ($). Smalltalk interprets the first
character after a dollar sign as a data object called a character literal (see
below).

A comment terminates tokens such as numbers and variable names. For example,
Smalltalk would interpret the following as two numbers separated by a space (by
itself, an invalid expression):

2" this comment acts as a token terminator" 345

Expressions
An expression is a sequence of characters that Smalltalk can interpret as a reference
to an object. Some references are direct, and some are indirect.

Expressions that name objects directly include both variable names and literals
such as numbers and strings. The values of those expressions are the objects they
name.

An expression that refers to an object indirectly by specifying a message invocation
has the value returned by the message’s receiver. You can use such an expression
anywhere you might use an ordinary literal or a variable name. This expression:

2 negated

has the value (refers to) -2, the object that 2 returns in response to the message
negated .

The following sections describe the syntax of Smalltalk expressions and tell you
something about their behavior.

GemStone Programming Guide

A-4 GemStone Systems, Inc. July 1996

Kinds of Expressions

A Smalltalk expression can a combination of the following:

 • a literal

 • a variable name

 • an assignment

 • a message expression

 • an array constructor

 • a path

 • a block

The following sections discuss each of these kinds of expression in turn.

Literals

A literal expression is a representation of some object such as a character or string
whose value or structure can be written out explicitly. The five kinds of Smalltalk
literals are:

 • numbers

 • characters

 • strings

 • symbols

 • arrays of literals

Numeric Literals

In Smalltalk, literal numbers look and act much like numbers in other
programming languages. Like other Smalltalk objects, numbers receive and
respond to messages. Most of those messages are requests for arithmetic
operations. In general, Smalltalk numeric expressions do the same things as their
counterparts in conventional programming languages. For example:

5 + 5

returns the sum of 5 and 5.

A literal floating point number must include at least one digit after the decimal
point:

5.0

Basic Smalltalk Syntax

July 1996 GemStone Systems, Inc. A-5

You can express very large and very small numbers compactly with scientific
notation. To raise a number to some exponent, simply append the letter “e” and a
numeric exponent to the number’s digits. For example:

8.0e2

represents 800.0. The number after the e represents an exponent (base 10) to which
the number preceding the e is to be raised. The result is always a floating point
number. Here are more examples:

1e-3 represents 0.001
1.5e0 represents 1.5

To represent a number in a nondecimal base literally, write the number’s base (in
decimal), followed by the character "#", and then the number itself. Here, for
example, is how you would write octal 23 and hexadecimal FF:

8#23
16#FF

The largest radix available is 36.

Character Literals

A Smalltalk character literal represents one of the symbols of the alphabet. To
create a character literal, write a dollar sign ($) followed by the character’s
alphabetic symbol. Here are some examples:

$b $B $4 $? $$

If a nonprinting ASCII character such as a tab or a form feed follows the dollar sign,
Smalltalk creates the appropriate internal representation of that character.
Smalltalk interprets this statement, for example, as a representation of ASCII
character 32:

Example A.2

$. "Creates the character representing a space (ASCII 32)"

In this example, the period following the space acted as a statement terminator. If
no space had separated the dollar sign from the period, Smalltalk would have
interpreted the expression as the character literal representing a period.

GemStone Programming Guide

A-6 GemStone Systems, Inc. July 1996

String Literals

Literal strings represent sequences of characters. They are instances of the class
String, described in Chapter 4, “Collection and Stream Classes.” A literal string is
a sequence of characters enclosed by single quotation marks. These are literal
instances of String:

’Intellectual passion drives out sensuality.’
’A difference of taste in jokes is a great strain
 on the affections.’

A literal String may contain up to 10,000 characters.

When you want to include apostrophes in a literal string, double them:

'You can''t make omelettes without breaking eggs.'

Smalltalk faithfully preserves control characters when it compiles literal strings.
The following example creates a String containing a line feed (ASCII 10),
Smalltalk’s end-of-line character:

'Control characters such as line feeds
 are significant in literal strings.'

As Chapter 4, “Collection and Stream Classes,” explains, Strings respond to a
variety of text manipulation messages.

Symbol Literals

A literal Symbol is similar to a literal String. It is a sequence of letters, numbers, or
an underscore preceded by a pound sign (#). For example:

Example A.3

#stuff
#nonsense
#may_24_thisYear

Literal Symbols can contain white space (tabs, carriage returns, line feeds,
formfeeds, spaces, or similar characters). If they do, they must be both preceded
by a pound sign, as described above, and delimited by single quotation marks, as
described in the section above entitled “String Literals.” For example:

#'Gone With the Wind'

Chapter 4, “Collection and Stream Classes,” discusses the behavior of Symbols.

Basic Smalltalk Syntax

July 1996 GemStone Systems, Inc. A-7

Array Literals

A Smalltalk Array is a simple data structure similar to a FORTRAN array or a LISP
list. Arrays can hold objects of any type, and they respond to messages that read
and write individual elements or groups of elements.

A literal Array can contain only other literals—Characters, Strings, Symbols, and
other literal Arrays. The elements of a literal Array are enclosed in parentheses
and preceded by a pound sign (#). White space must separate the elements.

Here is an Array that contains two Strings, a literal Array, and a third String:

#(’string one’ ’string two’ #(’another’ ’Array’) ’string three’)

The following Array contains a String, a Symbol, a Character, and a Number:

#(’string one’ #symbolOne $c 4)

Array literals are only one of two flavors of arrays. Array constructors are
discussed later in the chapter.

Variables and Variable Names
A variable name is a sequence of characters of either or both cases. A variable
name must begin with an alphabetic character or an underscore (“_”) , but it can
contain numerals. Spaces are not allowed, and the underscore is the only
acceptable punctuation mark. Here are some permissible variable names:

zero
relationalOperator
Top10SolidGold
A_good_name_is_better_than_precious_ointment

Most Smalltalk programmers begin local variable names with lowercase letters
and global variable names with uppercase letters. When a variable name contains
several words, Smalltalk programmers usually begin each word with an
uppercase letter. You are free to ignore either of these conventions, but remember
that Smalltalk is case-sensitive. The following are all different names to
Smalltalk:

VariableName
variableName
variablename

Variable names can contain up to 64 characters.

GemStone Programming Guide

A-8 GemStone Systems, Inc. July 1996

Declaring Temporary Variables

Like many other languages, Smalltalk requires you to declare new variable names
(implicitly or explicitly) before using them. The simplest kind of variable to
declare, and one of the most useful in your initial exploration of Smalltalk, is the
temporary variable. Temporary variables are so called because they are defined
only for one execution of the set of statements in which they are declared.

To declare a temporary variable, you must surround it with vertical bars as in this
example:

Example A.4

| myTemporaryVariable |
myTemporaryVariable := 2.

You can declare at most 253 temporary variables for a set of statements. Once
declared, a variable can name objects of any kind.

To store a variable for later use, or to make its scope global, you must put it in one
of GemStone’s shared dictionaries that Smalltalk uses for symbol resolution. For
example:

Example A.5

| myTemporaryVariable |
myTemporaryVariable := 2.
UserGlobals at: #MyPermanentVariable put: myTemporaryVariable.

Subsequent references to MyPermanentVariable return the value 2.

Chapter 4, “Collection and Stream Classes,” explains Dictionaries and the message
at:put: . Chapter 3, “Name Resolution and Object Sharing,” provides a
complete discussion of symbol resolution and discusses other kinds of “implicit
declaration” similar to storage in UserGlobals.

Pseudovariables

You can change the objects to which most variable names refer simply by assigning
them new objects. However, five Smalltalk variables have values that cannot be
changed by assignment; they are therefore called pseudovariables. They are:

nil

Basic Smalltalk Syntax

July 1996 GemStone Systems, Inc. A-9

Refers to an object representing a null value. Variables not assigned another
value automatically refer to nil.

true

Refers to the object representing logical truth.

false

Refers to the object representing logical falsity.

self

Refers to the receiver of the message, which differs according to the context.

super

Refers to the receiver of the message, but the method that is invoked is in the
superclass of the receiver.

Assignment
Assignment statements in Smalltalk look like assignment statements in many
other languages. The following statement assigns the value 2 to the variable
MightySmallInteger:

MightySmallInteger := 2.

The next statement assigns the same String to two different variables (C
programmers may notice the similarity to C assignment syntax):

nonmodularity := interdependence := ’No man is an island’.

Message Expressions
As you know, Smalltalk objects communicate with one another by means of
messages. Most of your effort in Smalltalk programming will be spent in writing
expressions in which messages are passed between objects. This subsection
discusses the syntax of those message expressions.

You have already seen several examples of message expressions:

2 + 2
5 + 5

GemStone Programming Guide

A-10 GemStone Systems, Inc. July 1996

In fact, the only Smalltalk code segments you have seen that are not message
expressions are literals, variables, and simple assignments:

2 "a literal"
variableName "a variable"
MightySmallInteger := 2. "an assignment"

The ubiquity of message-passing is one of the hallmarks of object-oriented
programming.

Messages

A message expression consists of:

 • an identifier or expression representing the object to receive the message,

 • one or more identifiers called selectors that specify the message to be sent, and

 • (possibly) one or more arguments that pass information with the message
(these are analogous to procedure or function arguments in conventional
programming). Arguments can be written as message expressions.

Reserved Selectors
Because GemStone represents selectors internally as symbols, almost any
identifier that is legal as a literal symbol is acceptable as a selector. A few selectors,
however, have been reserved for the sole use of the Smalltalk kernel classes. Those
selectors are:

ifTrue: untilFalse timesRepeat:
ifFalse: untilTrue isNil
ifTrue:ifFalse: whileFalse: notNil
ifFalse:ifTrue: whileTrue:
or: to:do:
and: to:by:do:

Do not create new methods with these selectors. If you do, the Smalltalk compiler
will not execute your code.

Optimized Selectors
Certain other selectors are optimized in Smalltalk kernel classes. Redefining an
optimized selector in the class for which it is optimized has no effect; the same
primitive method will be called and your redefinition will be ignored.

Optimized selectors are listed in Table 0.1:

Basic Smalltalk Syntax

July 1996 GemStone Systems, Inc. A-11

Do not redefine these methods in these classes. If you do, the Smalltalk compiler
will not execute your code. However, you can redefine them in other classes, such
as those comprising your own application.

Messages as Expressions

In the following message expression, the object 2 is the receiver, + is the selector,
and 8 is the argument:

2 + 8

When 2 sees the selector +, it looks up the selector in its private memory and finds
instructions to add the argument (8) to itself and to return the result. In other
words, the selector + tells the receiver 2 what to do with the argument 8. The object
2 returns another numeric object 10, which can be stored with an assignment:

myDecimal := 2 + 8.

The selectors that an object understands (that is, the selectors for which
instructions are stored in an object’s instruction memory or “method dictionary”)
are determined by the object’s class.

Table 0.1 Optimized Selectors

Class Selector

SmallInteger, +

SmallInteger -

SmallInteger *

SmallInteger >=

SmallInteger =

any kernel class ==

any kernel class ~~

any kernel class _class

any kernel class isKindOf:

any kernel class _disableProtectedMode

any kernel class _gsReturnNoResult

GemStone Programming Guide

A-12 GemStone Systems, Inc. July 1996

Unary Messages

The simplest kind of message consists only of a single identifier called a unary
selector. The selector negated , which tells a number to return its negative, is
representative:

7 negated
-7

 Here are some other unary message expressions:

9 reciprocal. "returns the reciprocal of 9"
myArray last. "returns the last element of Array myArray"
DateTime now. "returns the current date and time"

Binary Messages

Binary message expressions contain a receiver, a single selector consisting of one
or two nonalphanumeric characters, and a single argument. You are already
familiar with binary message expressions that perform addition. Here are some
other binary message expressions (for now, ignore the details and just notice the
form):

8 * 8 "returns 64"
4 < 5 "returns true"
myObject = yourObject "returns true if myObject and
 yourObject have the same value"

Keyword Messages

Keyword messages are the most common. Each contains a receiver and up to 15
keyword and argument pairs. In keyword messages, each keyword is a simple
identifier ending in a colon.

In the following example, 7 is the receiver, rem: is the keyword selector, and 3 is
the argument:

7 rem: 3 "returns the remainder from the division of 7 by 3"

Here is a keyword message expression with two keyword-argument pairs:

Basic Smalltalk Syntax

July 1996 GemStone Systems, Inc. A-13

Example A.6

| arrayOfStrings |
arrayOfStrings := Array new: 4.
arrayOfStrings at: (2 + 1) put: ’Curly’.
arrayOfStrings at: (2 + 1)
 "puts'Curly' at index position 3 in the receiver"

In a keyword message, the order of the keyword-argument pairs (at: arg1
put: arg2) is significant.

Combining Message Expressions
In a previous example, one message expression was nested within another, and
parentheses set off the inner expression to make the order of evaluation clear. It
happens that the parentheses were optional in that example. However, in
Smalltalk as in most other languages, you sometimes need parentheses to force the
compiler to interpret complex expressions in the order you prefer.

Combinations of unary messages are quite simple; Smalltalk always groups them
from left to right and evaluates them in that order. For example:

9 reciprocal negated

is evaluated as if it were parenthesized like this:

(9 reciprocal) negated

That is, the numeric object returned by 9 reciprocal is sent the message
negated .

Binary messages are also invariably grouped from left to right. For example,
Smalltalk evaluates:

2 + 3 * 2

 as if the expression were parenthesized like this:

(2 + 3) * 2

This expression returns 10. It may be read: “Take the result of sending + 3 to 2, and
send that object the message * 2.”

All binary selectors have the same precedence. Only the sequence of a string of
binary selectors determines their order of evaluation; the identity of the selectors
doesn’t matter.

GemStone Programming Guide

A-14 GemStone Systems, Inc. July 1996

However, when you combine unary messages with binary messages, the unary
messages take precedence. Consider the following expression, which contains the
binary selector + and the unary selector negated :

2 + 2 negated
0

This expression returns the result 0 because the expression 2 negated executes
before the binary message expression 2 + 2. To get the result you may have
expected here, you would need to parenthesize the binary expression like this:

(2 + 2) negated
-4

Finally, binary messages take precedence over keyword messages. For example:

myArrayOfNums at: 2 * 2

would be interpreted as a reference to myArrayofNums at position 4. To multiply
the number at the second position in myArrayOfNums by 2, you would need to
use parentheses like this:

(myArrayOfNums at: 2) * 2

Summary of Precedence Rules

1. Parenthetical expressions are always evaluated first.

2. Unary expressions group left to right, and they are evaluated before binary
and keyword expressions.

3. Binary expressions group from left to right, as well, and take precedence over
keyword expressions.

4. Smalltalk executes assignments after message expressions.

Cascaded Messages
You will often want to send a series of messages to the same object. By cascading
the messages, you can avoid having to repeat the name of the receiver for each
message. A cascaded message expression consists of the name of the receiver, a
message, a semicolon, and any number of subsequent messages separated by
semicolons.

For example,

Basic Smalltalk Syntax

July 1996 GemStone Systems, Inc. A-15

Example A.7

| arrayOfPoets |
arrayOfPoets := Array new.
(arrayOfPoets add: 'cummings'; add: 'Byron'; add: 'Rimbaud';
yourself)

is a cascaded message expression that equivalent to this series of statements:

Example A.8

| arrayOfPoets |
arrayOfPoets := Array new.
arrayOfPoets add: 'cummings'.
arrayOfPoets add: 'Byron'.
arrayOfPoets add: 'Rimbaud'.
arrayOfPoets

You can cascade any sequence of messages to an object. And, as always, you are
free to replace the receiver’s name with an expression whose value is the receiver.

Array Constructors
An array constructor is similar to a literal array, but its elements can be written as
nonliteral expressions as well as literals. Smalltalk evaluates the expressions in an
Array constructor at run time.

Array constructors look a lot like literal Arrays; the differences are that array
constructors are enclosed in brackets and have their elements delimited by
commas.

GemStone Programming Guide

A-16 GemStone Systems, Inc. July 1996

The following example shows an Array constructor whose last element,
represented by a message expression, has the value 4.

Example A.9

"An Array constructor"
#['string one', #symbolOne , $c , 2+2]

Because any valid Smalltalk expression is acceptable as an array constructor
element, you are free to use variable names as well as literals and message
expressions:

Example A.10

| aString aSymbol aCharacter aNumber |
aString := 'string one'.
aSymbol := #symbolOne.
aCharacter := $c.
aNumber := 4.
#[aString, aSymbol, aCharacter, aNumber]

The differences in the behavior of array constructors versus literal arrays can be
subtle. For example, the literal array:

#(123 huh 456)

is interpreted as an array of three elements: a SmallInteger, aSymbol, and another
SmallInteger. This is true even if you declare the value of huh to be a SmallInteger
such as 88, as shown below.

Basic Smalltalk Syntax

July 1996 GemStone Systems, Inc. A-17

Example A.11

| huh |
huh := 88.
#[123, huh, 456]

[sz:3 cls: InvariantArray]
 #1 [sz:0 cls: SmallInteger] 123
 #2 [sz:3 cls: Symbol] huh
 #3 [sz:0 cls: SmallInteger] 456

The same declaration used in an array constructor, however, produces an array of
three SmallIntegers:

Example A.12

| huh |
huh := 88.
#[123, huh, 456]

[sz:3 cls: Array]
 #1 [sz:0 cls: SmallInteger] 123
 #2 [sz:0 cls: SmallInteger] 88
 #3 [sz:0 cls: SmallInteger] 456

Path Expressions
Most of the syntax described in this chapter so far is standard Smalltalk syntax.
However, Smalltalk also includes a syntactic construct called a path. A path is a
special kind of expression that returns the value of an instance variable.

A path is an expression that contains the names of one or more instance variables
separated by periods; a path returns the value of the last instance variable in the
series. The sequence of the names reflects the order of the objects’ nesting; the
outermost object appears first in a path, and the innermost object appears last. The
following path points to the instance variable name, which is contained in the
object anEmployee:

anEmployee.name

The path in this example returns the value of instance variable name within
anEmployee.

GemStone Programming Guide

A-18 GemStone Systems, Inc. July 1996

If the instance variable name contained another instance variable called last, the
following expression would return last’s value:

anEmployee.name.last
NOTE:

Use paths only for their intended purposes. Although you can use a path
anywhere an expression is acceptable in a Smalltalk program, paths are
intended for specifying indexes, formulating queries, and sorting. In
other contexts, a path returns its value less efficiently than an equivalent
message expression.Paths also violate the encapsulation that is one of the
strengths of the object-oriented data model. Using them can circumvent
the designer’s intention.Finally, paths are not standard Smalltalk
syntax. Therefore, programs using them are less portable than other
Smalltalk programs.

Returning Values
Previous discussions have spoken of the “value of an expression” or the “object
returned by an expression.” Whenever a message is sent, the receiver of the
message returns an object. You can think of this object as the message expression’s
value, just as you think of the value computed by a mathematical function as the
function’s value.

You can use an assignment statement to capture a returned object:

Example A.13

| myVariable |
myVariable := 8 + 9. "assign 17 to myVariable"
myVariable "return the value of myVariable"
17

You can also use the returned object immediately in a surrounding expression:

Example A.14

"puts 'Moe' at position 2 in arrayOfStrings"
| arrayOfStrings |
arrayOfStrings := Array new: 4.
(arrayOfStrings at: 1+1 put: 'Moe'; yourself) at: 2

Basic Smalltalk Syntax

July 1996 GemStone Systems, Inc. A-19

And if the message simply adds to a data structure or performs some other
operation where no feedback is necessary, you may simply ignore the returned
value.

Blocks
A Smalltalk block is an object that contains a sequence of instructions. The
sequence of instructions encapsulated by a block can be stored for later use, and
executed by simply sending the block the unary message value . Blocks find wide
use in Smalltalk, especially in building control structures.

A literal block is delimited by brackets and contains one or more Smalltalk
expressions separated by periods. Here is a simple block:

[3.2 rounded]

 To execute this block, send it the message value .

[3.2 rounded] value
3

When a block receives the message value , it executes the instructions it contains
and returns the value of the last expression in the sequence. The block in the
following example performs all of the indicated computations and returns 8, the
value of the last one.

[89*5 . 3+4 . 48/6] value
8

You can store a block in a simple variable:

| myBlock |
myBlock := [3.2 rounded].
myBlock value.
3

or store several blocks in more complex data structures, such as Arrays:

GemStone Programming Guide

A-20 GemStone Systems, Inc. July 1996

Example A.15

| factorialArray |
factorialArray := Array new.
factorialArray at: 1 put: [1];
 at: 2 put: [2 * 1];
 at: 3 put: [3 * 2 * 1];
 at: 4 put: [4 * 3 * 2 * 1].
(factorialArray at: 3) value
6

Because a block’s value is an ordinary object, you can send messages to the value
returned by a block.

Example A.16

| myBlock |
myBlock := [4 * 8].
myBlock value / 8
4

The value of an empty block is nil.

[] value
nil

Blocks are especially important in building control structures. The following
section discusses using blocks in conditional execution.

Blocks with Arguments
You may build blocks that take arguments. To do so, precede each argument name
with a colon, insert it at the beginning of the block, and append a vertical bar to
separate the arguments from the rest of the block.

Here is a block that takes an argument named myArg:

[:myArg | 10 + myArg]

As shown here, the colon must immediately precede the argument name (myArg);
white space must not intervene.

Basic Smalltalk Syntax

July 1996 GemStone Systems, Inc. A-21

To execute a block that takes an argument, send it the keyword message value:
anArgument. For example:

Example A.17

| myBlock |
myBlock := [:myArg | 10 + myArg].
myBlock value: 10.
20

The following example creates and executes a block that takes two arguments.
Notice the use of the two-keyword message value: aValue value: anotherValue.

Example A.18

| divider |
divider := [:arg1 :arg2 | arg1 / arg2].
divider value: 4 value: 2
2

A block assigns actual parameter values to block variables in the order implied by
their positions. In this example, arg1 takes the value 4 and arg2 takes the value 2.

Variables used as block arguments are known only within their blocks; that is, a
block variable is local to its block. A block variable’s value is managed
independently of the values of any similarly named instance variables, and
Smalltalk discards it after the block finishes execution. Example A.19 illustrates
this:

Example A.19

| aVariable |
aVariable := 1.
[:aVariable | aVariable] value: 10.
aVariable
1

You cannot assign to a block variable within its block. This code, for example,
would elicit a compiler error:

GemStone Programming Guide

A-22 GemStone Systems, Inc. July 1996

Example A.20

"The following expression attempts an invalid assignment
 to a block variable."
[:blockVar | blockVar := blockVar * 2] value: 10

Blocks and Conditional Execution
Most computer languages, Smalltalk included, execute program instructions
sequentially unless you include special flow-of-control statements. These
statements specify that some instructions are to be executed out of order; they
enable you to skip some instructions or to repeat a block of instructions. Flow of
control statements are usually conditional; they execute the target instructions if,
until, or while some condition is met.

Smalltalk flow of control statements rely on blocks because blocks so conveniently
encapsulate sequences of instructions. Smalltalk’s most important flow of control
structures are message expressions that execute a block if or while some object or
expression is true or false. Smalltalk also provides a control structure that executes
a block a specified number of times.

Conditional Selection

You will often want Smalltalk to execute a block of code only if some condition is
true or only if it is false. Smalltalk provides the messages ifTrue: aBlock and
ifFalse: aBlock for that purpose. Example A.21 contains both:

Example A.21

5 = 5 ifTrue: ['yes, five is equal to five'].
yes, five is equal to five
5 > 10 ifFalse: ['no, five is not greater than ten'].
no, five is not greater than ten

In the first of these examples, Smalltalk initially evaluates the expression (5 = 5) .
That expression returns the value true (a Boolean), to which Smalltalk then sends
the selector ifTrue: . true receives this message and looks at itself to verify that
it is, indeed, the object true. Because it is, it proceeds to execute the block passed
as ifTrue: ’s argument, and the result is a String.

Basic Smalltalk Syntax

July 1996 GemStone Systems, Inc. A-23

The receiver of ifTrue: or ifFalse: must be Boolean; that is, it must be either
true or false. In the last pair of examples, the expressions (5 = 5) and (5 > 10)
returned, respectively, true and false, because Smalltalk numbers know how to
compute and return those values when they receive messages such as = and >.

As you read more of this manual, you’ll learn about other messages that return
true or false, and you’ll learn more about the objects true and false themselves.

Two-way Conditional Selection

You will often want to direct your program to take one course of action if a
condition is met and a different course if it isn’t. You could arrange this by sending
ifTrue: and then ifFalse: in sequence to a Boolean (true or false) expression.
For example:

Example A.22

2 < 5 ifTrue: ['two is less than five'].
two is less than five
2 < 5 ifFalse: ['two is not less than five'].
nil

However, Smalltalk lets you express the same instructions more compactly by
sending the single message ifTrue: block1 ifFalse: block2 to an expression or
object that has a Boolean value. Which of that message’s arguments Smalltalk
executes depends upon whether the receiver is true or false. In Example A.23 the
receiver is true:

Example A.23

2 < 5 ifTrue: ['two is less than five']
 ifFalse: ['two is not less than five'].
two is less than five

Conditional Repetition

You will also sometimes want to execute a block of instructions repeatedly as long
as some condition is true, or as long as it is false. The messages whileTrue:
aBlock and whileFalse: aBlock give you that ability. Any block that has a
Boolean value responds to these messages by executing aBlock repeatedly while it
(the receiver) is true (whileTrue:) or false (whileFalse:).

GemStone Programming Guide

A-24 GemStone Systems, Inc. July 1996

Here is an example that repeatedly adds one to a variable until the variable equals
five:

Example A.24

| sum |
sum := 0.
[sum = 5] whileFalse: [sum := sum + 1].
sum
5

The next example calculates the total payroll of a miserly but egalitarian company
that pays each employee the same salary.

Example A.25

| totalPayroll numberOfEmployees salariesAdded standardSalary |
totalPayroll := 0.00.
salariesAdded := 0.
numberOfEmployees := 40.
standardSalary := 5000.00.
"Now repeatedly add the standard salary to the total payroll
so long as the number of salaries added is less than the
number of employees"
[salariesAdded < numberOfEmployees] whileTrue:

[totalPayroll := totalPayroll + standardSalary.
salariesAdded := salariesAdded + 1].

totalPayroll
2.0E5

Blocks also accept two unary conditional repetition messages, untilTrue and
untilFalse . These messages cause a block to execute repeatedly until the block’s
last statement returns either true (untilTrue) or false (untilFalse).

The following example, presented before in a different form, uses untilTrue :

Basic Smalltalk Syntax

July 1996 GemStone Systems, Inc. A-25

Example A.26

| sum |

sum := 0.
[sum := sum + 1. sum = 5] untilTrue.
sum

5

When Smalltalk executes the block initially (by sending it the message value), the
block’s first statement adds one to the variable sum. The block’s second statement
asks whether sum is equal to five; since it isn’t, that statement returns false, and
Smalltalk executes the block again. Smalltalk continues to reevaluate the block as
long as the last statement returns false (that is, while sum is not equal to five).

Alert Pascal programmers may have noticed that expressions using whileTrue:
are similar to Pascal while statements, and that expressions incorporating the
unary untilTrue are analogous to Pascal repeat-until constructs.

The descriptions of classes Boolean and Block in the GemStone Kernel Reference
describe these flow of control messages and others.

Code Formatting
Like Pascal and C, Smalltalk is a free-format language. A space, tab, line feed, form
feed, or carriage return affects the meaning of a Smalltalk expression only when it
separates two characters that, if adjacent to one another, would form part of a
meaningful token.

In general, you are free to use whatever spacing makes your programs most
readable. The following are all equivalent:

GemStone Programming Guide

A-26 GemStone Systems, Inc. July 1996

Example A.27

UserGlobals at: #arglebargle put: 123 "Create the symbol"

#['string one',2+2,'string three',$c,9*arglebargle]

#['string one' , 2+2 , 'string three' , $c , 9*arglebargle]

#['string one',
 2 + 2,
 'string three',
 $c,
 9 * arglebargle]

Basic Smalltalk Syntax Smalltalk BNF

July 1996 GemStone Systems, Inc. A-27

A.1 Smalltalk BNF
This section provides a complete BNF description of GemStone Smalltalk. Here are
a few notes about interpreting the grammar:

A = expr

This defines the syntactic production ‘A’ in terms of the expression on the right
side of the equals sign.

B = C | D

The vertical bar ‘|’ defines alternatives. In this case, the production “B” is one
of either “C” or “D”.

C = '< '

A symbol in accents is a literal symbol.

D = F G

A sequence of two or more productions means the productions in the order of
their appearance.

E = [A]

Brackets indicate optional productions.

F = { B }

Braces indicate zero or more occurrences of the productions contained within.

G = A | (B|C)

Parentheses can be used to remove ambiguity.

In the Smalltalksyntactic productions in Figure A.1, white space is allowed
between tokens.

Smalltalk BNF GemStone Programming Guide

A-28 GemStone Systems, Inc. July 1996

Figure A.1 Smalltalk BNF

AExpression = Primary [AMessage { ';' ACascadeMessage }]
ABinaryMessage = ABinarySelector Primary [UnaryMessages]
ABinaryMessages = ABinaryMessage { ABinaryMessage }
ACascadeMessage = UnaryMessage | ABinaryMessage | AKeyWordMessage
AKeyWordMessage = AKeyWordPart { AKeyWordPart }
AKeyWordPart = KeyWord Primary UnaryMessages { ABinaryMessage }
AMessage = [UnaryMessages] [ABinaryMessages] [AKeywordMessage]
Array = '(' { ArrayItem } ')'
ArrayBuilder = '#[' [AExpression { ',' AExpression }] ']'
ArrayLiteral = '#' Array
ArrayItem = Number | Symbol | SymbolLiteral | StringLiteral |
 CharacterLiteral | Array | ArrayLiteral
Assignment = VariableName ':=' Statement
BinaryMessage = BinarySelector Primary [UnaryMessages]
BinaryMessages = BinaryMessage { BinaryMessage }
BinaryPattern = BinarySelector VariableName
Block = '[' [BlockParameters] [Temporaries] Statements ']'
BlockParameters = { Parameter } '|'
CascadeMessage = UnaryMessage | BinaryMessage | KeyWordMessage
Expression = Primary [Message { ';' CascadeMessage }]
KeyWordMessage = KeyWordPart { KeyWordPart }
KeyWordPart = KeyWord Primary UnaryMessages { BinaryMessage }
KeyWordPattern = KeyWord VariableName {KeyWord VariableName}
Literal = Number | NegNumber | StringLiteral | CharacterLiteral |
 SymbolLiteral | ArrayLiteral | SpecialLiteral
Message = [UnaryMessages] [BinaryMessages] [KeyWordMessage]
MessagePattern = UnaryPattern | BinaryPattern | KeyWordPattern
Method = MessagePattern [Primitive] MethodBody
MethodBody = [Temporaries] [Statements]
NegNumber = '-' Number
Operand = Path | Literal | Identifier
Operator = '=' | '==' | '<' | '>' | '<=' | '>=' | '~=' | '~~'
ParenStment = '(' Statement ')'
Predicate = (AnyTerm | ParenTerm) { '&' Term }
Primary = ArrayBuilder | Literal | Path | Block | SelectionBlock|ParenStment
Primitive = '<' 'primitive:' Digits '>'
SelectionBlock = '{' Parameter } '|' Predicate '}'
Statement = Assignment | Expression
Statements = { Statement '.' } [['^'] Statement ['.']]
Temporaries = '|' { VariableName } '|'
ParenTerm = '(' AnyTerm ')'
Term = ParenTerm | Operand
AnyTerm = Operand [Operator Operand]
UnaryMessage = Identifier
UnaryMessages = { UnaryMessage }
UnaryPattern = Identifier

Basic Smalltalk Syntax Smalltalk BNF

July 1996 GemStone Systems, Inc. A-29

Smalltalk lexical tokens are shown in Figure A.2. No white space is allowed within
lexical tokens.

Figure A.2 Smalltalk Lexical Tokens

ABinarySelector = any BinarySelector except comma
BinaryExponent = ('e' | 'E' | 'd' | 'D') ['-' | '+'] Digits
BinarySelector = (SelectorCharacter [SelectorCharacter]) |
 ('-' [SelectorCharacter])
Character = Any Ascii character with ordinal value 0..255
CharacterLiteral = '$' Character
Comment = '"' { Character } '"'
DecimalExponent = ('f' | 'F') ['-' | '+'] Digits
Digit = '0' | '1' | '2' | ... | '9'
Digits = Digit {Digit}
Exponent = BinaryExponent | DecimalExponent
FractionalPart = '.' Digits [Exponent]
Identifier = Letter { Letter | Digit }
KeyWord = Identifier ':'
Letter = 'A' | 'B' | ... | 'Z' | 'a' | 'b' | ... | 'z' | '_'
Number = RadixedLiteral | NumericLiteral
Numeric = Digit | 'A' | 'B' | ... | 'Z' | 'a' | 'b' | ... | 'z'
NumericLiteral = Digits ([FractionalPart] | [Exponent])
Numerics = Numeric { Numeric }
Parameter = ':' VariableName
Path = Identifier '.' PathIdentifier { '.' PathIdentifier }
PathIdentifier = Identifier | '*'
RadixedLiteral = Digits ('#' | 'r') ['-'] Numerics
SelectorCharacter = '+' | '\' | '*' | '~' | '<' | '>' | '='
 | '|' | '/' | '&' | '@' | '%' | ',' | '?' | '!'
SpecialLiteral = 'true' | 'false' | 'nil'
StringLiteral = "'" { Character | "''" } "'"
Symbol = Identifier | BinarySelector | (Keyword { Keyword })
SymbolLiteral = '#' (Symbol | StringLiteral)
VariableName = Identifier

Smalltalk BNF GemStone Programming Guide

A-30 GemStone Systems, Inc. July 1996

Appendix

July 1996 GemStone Systems, Inc. B-1

B GemStone Error
Messages

All Gem Stone errors reside in the array GemStoneError. A Symbol Dictionary
"ErrorSymbols" maps mnemonic symbols to the error numbers.

This appendix describes the various types of Gem Stone errors:

 • Compiler errors report incorrect syntax in a Smalltalk program. You can
determine if a GSError is a compiler error by sending it the message
isCompilerError .

 • Interpreter errors interrupt execution (which can sometimes be restarted).
You can determine if a GSError is a compiler error by sending it the message
isInterpreterError .

 • Runtime errors are detected by the Smalltalk interpreter or by the underlying
virtual machine. If execution is broken between byte codes, your application
can send its session a message to proceed, if it makes sense to do so. Because
an arbitrary amount of Smalltalk code could have executed before the error
occurred, your GemStone session could be left in an inconsistent state. It is
your responsibility to determine whether the transaction can continue or if
you must abort and restart.

 • Aborting errors indicate that the user’s transaction has been aborted. You can
send isAbortingError to test for aborting errors.

GemStone Programming Guide

B-2 GemStone Systems, Inc. July 1996

 • Fatal errors indicate that the GemStone system is unavailable, or that a
software or hardware malfunction has occurred. (The system could be
unavailable because of operating system problems, a login failure, or because
the system administrator has disabled GemStone.) You can send
isFatalError to test for fatal errors.

B.1 Description of a Gem Error
All errors except compiler errors are described by the error number and from 0 to
10 optional arguments. Each error below has a comment describing the error and
the arguments to the error.

Compiler Errors

Category OOP_COMPILER_ERROR_CAT — numbered from 1001 to 1999

Compiler errors are reported differently than other errors. Rather than having a
single error and zero or more arguments, all compiler errors are reported as error
COMPILER_ERR_STDB (defined below). This error has at least one argument,
which is an array of error descriptors. Each error descriptor is an array of three
elements:

 • an error number (numbered from 002 to 999 see below)

 • an offset into the source code string pointing to where the error was detected

 • string describing the error

If the compilation error occurred during automatic recompilation of methods for
class modification, the error has 5 additional arguments:

Arg. 2: The source string of the compilation in error.

Arg. 3: The receiver of the recompilation method.

Arg. 4: The category of method containing the error.

Arg. 5: The symbolList used by the recompilation.

Arg. 6: The selector of the method containing the error.
See Behavior | recompileAllMethodsInContext: for
more details.

GemStone Error Messages

July 1996 GemStone Systems, Inc. B-3

Error Error Symbol Error Message

1001 #compilerErrStDB Compilation errors -- parameter 1 is error
descriptor

1002 #StDBErrMaxPath Path too long

1003 #StDBErrArrayTooLarge Array too large

1004 #StDBErrEofInStrLit Missing end of literal mark (prime)

1005 #StDBErrEofInComment Missing end of comment (")

1006 #StDBErrEofInChrLit Invalid or missing character

1007 #StDBErrUnexpectedColon Invalid colon

1008 #StDBErrUnexpectedPound Invalid pound sign

1009 #StDBErrBadChr Illegal symbol

1010 #StDBErrLitTooBig String literal too big

1011 #StDBErrBadRadix Illegal radix

1012 #StDBErrBadChrInRadixNum Illegal character in number

1013 #StDBErrExpectedRightParen Expected a right parenthesis

1014 #StDBErrExpectedPrimary Expected a primary expression

1015 #StDBErrExpectedVar Expected a variable name

1016 #StDBErrExpectedSelector Missing or bad message pattern

1017 #StDBErrMaxArg Too many arguments

1018 #StDBErrExpectedEof Characters found after end of method

1019 #StDBErrExpectedStatement Illegal character

1020 #StDBErrExpectedPrim Expected keyword "primitive"

1021 #StDBErrExpectedPrimNum Expected an integer

1022 #StDBErrBadPrimNum Illegal primitive number

1023 #StDBErrExpectedRightBrace

Expected the end of the SelectBlock (})

1024 #StDBErrMaxArgsTemps Too many arguments and temporaries

1025 #StDBErrExpectedVerticalBar Missing end of temporaries mark (|)

GemStone Programming Guide

B-4 GemStone Systems, Inc. July 1996

1026 #StDBErrExpectedMsgPattern Invalid message pattern

1027 #StDBErrExpectedGt Missing end of primitive mark (>)

1028 #StDBErrBadFlt Illegal exponent

1029 #StDBErrExpectedAssignable Expected a variable

1030 #StDBErrAlreadyDefined Variable has already been declared

1031 #StDBErrNotDefined Undefined symbol

1032 #StDBErrPredicateTooBig Predicate too complex

1033 #StDBErrBlocksTooDeep Blocks can only be nested 31 levels

1034 #StDBErrUnexpectedToken Unexpected token

1035 #StDBErrExpectedRightBracket Expected a right bracket (])

1036 #StDBErrStackTooBig Method too complex

1037 #StDBErrGaijiNotSupported

A Gaiji character was encountered in the
source string

1038 #StDBErrCodeTooBig Method too large

1039 #StDBErrMaxLits Too many literals

1040 #StDBErrMaxSelectors Too many selectors

1041 #StDBErrPrimNotAllowed Only SystemUser may compile a primitive
or protected method.

1042 #StDBErrExpectedBoolOrExpr

The object was not true, false or a non-literal
expression.

1043 #StDBErrExpectedBlockOrExpr

The object was not a block or a non-literal
expression.

1044 #StDBErrExpectedIntOrExpr The object was not a kind of Integer or a
non-literal expression.

1045 #StDBErrNotPosIntOrExpr The object was not a positive kind of Integer
or a non-literal expression.

GemStone Error Messages

July 1996 GemStone Systems, Inc. B-5

1046 #StDBErrDisallowedSelector You may not compile a method for this
selector.

1047 #StDBErrBadNumOfArgs The block has the wrong number of
arguments for this selector.

1048 #StDBErrLiteralInvariant Attempt to modify an invariant literal.

1049 #StDBErrExpectedOperand An operand was missing from the given
SelectBlock term.

1050 #StDBErrBadSelectOperator An unacceptable operator was given in the
SelectBlock term. The operator must be one
of <, >, <=, >=, =, ~=, ==, or ~~.

1051 #StDBErrExpectedSelectTerm

The given SelectBlock must contain a
Boolean expression.

1052 #StDBErrTermsNotParen The conjoined terms of the given SelectBlock
were not parenthesized.

1053 #StDBErrBadNumOfSelectArgs

A SelectBlock was encountered that does not
have one argument.

1054 #StDBErrSourceNotEUCFormat

The bytes of the source string are not in EUC
format.

1055 #StDBErrTooManyBlocks The maximum number of blocks in amethod
is 65536.

1056 #StDBErrMaxArgs The maximum number of arguments to a
method or block is 255.

1057 #StDBErrCodeGenLogic Internal logic error in compiler:

1058 #StDBErrFirstTermCannotBeSetValued

The first term of a path in a SelectBlock
cannot indicate search over a set-valued
instance variable (i.e. cannot be *).

1059 #StDBErrIllegalProtectedMethod

The specified primitive may not be a
protected method.

GemStone Programming Guide

B-6 GemStone Systems, Inc. July 1996

1060 #StDBMissingProtectedToken

Method requires either <protected> or
<unprotected> directive.

1061 #StDBSuperNotAllowed Reference to super not allowed in instance
method for Object.

1062 #StDBUnusedTemp Unused method or block temporary.

1063 #StDBDbStrOddSize Corrupt source string, a DoubleByteString
has odd basic size.

2001 #rtErrInvalidTransMode <arg1> is not recognized as a valid
transactionMode.

2002 #rtErrBadSymbolList The user's symbol list is not a kind of Array
containing objects that are a kind of
SymbolDictionary.

2003 #objErrBadOffsetIncomplete An indexable object or NSC <arg1> was
referenced with an index <arg2> that was
out of range.

2004 #rtErrBadSubscript A subscript <arg2> that was out of range or
not an Integer was used to index the object
<arg1>.

2005 #gciErrBadNumMsgParts GciSendMsg was called with an inconsistent
number of message parts.

2006 #rtErrAuthArraySize An attempt was made to change Segment
authorization with an array <arg1> which
should be of size 5.

2007 #rtErrShouldNotImplement A method was invoked that has been
specifically disallowed in a subclass.
Receiver: <arg1>. Selector: <arg2>.

2008 #rtErrSubclassResponsibility A method has been invoked in the abstract
superclass <arg1> that was designed to have
been overridden in a concrete subclass.
Selector: <arg2>.

GemStone Error Messages

July 1996 GemStone Systems, Inc. B-7

2009 #objErrClassVariant An attempt was made to create an instance
of the modifiable class <arg1> . Send
"immediateInvariant" to the class to
terminate class modification and allow
instance creation.

2010 #rtErrDoesNotUnderstand No method was found for the selector
<arg2> when sent to <arg1> with arguments
contained in <arg3>.

2011 #objErrNotSegment An attempt was made to use the object
<arg1> as a segment object.

2012 #objErrNotIndexable An attempt was made to index the object
<arg1> that is not indexable.

2013 #rtErrCantPerform <arg1> cannot perform the selector <arg2>
with the arguments in <arg3>. Perform may
have been attempted with wrong number of
args.

2014 #classErrSubclassDisallowed Cannot create a subclass of the class <arg1>.

2015 #objErrNotInColl The object <arg2> was not found in the
collection <arg1>.

2016 #repErrMaxExtents An attempt was made to create a new extent
when the logical Repository already has the
maximum number of extents (<arg1>)
attached.

2017 #rtErrBadPattern <arg1> is an illegal pattern for string
comparisons.

2018 #rtErrBadBlockArgCount An attempt was made to evaluate the block
or method <arg1> with <arg3> arguments
when <arg2> were expected.

2019 #objErrCollectionEmpty An attempt was made to access elements of
the empty collection <arg1>.

2020 #rtErrArgNotChr An attempt was made to store the object
<arg1> into a string.

2021 #rtErrKeyNotFound A reference into the dictionary <arg1> using
the non-existent key <arg2> was made.

GemStone Programming Guide

B-8 GemStone Systems, Inc. July 1996

2022 #rtErrBadDateTimeArgs Invalid arguments given to DateTime
instance creation.

2023 #genericKernelError Error, <arg1>

2024 #rtErrNoSuchBp The specified breakpoint does not exist.

2025 #repErrCantCreateFile The system was unable to create the file
<arg1>.

2026 #numErrIntDivisionByZero An attempt was made to divide <arg1> by
zero.

2027 #rtErrSpecialOrNotCommitted An attempt was made to add the special or
uncommitted object <arg1> to the NotifySet.

2028 #repErrPreGrowFailure The extent <arg1> could not be created
because an attempt to pre-grow the file
failed for disk capacity reasons.

2029 #rtErrBeginTrans An attempt was made to begin a new
transaction when already in a transaction.

2030 #rtErrPrimOutsideTrans An attempt was made to execute a primitive
that is not allowed when not inside of a
transaction. Examples are: commit, backup
and restore.

2031 #objErrInvariant An attempt was made to change the
invariant object <arg1>.

2032 #classErrMethCatExists An attempt was made to create the method
category <arg2> which already exists.
Class: <arg1>.

2033 #classErrSelectorNotFound A reference was made to the selector <arg2>
which could not be found in the class <arg1>
method dictionary.

2034 #lockErrRemove The user is not allowed to remove a lock on
an object <arg1> that they do not have a lock
on.

2035 #classErrMethCatNotFound In searching the class <arg1> the category
name <arg2> was not found.

2036 #classErrByteObjInstVars An attempt was made to create a byte
subclass with instance variables.
Superclass: <arg1>.

GemStone Error Messages

July 1996 GemStone Systems, Inc. B-9

2037 #classErrConstraintNotClass The constraint <arg1> was specified
incorrectly for subclass creation. For
IdentityBags (NSCs), a constraint must be
specified as a class; for all other classes, as an
array of pairs.

2038 #classErrInvariantSuperClass

An attempt was made to create a variant
subclass of an invariant class.

2039 #classErrNscNotIndexable An attempt was made to create an indexable
subclass of the NSC class <arg1>.

2040 #repErrExtentNotMounted The extent with filename or extentId: <arg1>
was not part of the logical Repository.

2042 #classErrNscInstVars An attempt was made to create an NSC
subclass <arg1> with instance variables.

2043 #classErrClassVarNameExists An attempt was made to create the new class
variable <arg2> with the same name as an
existing class variable in class <arg1>.

2044 #classErrPoolDictExists An attempt was made to add the dictionary
<arg2> to a shared pool of class <arg1> in
which it was already a member.

2045 #classErrPoolDictNotFound An attempt was made to remove the
dictionary <arg2> from the shared pool of
class <arg1> in which it was not a member.

2046 #clampErrNoSuchInstvar During clamp compilation for class <arg1>
an instance variable clamp was encountered
for non-existent instance variable <arg2>.

2047 #clampErrNotAClass An object <arg1> was specified for instance
variable clamping that was not a class object.

2048 #clampErrNotAClampspec In an attempt to perform clamped object
traversal, the specified object <arg1> was
not a ClampSpecification object.

2049 #clampErrBadArg The object <arg1> has an implementation or
size not allowed in clamp specifications.

2050 #repErrReplicateOnline The given extent already is being replicated
by <arg1>.

GemStone Programming Guide

B-10 GemStone Systems, Inc. July 1996

2051 #repErrBadExtentSize The given maximum extent size (<arg1>) is
smaller than the minimum size (<arg2>)
allowed for an extent.

2052 #repErrCantOpenFile The file <arg1> could not be opened.

2053 #rtErrNoSuchInstVar The instance variable <arg2> was not found
in evaluating a path expression for the object
<arg1>.

2054 #rtErrTagNotAllowed An attempt was made to put a tag on the
special object <arg1> which is not allowed.

2055 #rtErrBadTagNum The tag index <arg2> requested for object
<arg1> is not allowed. The legal tag indexes
are 1 and 2.

2056 #segErrMaxSegGroups An attempt was made to add the group
<arg2> to the segment <arg1>, which
already recognizes four groups.

2057 #segErrBadAuthKind An attempt was made to change the
authorization for the segment <arg1> to the
unrecognized value <arg2>.

2058 #rtUnresolvedFwdRefs Commit failed. GciCreate/GciStore have
left unsatisfied forward references to the
object <arg1>. Create the object with
GciCreate and retry commit.

2059 #rtErrStackLimit Smalltalk DB execution stack overflow.

2060 #rtErrArgNotPositive <arg1> was found where a positive numeric
value was expected.

2061 #rtErrArgOutOfRange The following argument is too large or out of
range: <arg1>

2062 #rtErrCannotChgConstraint A constraint cannot be changed in a
Dictionary that is not empty.

2063 #rtErrNoMessage There is no error message for the error
<arg1> in the SymbolDictionary <arg2>.

2064 #numErrArgNotChr An attempt was made to coerce the integer
<arg1> into a <arg2>, but its value was not
in range.

GemStone Error Messages

July 1996 GemStone Systems, Inc. B-11

2065 #numErrArgNotFltException An unrecognized float exception <arg1>
was specified.

2066 #numErrFltException A floating point exception of type <arg1>
was raised on the operation <arg2>. The
default result is <arg3>. The first argument
is <arg4>.

2067 #numErrArgNotRoundingMode

An unrecognized float rounding mode
<arg1> was specified.

2068 #segErrCantMoveObj An attempt was made to change the
segment of the special object <arg1>.

2069 #rtErrExceptionNotLinked An attempt was made to unlink an
exception <arg1> that is not installed.

2070 #numErrArgNotFltStatus An invalid float status <arg1> was specified.

2071 #lockErrUndefinedLock A request to lock object <arg1> using an
invalid kind <arg2>.

2072 #rtErrBadDictConstraint Only Association or one of its subclasses can
be used as a constraint in <arg1>.

2073 #lockErrIncomplete One or more of the locks you requested was
denied or is dirty.

2074 #lockErrObjHasChanged A request to lock object <arg1> was granted,
but the object has been read or written since
you started this transaction.

2075 #lockErrDenied A request to lock object <arg1> with lock
kind <arg2> was denied.

2076 #rtErrMaxClusterId A request to create a new clusterbucket
exceeded the maximum size allowed for a
clusterId = <arg1>.

2077 #rtErrBadErr An attempt to signal error <arg1> in
dictionary <arg3> was made, but the signal
number <arg1> is less than one.

2078 #rtErrUserIdAlreadyExists An attempt was made to add a UserProfile
to the UserProfileSet <arg1> which already
has an entry with the same userId: <arg2>.

GemStone Programming Guide

B-12 GemStone Systems, Inc. July 1996

2079 #rtErrCantReturn Smalltalk DB execution could not return
from the current activation. Home context of
block to return from may no longer be
active.

2080 #rtErrCantChangeClass An illegal attempt was made to change the
class of the object <arg1> to class <arg2>.

2081 #rtErrCantBecomeSpecial An attempt was made to use become on the
object <arg1> that has a special
implementation.

2082 #rtErrGarbageCollect Attempt to run markForCollection when not
the only user on the system and the
concurrency mode is set for
NO_RW_CHECKS_NO_READ_SET.

2083 #rtErrPrimNotFound Primitive number <arg1> does not exist in
the virtual machine.

2084 #rtErrNoInstVars An attempt was made to directly access the
instance variables of the object <arg1> but
the object has no instance variables.

2085 #rtErrExpectedBoolean Expected <arg1> to be a Boolean.

2086 #rtErrDirtyObjsNeedsInit GciDirtyObjsInit must be executed at least
once before GciDirtySaveObjs.

2087 #rtErrCantChangePassword An illegal attempt was made to change the
password of <arg1>, which is not the
UserProfile of the current session.

2088 #rtErrNewStackLimit The value <arg1> specified for the new stack
limit is too large or is smaller than the
current size of the execution stack.

2089 #rtErrBadCopyFromTo An index range was specified for a
sequenceable collection with the starting
index <arg1> greater than the ending index
<arg2>.

2090 #rtErrNilKey An illegal attempt was made to store nil as a
key in the dictionary <arg1>.

GemStone Error Messages

July 1996 GemStone Systems, Inc. B-13

2091 #rtErrCantBecomeBothIdx Both the receiver and argument of become
participate in indexes. Become is not
allowed because they are not of the same
class. <arg1> , <arg2>

2092 #rtErrNoProcessToContinue The Process <arg1> to continue from is
invalid.

2093 #rtErrBadStreamPosition An attempt was made to set the Stream
<arg1> to position <arg2> beyond the limits
of the collection.

2094 #rtErrBadArgKind The object <arg1> was not of the expected
class <arg2>.

2095 #classErrClassVarNotFound An attempt was made to remove the non-
existent class variable <arg2> from the class
<arg1>.

2096 #assocErrNoElementsDetected

detect: was sent to a collection, but no
elements of the collection <arg1> satisfied
the block <arg2>.

2097 #classErrNotAVar The symbol <arg2> was not resolvable as a
variable within the class <arg1>.

2098 #segErrTooManyGroups The collection of groups <arg1> was
specified that held more than four members.

2099 #rtErrExpectedByteValue Byte objects store values from 0 to 255, not
<arg1>.

2100 #classErrBadFormat The representation for new class <arg1> was
illegal.

2101 #objErrDoesNotExist The object with object id <arg1> does not
exist.

2102 #objErrNotOopKind The object <arg1> is not implemented as a
pointer object.

2103 #objErrNotByteKind The object <arg1> is not implemented as a
byte object.

2104 #objErrNotNscKind The object <arg1> is not implemented as an
NSC object.

GemStone Programming Guide

B-14 GemStone Systems, Inc. July 1996

2105 #objErrAlreadyExists Attempt to create an object with object
identifer <arg2>, which already exists as
object <arg1>.

2106 #objErrOopNotAllocated Attempt to store a forward reference using
the object identifier <arg1> which has not
been allocated to this session.

2107 #objErrConstraintViolation Attempt to store <arg2> of class <arg4> into
an instance variable of <arg1> constrained
to be <arg3>.

2108 #rtErrExpectedClass The object <arg1> was expected to be a class
but was not.

2109 #objClassNotOopKind The class <arg1>, used as argument to
GciCreateOopObj does not specify pointer
object format.

2110 #objErrBadOffset The object <arg1> was indexed using
structural access with the index <arg3> that
was out of range. The maximum index is
<arg2>.

2111 #objErrCantCreateInstance Creating an instance of class <arg1> is not
allowed.

2112 #objClassNotByteKind The class <arg1>, used as argument to
GciCreateByteObj does not specify byte
object format.

2113 #lockErrArgSize An argument to a locking primitive was too
large.

2114 #objErrNotSpecialKind The object <arg1> is not implemented as a
special object.

2115 #authErrSegRead An attempt was made to read the object with
id <arg1> in segment <arg2> with
insufficient authorization.

2116 #authErrSegWrite An attempt was made to modify the object
<arg1> in segment <arg2> with insufficient
authorization.

2117 #objErrNotOopOrNsc An operation was attempted on the object
<arg1> that is legal only on pointer or NSC
objects.

GemStone Error Messages

July 1996 GemStone Systems, Inc. B-15

2118 #rtErrObsolete <arg1> cannot respond to the selector
<arg2> because its class is obsolete.

2119 #rtErrCantBecomeOneIdx Become is not allowed because the object
<arg1> participates in an index and the
object <arg2> has a different format.

2120 #objErrNotFlt The object <arg1> is not a float.

2121 #rtErrCantBecomeClassKind Become is not allowed because the object
<arg1> is a kind of <arg2>

2122 #classErrByteSubclass You may not create a byte subclass of
<arg1>.

2123 #repErrBadBkupSwizzle An invalid swizzle transform was detected
in the backup file long transform: <arg1>
short transform: <arg2>

2124 #repErrCantCreateRepos The Repository <arg1> could not be created.

2125 #repErrBadFileSpec Invalid file specification.

2126 #repErrFileAlreadyExists The file <arg1> already exists.

2127 #rtErrDuplicateKey The key <arg2> already exists in dictionary
<arg1>

2128 #assocErrBadComparison The evaluation of a SelectBlock resulted in
an illegal comparison being performed.

2129 #repErrIncompatibleRepos The Repository version does not match the
version of GemStone currently being run.

2130 #assocErrClassModifiable Index creation failed because the class
<arg1> is modifiable. Send
"immediateInvariant" to the class to enable
index creation.

2131 #classErrConstrInher The constraint <arg1> is not a subclass of the
inherited constraint <arg2> for offset
<arg3>.

2132 #classErrBadConstraint The constraint field was invalid in subclass
creation.

2133 #repErrBadBkupVersion The backup file is incompatible with this
version of GemStone. Backup file version is:
<arg1>

GemStone Programming Guide

B-16 GemStone Systems, Inc. July 1996

2134 #objErrBadFetchOffset Structural access retrieval from object
<arg1> used index <arg3> that was out of
range. Size of the object is <arg2>.

2135 #rtErrCantBecomeIndexedNsc Become is not allowed because the object
<arg1> is a kind of Bag and currently has
indexes

2136 #rtErrNoIndexForPath An index with the path <arg2> was not
found for the Nsc.

2137 #objClassNotOopOrNscKind

The class <arg1>, used as argument to
GciCreateOopObj does not specify pointer
or nsc object format.

2138 #rtMaxRecursion Too many levels of recursion from
useractions to GemStone Smalltalk or within
object manager.

2139 #rtErrBadSession A non-existent session was specified.

2140 #rtErrNotOnlyUser An operation that requires exclusive use of
the system was attempted when <arg1>
users were logged in.

2141 #objErrMaxSize An attempt was made to extend an object to
size <arg2> when the maximum legal size is
<arg3>, object:

2142 #rtErrInvalidMethod The method <arg1> cannot be executed until
it has been upgraded to a 4.0 version.

2143 #repErrMaxOnlineRepos An attempt was made to attach more
repositories than can be on-line at one time.

2144 #rtErrRcQueueEntriesFound

In attempting to reset the maxSessionId for
the queue to a smaller value, an entry was
found that was added by a session whose
sessionId is larger than the value currently
being set. Remove and save all entries in the
queue. Then changeMaxSessionId and add
the saved entries back into the queue.

GemStone Error Messages

July 1996 GemStone Systems, Inc. B-17

2145 #rtErrFirstPathTermSetValued

The first term in an Nsc index path
expression cannot indicate a set-valued
instance variable (i.e. cannot be an asterisk).

2146 #gciErrParentSession The attempted GemBuilder for C operation
is illegal in a user action when applied to a
session owned by a parent GemBuilder for C
or GemStone Smalltalk scope.

2147 #gciErrAlreadyLoggedIn An attempt was made to log in after the
session was already established.

2148 #rtErrInvalidConstraintForMigration

The migration of <arg1> could not occur
because instance variable <arg2> with value
<arg3> is not an instance of <arg4>

2149 #classErrBadIdentifier An illegal identifier <arg1> was used to
name an instance variable or class.

2150 #classErrConstrPrivateIv Illegal attempt to constrain the private
instanceVariable <arg1>

2151 #rtErrNoPriv An attempt was made to do a privileged
operation for which no privilege had been
granted.

2152 #rtErrInvalidBtreeReadStream

The btree read stream is invalid (possibly
due to modifications to objects referenced by
the stream).

2153 #rtErrDecrNotAllowed The RcPositiveCounter with value <arg3>
cannot be decremented by <arg2>.

2154 #repErrReposNotAttached The Repository <arg1> is not attached.

2155 #repErrReposNeedsRecovery

The Repository <arg1> could not be
attached because it was left in an
inconsistent state.

2156 #repErrReplicateNotMounted The replicate <arg1> is not mounted.

GemStone Programming Guide

B-18 GemStone Systems, Inc. July 1996

2157 #repErrReposRead A read error was detected when reading
from the Repository <arg1> on page number
<arg2>.

2158 #repErrReposWrite A read error was detected when writing to
the Repository <arg1> on page number
<arg2>.

2159 #rtErrInvalidElementConstraintForMigration

The migration of <arg1> could not occur
because one of its elements <arg2> is not a
kind of <arg3> required in the destination
class.

2160 #rtErrSelectiveAbort The selectiveAbort primitive was attempted
on an object (<arg1>) that is involved in an
index.

2161 #objErrDateTimeOutOfRange The DateTime passed is either out of range
for a time_t, or the julianSeconds field is not
between 0 and 86399 inclusive.

2162 #objErrLongNotSmallInt The integer passed to GciLongToOop was
outside the range of SmallIntegers.

2163 #objErrNotLong GciLongToOop was passed an object which
was not a SmallInteger.

2164 #objErrNotChr GciOopToChr was passed an object which
was not a Character.

2165 #hostErrNoPlusInfinity GciOopToFlt detected a value of positive
infinity, but the host floating point does not
represent this IEEE value.

2166 #hostErrNoMinusInfinity GciOopToFlt detected a value of negative
infinity, but the host floating point does not
represent this IEEE value.

2167 #hostErrNoPlusQuietNan GciOopToFlt detected the Float
PlusQuietNaN, but the host floating point
does not represent this IEEE value.

2168 #hostErrNoMinusQuietNan GciOopToFlt detected the Float
MinusQuietNaN, but the host floating point
does not represent this IEEE value.

GemStone Error Messages

July 1996 GemStone Systems, Inc. B-19

2169 #hostErrNoPlusSignalingNan GciOopToFlt detected the Float
PlusSignalingNaN, but the host floating
point does not represent this optional IEEE
value.

2170 #hostErrNoMinusSignalingNan

GciOopToFlt detected the Float
MinusSignalingNaN, butthe host floating
point does not represent this optional IEEE
value.

2171 #rtErrUalibLoadFailed An attempt to load a user action library
failed because: <arg1>.

2172 #hostErrMagnitudeOutOfRange

GciOopToFlt detected a value which has a
magnitude greater than a C double precision
variable.

2173 #authErrSegWriteSeg An attempt was made to write the segment
<arg1> with insufficient authorization.

2174 #authErrSegReadSeg An attempt was made to read from the
segment <arg1> with insufficient
authorization.

2175 #assocErrPathTooLong The path <arg1> has more than 1024
characters.

2176 #repErrFileNameTooBig The filename <arg1> has more than <arg2>
characters.

2177 #rtErrSemaphore A semaphore operation failed on semaphore
with index <arg1>. Reason: <arg2>.

2178 #rtErrPasswordTooBig A password was specified with more than
255 characters.

2179 #errNotSameClassHist Migration is not allowed because the classes
<arg1> and <arg2> do not have identical
class histories.

2180 #classErrMethDictLimit The class <arg1> has more than 1500
methods in its method dictionary.

2181 #rtErrShrPcDetach Error occurred during SharedPageCache
detach: <arg1>

GemStone Programming Guide

B-20 GemStone Systems, Inc. July 1996

2182 #repErrCantDispose Unable to dispose of the file <arg1>.

2183 #rtErrInternal Please report to your GemStone
Administrator. System Runtime error
number: <arg1> with arguments: <arg2>
<arg3> <arg4> <arg5> <arg6> <arg7>
<arg8> <arg9> <arg10>.

2184 #rtErrBadStreamColl An attempt was made to create an instance
of <arg1> from the stream <arg2>, but the
collection in the stream is not a <arg3>.

2185 #rtErrBadFormat An attempt was made to create an instance
of <arg1> from <arg2> but the format is
incorrect.

2186 #rtErrShrpcCompatibility The compatibility level of the
SharedPageCache Monitor<arg1>does not
match that of the executable trying to
attach<arg2>

2187 #segErrBadGroup <arg1> is not currently a group.

2188 #rtErrBadPriv <arg1> is not a valid privilege.

2189 #rtErrResolveSymFailed GciResolveSymbol failed; the symbol is not
defined

2190 #rtErrSymAlreadyDefined <arg2> is already defined.

2191 #rtErrSymNotFound <arg2> could not be found in the symbol list
for <arg1>.

2192 #rtErrEofOnReadStream End of stream was encountered in
ReadStream: <arg1>.

2193 #assocErrSortOddLengthArray An illegal sorting was specified: <arg1>.

2194 #assocErrBadDirection A sort direction must be 'ascending' or
'descending', not <arg1>.

2195 #rtErrConfigReadOnly Smalltalk DB access to the configuration
parameter <arg1> is read-only.

2196 #rtErrBadFormatSpec <arg2> is an illegal formatting array for
<arg1>.

2197 #hostErrFileExport GemStone cannot export the string <arg1>
to the file <arg2> in the server OS.

GemStone Error Messages

July 1996 GemStone Systems, Inc. B-21

2198 #hostErrFileImport GemStone cannot import the file <arg1>
from the server OS.

2199 #hostErrFileDirectory GemStone cannot fetch the server OS
directory <arg1>.

2200 #hostErrFileDelete GemStone cannot delete the file <arg1>
from the server OS.

2201 #hostErrPerform GemStone cannot execute the string <arg1>
on the server OS shell.

2202 #rtErrSigMsgTooBig Attempt to send a string of size <arg2> bytes
as argument to a signal. The maximum
allowed size is <arg3> bytes.

2203 #gciErrOpInProgress A GemBuilder for C (GCI)operation was
requested before the current nonblocking
call was completed.

2204 #gciErrNoStartCmd A request was made to complete a non-
blocking GemBuilder for C call when no
such call was initiated.

2205 #objErrBadClusterBucket The clusterId <arg1> is invalid. Possible bad
ClusterBucket is <arg2>. Max legal clusterId
is <arg3> .

2206 #rtErrEpochGcArraySize The number of elements in the array used to
set the Epoch Garbage Collector information
is incorrect. The size of <arg1> should be 4.

2207 #objErrResultNscTooBig The Nsc operation failed; the size of the
result would have exceeded the maximum
size for an Nsc.

2208 #hostErrMemoryAlloc Host memory allocation failed; there is
insufficient primary memory and/or swap
space.

2209 #gciErrCatchBuffNotFound A non-existent catch buffer was specified.

2210 #gciErrCatchBuffLimit The catch buffer level must be in the range 0
to 20. An invalid level was specified.

2211 #objErrNotBoolean GciOopToBool was passed an object that
was not either true or false.

GemStone Programming Guide

B-22 GemStone Systems, Inc. July 1996

2212 #rtErrUncompiledMethod The method <arg3> with selector <arg1> in
class <arg2> is obsolete after schema
modification or repository conversion and
must be recompiled.

2213 #rtErrMustBeSystemUser An operation was attempted that may only
be performed by SystemUser.

2214 #rtErrBadPassword The given password is not the password of
<arg1>.

2215 #gciErrTravObjNotFound The given object was not found within the
given traversal buffer.

2216 #gciErrTravCompleted A continuation of a traversal was attempted
when there was no traversal in progress.

2217 #gciErrTravBuffTooSmall The given traversal buffer length must be of
sufficient size to report at least one object.

2218 #rtErrPathToStrIvname Path to String conversion starting with class
<arg1> failed at term <arg2> because there
is no named instVar at offset <arg3> in class
<arg4> which has <arg5> named instVars.

2219 #objErrNegativeCount In GciFetchBytes, GciFetchIdxOops, or
GciFetchNamedOops, a negative count of
<arg1> was specified.

2220 #gciErrResultPathTooLarge GciStrToPath or GciPathToStr, result of size
<arg1> is larger than specified max size of
<arg2>.

2221 #gciErrFetchPathFail GciFetchPaths failed on a path;
OOP_ILLEGAL substituted in result array.

2222 #rtErrStrToPathIvname String to path conversion starting with class
<arg1> failed on path term <arg2> because
there is no instVar named <arg3> in class
<arg4>.

2223 #rtErrStrToPathConstraint Path conversion starting with class <arg1>
failed at path term <arg2> due to lack of
constraints.

2224 #gciErrBreakCanceledMsg The command was ignored because of a
hard break.

GemStone Error Messages

July 1996 GemStone Systems, Inc. B-23

2226 #lgcErrSync2 The second byte of the two-byte
synchronization sequence was wrong in the
network.

2227 #lgcErrBytePacketTooLong A byte array packet was received over the
network that was too long.

2228 #lgcErrArgSizeInconsistent An array argument was received on the
network that had a length different from
that specified with the argument.

2229 #lgcErrOopPacketTooLong An oop array packet was received over the
network that was too long.

2230 #lgcErrPacketKindBad A packet of the wrong kind was received.
Expected: <arg1>, Received: <arg2>.

2231 #lgcErrExpectedContinue A packet kind of <arg1> was received rather
than the continue packet that was expected.

2232 #lgcErrExpectedEnd A packet kind of <arg1> was received rather
than the end packet that was expected.

2233 #lgcErrPacketKindUnknown An unknown packet kind was received:
<arg1>.

2234 #lgcErrExpectedCmd A packet kind of <arg1> was received rather
than the command packet that was
expected.

2235 #hostErrLogFileNotOpened The log file was not opened before adding
messages to it.

2236 #classErrMaxInstVars An attempt was made to create a subclass of
<arg1> with more than 255 instance
variables specified in <arg2>.

2237 #rtErrTooManyErrArgs System | signal:args:signalDictionary: was
sent with an Array argument containing
<arg2> arguments, but it is limited to 10.

2238 #objErrBadSize For class <arg1> the size <arg2> is illegal.

2239 #lgcErrInconsistentSize Inconsistent size information received.
Specified size = <arg1>, implied size =
<arg2>.

2240 #lgcErrInconsistentObjKind Inconsistent implementation received.
Class = <arg1>, implementation = <arg2>.

GemStone Programming Guide

B-24 GemStone Systems, Inc. July 1996

2241 #rtErrStartGc A process is already running as the Garbage
Collector or a session attempting to run the
Reclaim or EpochGc is not the Gc process.

2242 #rtErrBadArgKind2 The object <arg1> was neither of class
<arg2> nor <arg3>

2243 #lgcErrSequenceMismatch Sequence number mismatch for an IPC
response packet.

2244 #rtErrExceptBlockNumArgs The block <arg1> which takes <arg3>
arguments, cannot be used as an Exception
block. Exception blocks require <arg2>
arguments.

2245 #rtErrGciStoreFloat An illegal GemBuilder for C (GCI)store into
the float object <arg1> was detected. You
must use GciStoreBytesInst with the correct
class argument.

2246 #rtErrGciStoreClassMismatch Mismatch between class in store traversal
buffer and class in Repository for object
<arg1>. Class in buffer is <arg2> , class in
Repository is <arg3>

2247 #rtErrNscParticipatesInMultipleTerms

The NSC <arg1> is not allowed to
participate in more than one term in an
index path (<arg2>).

2248 #rtErrCommitDbInRestore Commits are not allowed while a restore
from backups or transaction logs is in
progress.

2249 #rtErrCommitDisallowed A previous error occurred during object
manager recursion to GemStone Smalltalk
(possibly during an indexing maintenance
operation). This transaction must be
aborted.

2250 #tranLogIoError I/O error when writing the transaction log.
This transaction must be aborted.

2251 #lgcErrPacketKind Invalid IPC packet kind.

GemStone Error Messages

July 1996 GemStone Systems, Inc. B-25

2252 #rtErrLoadSaveStack Error encountered while saving or reloading
Smalltalk DB execution state. Execution
cannot continue.

2253 #rtErrUnknownBytecode Unknown opcode = <arg1> encountered
during Smalltalk DB execution.

2254 #errSesBlockedOnOutput Attempt to send signal to session <arg1>
failed. Buffer from stone to that session is
full.

2255 #errPrimNotSupported Primitive failure, primitive for receiver=
<arg1> selector= <arg2> is not supported in
this executable. You must run "<arg3>" in
order to use this method.

2256 #authErrSegCurrentSeg No authorization write in your current
segment <arg1>.Resetting current segment
to default login segment.

2257 #authErrSegSetCurrentSeg No authorization to set the current segment
to <arg1>.

2258 #rtErrPrimFailed Primitive failed , selector <arg2> receiver
<arg1> .

2259 #gciErrExecClientUserAct Request to invoke client userAction named
<arg1>, invocation failed.

2260 #gciErrActiveSessions You may not install a user action after
logging in. Action name: <arg1>

2261 #objErrCorruptObj The object with object id <arg1> is corrupt.
Reason: <arg2>

2262 #gciErrMaxActionArgs You are requesting <arg2> arguments to a
user action when only <arg3> are allowed.
Name: <arg1>.

2263 #gciErrBadNumActionArgs The method or user action <arg1> takes
<arg2> arguments, not <arg3> as passed.

2264 #gciErrUserActionPending You attempted an illegal GemBuilder for C
(GCI)operation during a user defined action
<arg1>.

GemStone Programming Guide

B-26 GemStone Systems, Inc. July 1996

2265 #gciErrBadNumLclActionArgs

You invoked a local user action with an
incorrect number of arguments. Name,
correct, and actual: <arg1><arg2><arg3>.

2266 #rtErrInstvarAddToNsc An attempt was made to add a named
instance variable to the class <arg1> which
has a format of NSC.

2267 #rtErrVaryingConstrBytes An attempt was made to constrain the
indexable portion of the class <arg1> which
has a format of Bytes.

2268 #rtErrVaryingConstrNonidx An attempt was made to constrain the
indexable portion of the class <arg1> which
is not indexable.

2269 #rtErrInstvarAddToBytes An attempt was made to add a named
instance variable to the class <arg1> which
has a format of Bytes.

2270 #rtErrClassNotModifiable The class <arg1> is not modifiable.

2271 #rtErrAddDupInstvar The name of the new instance variable,
<arg2>, would duplicate the name of an
existing instance variable in class <arg1>.

2272 #rtErrNotASubclassOf The class <arg1> is neither identical to nor a
subclass of the class <arg2>.

2273 #rtErrConstrNotSubclassOf In a class modification operation, the new
constraint <arg1> was neither identical to,
nor a subclass of, the inherited constraint
<arg2>.

2274 #rtErrConstrNotAClass The new constraint <arg1> was not a class.

2275 #rtErrObjInvariant The object <arg1> is invariant.

2276 #classErrDupVarConstr Two constraints, <arg1> and <arg2>, were
specified upon the indexable portion of the
class. Only one constraint is allowed.

2277 #bkupErrLoginsEnabled A restore operation requires that logins be
disabled. Run System suspendLogins
before doing restores.

GemStone Error Messages

July 1996 GemStone Systems, Inc. B-27

2278 #classErrRemoveInherIv In class <arg1>, an attempt was made to
remove the instance variable <arg2> which
is inherited from a superclass.

2279 #concurErrInvalidMode <arg1> is not recognized as a valid
Concurrency Control Mode.

2280 #classErrSelectorLookup The message <arg4> sent to object <arg1>
was found in class <arg2>. It should have
been found in class <arg3>

2281 #rtErrBadEUCFormat The bytes of the EUC string with biased id
<arg1> are not in EUC format.

2282 #rtErrGaijiNotSupported A Gaiji character was encountered in the
JapaneseString <arg1> but Gaiji is not
supported.

2283 #rtErrInvalidArgClass <arg1> is not one of the class kinds in
<arg2>.

2284 #rtErrSizeLimit The object <arg1> was referenced with a
byte index <arg2> which is out of range.

2285 #rtErrNoEUCRep <arg1> cannot be represented in EUC
format.

2286 #rtErrBadEUCValue <arg1> is not a valid EUC value and does
not correspond to a JISCharacter.

2287 #rtErrInvalidLang The compiler language environment <arg1>
is invalid.

2288 #rtErrInvalidIndexPathExpression

The following string is an invalid term in a
path expression: <arg2>

2289 #rtErrDependencyListTooLarge A dependency list <arg1> is too large.

2290 #rtErrMaxCommitRetry There were too many attempts to commit
after a concurrency conflict or after failing to
resolve RC conflicts. You must abort before
attempting to commit again.

2291 #rtErrInvalidArgument The object <arg1> was an invalid argument
to a method, reason: <arg2>

GemStone Programming Guide

B-28 GemStone Systems, Inc. July 1996

2292 #rtErrPathNotTraversable The class <arg2> does not have an inst var
<arg3> on the index path.

2293 #rtErrBtreeReadStreamEndOfStream

An attempt was made to read beyond the
end of the stream.

2294 #rtErrObjectPathTermNotInDependencyList

The object <arg1> did not have the path
term <arg2> in its dependency list.

2295 #rtErrObjectInvalidOffset The object <arg1> does not have an instance
variable with the given name <arg2>

2296 #rtErrObjectNoDependencyList

The object <arg1> does not have a
dependency list.

2297 #rtErrIndexDictionaryEntryNotInDictionary

An entry for the key/term/value
(<arg2>/<arg3>/<arg4>) was not present
in the dictionary <arg1>

2298 #rtErrPathTermObjectNotAnNsc

The object <arg1> traversed along an index
path through a set-valued inst var was not
an Nsc.

2299 #rtErrIdentityIndexCannotInvokeRangeOperation

An attempt was made to use a range
operation (<, >, =, <=, or >=) on a path
expression only supported by an identity
index.

2300 #rtErrRangeEqualityIndexInvalidClassKindForBtree

Attempt to insert a key into the btree that
was an invalid class for which the btree was
created.

GemStone Error Messages

July 1996 GemStone Systems, Inc. B-29

2301 #rtErrRangeEqualityIndexObjectNotInBtree

An entry for the key/value pair
(<arg2>/<arg3>) was not present in the
index.

2302 #errNoBackupInProgress A backup or restore continuation was
attempted before executing either
restoreFrom: or fullBackupTo:MBytes: .

2303 #bkupErrOpenFailed An attempt to open file <arg1> for <arg2>
failed because <arg3>.

2304 #bkupErrMbyteLimitBadRange

The byte limit specified <arg1> is out of the
allowable range from <arg2> to <arg3>
Mbytes.

2305 #bkupErrWriteFailed An attempt to write to file <arg1> failed
because <arg2>.

2306 #bkupErrInProgress An attempt was made to start a full backup,
but a backup is currently in progress by
another session.

2307 #bkupErrReadFailed Read error during restore, <arg2>, in record
<arg3> of file <arg1>

2308 #rtErrBagNoConstraintAlongPath

An attempt was made to create an index
along the path <arg2> with no constraint.

2309 #rtErrBagClassDoesNotSupportRangeOperators

An attempt was made to create an equality
index with a class <arg2> that does not
support range operators.

2310 #rtErrBagOnlySelectBlockAllowed

Only select blocks are allowed for
selectAsStream.

2311 #rtErrBagOnlyOnePredicateAllowed

Only one predicate is allowed for
selectAsStream.

GemStone Programming Guide

B-30 GemStone Systems, Inc. July 1996

2312 #rtErrBagNoRangeIndexOnPathExpression

The path expression in the predicate for
selectAsStream does not have a range
equality index.

2313 #rtErrBagInvalidPredicateForStreamSelection

The predicate for selectAsStream was
invalid.

2314 #rtErrBagOperationNotSupportedForStreamSelection

The comparison operation in the predicate
for selectAsStream is not supported.

2315 #rtErrBagInvalidSortSpecification

Unable to sort using the sort specification:
<arg2>

2316 #rtErrIndexAuthErrSegRead An attempt was made to read the object
using index <arg2> in segment <arg3> with
insufficient authorization.

2317 #objErrTime_tOutOfRange Given time_t is out of range; must be greater
than or equal to zero.

2318 #genericError User defined error, <arg2>

2319 #rtErrMethodProtected Illegal attempt to execute a protected
method.

2320 #rtErrBadConstraintForMigration

The object <arg1> cannot be migrated
because inst var at offset <arg2> participates
in an index with a constraint of <arg3>.

2321 #rtErrPreventingCommit <arg1> This error occurred during index
maintenance. Consequently, this
transaction must be aborted.

2322 #rtErrCantBecomeSelfOnStack

The object <arg1> is present on the Smalltalk
DB stack as "self", and cannot participate in
a become.

GemStone Error Messages

July 1996 GemStone Systems, Inc. B-31

2323 #rtErrObjectProtected Illegal attempt to fetch/store into a
protected object.

2324 #rtErrNewTranlogDirFail Attempt to define new transaction log
directory failed, reason: <arg1>

2325 #errCommitWhileBackupInProgress

A commit or abort was attempted while a
multi-file full backup is in progress. To
cancel the backup use the abortFullBackup
method. To continue the backup use the
continueFullBackupTo:MBytes: method.

2326 #errUnconvertedObject Incomplete conversion from previous
version of GemStone, object: <arg1> reason:
<arg2>

2327 #rtErrLastConstraintNotBoolean

The given SelectBlock must contain a
Boolean expression.

2328 #rtErrCommitProhibitingError

<arg1> This error occurred during object
manager recursion to GemStone Smalltalk.
This transaction must be aborted.

2329 #rtErrAttemptToPassivateInvalidObject

Attempted to write <arg1> to a passive
object. nil was written instead.

2330 #rtErrTimeToRestoreToArg timeToRestoreTo: failed, reason: <arg1>

2331 #lockErrAllSymbols Users are not allowed to lock AllSymbols

2332 #gciErrSymbolFwdRef User attempted to create a forward
reference, oop = <arg1> to a Symbol or fill in
the state of an existing forward reference as
a Symbol

2333 #rtErrChangeSymbol Changing the class of an object <arg1> from or to class
Symbol is disallowed

2334 #rtErrObjVariant The object <arg1> is not invariant.

2335 #rtErrAlreadyHasSubclasses In disallowSubclasses, <arg1> already has
subclasses.

GemStone Programming Guide

B-32 GemStone Systems, Inc. July 1996

2336 #clientForwarderSend Message to forward to client, rcvr: <arg1>
selector: <arg2> args: <arg3>

2337 #rtErrBadSize Invalid object size, required size <arg2>
actual size <arg3> for object <arg1>

2338 #rtErrFreeSpaceThreshold The Repository is currently running below
the freeSpaceThreshold.

2339 #rtErrTranlogDirFull The tranlog directories are full and the stone
process is waiting for an operator to make
more space available by either cleaning up
the existing files (copying them archive
media and deleting them) or by adding a
new tranlog directory.

2340 #objErrDictConstraintViolation

Attempt to store <arg2> of class <arg4> into
<arg1> constrained to hold only instances
which are a kind of <arg3>.

2341 #rtMaxPasswordSize The maximum size of a password is <arg2>
characters. The string <arg1> is too large.

2342 #rtMinPasswordSize The minimum size of a password is <arg2>
characters. The string <arg1> is too small.

2343 #rtMaxConsecutiveChars A password may not have more than
<arg2> consecutive characters. The
substring <arg3> is invalid in the password
<arg1>

2344 #rtMaxRepeatingChars A password may not have more than <arg2>
repetitions of a character. The substring
<arg3> is invalid in the password <arg1>

2345 #rtMaxCharsOfSameType A password may not have more than <arg2>
consecutive <arg3> characters. The
substring <arg4> is invalid in the password
<arg1>

2346 #rtDisallowedPassword A password may not have the value <arg1>

2347 #rtPasswordExpireWarning The password of the current UserProfile is
about to expire.

GemStone Error Messages

July 1996 GemStone Systems, Inc. B-33

2348 #errLogDirNotExist No directory or raw device exists with the
name <arg1>

2349 #errArgTooSmall The object <arg1> is too small. The
minimum size is <arg2> .

2350 #errNoStructuralUpdate GemBuilder for C update operation <arg2>
is not supported on object <arg1>

2351 #rtObsoleteClass New instances of this obsolete class are not
allowed.

2352 #rtErrLocalSessionFailedCommit

Local session failed to commit after remote
sessions voted to commit.

2353 #rtErrRemoteSessionFailedCommit

Remote session <arg2> failed to commit
after voting affirmative.

2354 #rtErrNoElemDetected The object <arg2> was not detected in
<arg1>.

2355 #rtErrDateTimeOutOfRange The resulting DateTime object would be out
of range.

2356 #rtErrObjNotFound The object <arg2> was not found in <arg1>.

2357 #rtErrFailedStnCfgWrite The operation should update the stone
configuration file, but the write failed. See
stone log for more details.

2358 #gciErrNoUserAction Attempt to call a user action that is not
registered with this virtual machine, user
action name: <arg1>

3001 #rtErrAbortTrans The transaction was aborted by the user.

3006 #abortErrGarbageCollection Garbage collection aborted, reason: <arg1>,
conflict code: <arg2>. Garbage collection
was aborted and should be tried again later.

3007 #abortErrUndefPomObj A reference was made to object <arg1> in
the permanent object manager even though
the object has not been defined.

GemStone Programming Guide

B-34 GemStone Systems, Inc. July 1996

3008 #bkupErrRestoreSuccessful Restore from full backup completed with
<arg1> objects restored and <arg2> corrupt
objects not restored.<arg3>

3009 #bkupErrBackupNotComplete

The backup was successful, but was not
completed due to a byte limit restriction; a
partial backup file was created containing
<arg1> objects and is <arg2> bytes in size.

3011 #bkupErrRestoreLogSuccess Restore from transaction log succeeded.

3012 #bkupErrRestoreLogFail Restore from transaction log failed. Reason:
<arg1>

3016 #bkupErrRestoreCommitFailed

 Commit failed, restore is unusable, <arg1>

3020 #abortErrFinishedMark Successful completion of
markForCollection. <arg1> live objects
found. <arg2> possible dead objects,
occupying <arg3> bytes, may be reclaimed.

3021 #abortErrFinishedObjAudit Completed execution of object audit.
<arg1> objects contained errors.

3031 #abortErrLostOtRoot This error indicates that when running
outside of a transaction stone signaled the
gem to indicate that it did not respond in
time so it revoked access to the object table
root.

4001 #gsErrBadRootPage The root page of the Repository is bad. A
disk access of the root page encountered a
disk read error, or found corrupted data.

4002 #repErrReposFull The logical Repository is full; the Repository
is <arg1>.

4003 #repErrNoFreePages No free pages were found after growing the
Repository <arg1>.

4004 #hostFatalErrOutOfMem Host memory allocation failed during
<arg1>. Insufficient primary memory
and/or swap space.

GemStone Error Messages

July 1996 GemStone Systems, Inc. B-35

4005 #gsErrCorruptObjSize The object <arg1> is corrupted and has size
<arg2>. The correct size is <arg3>.

4006 #repErrBadDbfSwizzle An invalid swizzle transform was detected
in an extent long transform: <arg1> short
transform: <arg2>

4007 #gciErrActionDefined You have already installed the user action,
<arg1>.

4008 #errUserProfileLost The UserProfile with object id <arg1> has
been garbage collected as a result of a
successful restore or by a commit of another
session

4009 #gsErrShrpcConnectionFailure

Detected a connection failure from the
SharedPageCache monitor: Error text:
<arg1>

4010 #gsErrShrpcUnexpectedNetEvent

Detected an unexpected <arg1> event from
the SharedPageCache monitor.

4011 #gsErrShrpcInvalidConfig The process tried to login to a Stone with the
config file specifying that the
SharedPageCache should NOT be used
when the Stone already has a
SharedPageCache active on the host
machine

4032 #errTranLogOpenFail Unable to open next transaction log file for
writing.

4034 #gsErrStnNetProtocol A protocol error occurred on the Gem-Stone
network, failure code = <arg1> .

4035 #gsErrStnNetLost An end of file was received over the Gem-
Stone network, indicating that the network
is being shut down.

4038 #gsErrDisconnectInLogin Stone disconnected during an attempt to
login, probably because logins are disabled
or max users are already logged in.

4039 #gsErrMaxSessionsLimit Login failed because the system was full.

GemStone Programming Guide

B-36 GemStone Systems, Inc. July 1996

4040 #lgcErrIncompatGci The version of GemBuilder for C (GCI)is not
compatible with the version of the Gem

4042 #hostErrCantSpawn HostFork() attempted to spawn a process
but was unable to do so.

4050 #gsActiveUserLimitExceeded

Too many sessions already logged in with
this userId.

4051 #gsErrLoginDenial Login failed. The userId/password
combination is invalid or expired.

4053 #gsErrLoginsDisabled The login failed because all logins are
currently disabled.

4057 #gsErrStnShutdown Stone is shutting down.

4059 #gsErrSessionShutdown The Data Curator is shutting down this
session.

4060 #gsErrGemNormalShutdown Gem is shutting down normally.

4061 #gsErrGemFatalShutdown Gem did not shut down normally.

4062 #gsErrNoMoreOops GemStone system ran out of oops.

4065 #netErrNoSuchStn The given GemStone does not exist.

4100 #gciErrBadSessionId GemBuilder for C (GCI) was called with an
invalid SessionId.

4101 #gciErrUnexpectedLnkErr Fatal unexpected error in Linkable
GemBuilder for C (GCI)session while
GemBuilder for C (GCI) call in progress on
another RPC session

4102 #gciErrInternalRpc A logic error was detected in the
implementation of an RPC GemBuilder for
C call. Please report to your GemStone
Administrator.

4126 #fatalErrInternal Please report to your GemStone
Administrator. System Fatal error number:
<arg1> with arguments: <arg2> <arg3>
<arg4> <arg5> <arg6> <arg7> <arg8>
<arg9> <arg10>.

GemStone Error Messages

July 1996 GemStone Systems, Inc. B-37

4136 #netErrConnectionRefused The connection was refused - check the
Stone name.

4137 #netErr An undefined network error. System error
text is appended to message:

4138 #repErrSystemRepNotAttached The system Repository is not attached.

4140 #authErrSegLoginSeg Commit succeeded, but there is no
authorization to write in default login
segment <arg1>.

6001 #rtErrPause Execution has been suspended by a "pause"
message.

6002 #rtErrStep Single-step breakpoint encountered.

6003 #rtErrSoftBreak A soft break was received.

6004 #rtErrHardBreak A hard break was received.

6005 #rtErrCodeBreakpoint Method breakpoint encountered.

6006 #rtErrStackBreakpoint Stack breakpoint encountered on return
from method or block.

6007 #rtErrCommitAbortPending A transaction commit or abort is pending.

6008 #rtErrSignalCommit This error indicates that a member of the
notifySet has been committed and was
added to the signaledObjects set.

6009 #rtErrSignalAbort This error indicates that when running
outside of a transaction stone signaled the
gem to request an abort

6010 #rtErrSignalGemStoneSession The signal <arg2> was received from
sessionSerialNumber = <arg1> and the
message string associated with the signal is
<arg3>

6011 #rtErrUncontinuable Execution cannot be continued. An attempt
was made to continue past an uncontinuable
error, or recursive Exception blocks may
have left the Smalltalk DB stack in an
unusable state.

GemStone Programming Guide

B-38 GemStone Systems, Inc. July 1996

UNUSED ERROR NUMBERS:

1 to: 1000 ; 1064 to: 2000 ; 2360 to: 3000 ;

3002 to: 3005 ; 3010 to: 3010 ; 3013 to: 3015 ;

3017 to: 3019 ; 3022 to: 3030 ; 3032 to: 4000 ;

4012 to: 4031 ; 4033 to: 4033 ; 4041 to: 4041 ;

4043 to: 4043 ; 4046 to: 4049 ; 4052 to: 4052 ;

4054 to: 4056 ; 4058 to: 4058 ; 4063 to: 4064 ;

4066 to: 4099 ; 4103 to: 4125 ; 4127 to: 4135 ;

4139 to: 4139 ; 4141 to: 6000

Index

July 1996 GemStone Systems, Inc. Index-1

Symbols
* (in a path) 5-31
+ (GsFile) 9-5
+ (String) 4-27
^ 11-18

A
abortErrFinishedObjAudit 11-25
aborting

errors B-1
receiving a signal from Stone 6-12
releasing locks when 6-23
transaction 6-11
views and 6-11

AbortingError 3-5
abortTransaction (System) 6-11
abstract superclass

SequenceableCollection 4-13–4-19

accessing
method 13-2
operating system from Smalltalk 9-1
pool dictionaries 13-13
SequenceableCollections with streams

4-42
variables 13-3, 13-13

acquiring locks 6-16
add: (RcBag) 6-29
add: (RcQueue) 6-29
add: (String) 4-28
add:withOccurrences: (IdentityBag) 4-31
addAll (String) 4-28
addAll: (GsFile) 9-5
addAllToNotifySet: (System) 10-7
addCategory: (Behavior) 13-10

Index GemStone Programming Guide

Index-2 GemStone Systems, Inc. July 1996

adding
category 13-10
method 13-2
to a SequenceableCollection 4-14, 4-15
to notify set 10-5–10-8
to symbol lists 3-4
users to symbol lists 3-12

addNewVersion: (Object) 8-6
addObjectToBtreesWithValues:

(Object) 5-15
addPrivilege

 (UserProfile) 7-31

addPrivilege: (UserProfile) 7-31
addPrivileges: (UserProfile) 7-32
addToCommitOrAbortReleaseLocks-

Set: (System) 6-23
addToCommitReleaseLocksSet: (System)

6-23
addToNotifySet: (System) 10-5
allClassVarNames (Behavior) 13-13
AllClusterBuckets 12-5, 12-7
allInstances (ClusterBucket) 12-6
allInstances (Repository) 8-9
allInstVarNames (Behavior) 13-13
allSelectors (Behavior) 13-7
allSharedPools (Behavior) 13-13
AND (in selection blocks) 5-9
application objects 6-12, 6-13
archiving data objects 9-10
arguments A-12

block A-20

arithmetic
mixed-mode 12-21

Array 4-14–4-23
comparing with C or Pascal 4-20
constructors A-15
creating 4-20
invariance 4-22
large, and efficiency 4-22
literal 4-22, A-7
performance of 12-21

assigning
class history 8-6
cluster buckets 12-11
migration destination 8-7

assignment A-9
Association 4-10
associative access 5-1–5-34

comparing strings 5-10
nil values 5-30

asterisk
as wild card character 9-8
in a path 5-31

at:equals: (String) 4-25
atEnd (RangeIndexReadStream) 5-17
atomic objects 10-7

clustering and 12-10
disk page of 12-14
indexing and 5-24
locking and 6-16

authorization 7-29
assigned to segment 7-9
clustering 12-11
error while redefining class 8-5
indexing and 5-28
locking and 6-16
migration and 8-13
owner 7-15
read/write 7-10
segments and 7-14
world 7-11

authorizations , instance variable for
Segment 7-12

automatic transaction mode 6-7
defined 6-7

B
Bag

as relation 5-2
converting to RcBag 5-16
maximum size 4-30
methods implemented, compared to

GemStone Programming Guide Index

July 1996 GemStone Systems, Inc. Index-3

RcBag 6-29

balanced tree
conflict on 6-13
defined 5-3

beginTransaction (System) 6-8
Behavior 13-1–13-18
binary messages A-12, A-13
binding

source code symbol 3-2–3-12

bkupErrRestoreSuccessful 11-25
blocks A-19

arguments A-20
complexity of 12-22
conditional execution A-22
empty A-20
executing A-19
literal A-19
optimized 12-22
repeated execution A-23
selection 5-4–5-15
using curly braces 5-4

BNF syntax for Smalltalk A-27
Boolean 10-7

locking and 6-16
operators in queries 5-9
segment of 7-14

branching A-22
breadth-first clustering example 12-10
bucketWithId: (ClusterBucket) 12-7

C
C programming language

comparing arrays 4-20

cache 12-24–12-27
changing size of 12-25–12-27
estimating available size 12-23
temporary object space 12-24

cancelMigration (Object) 8-8
canUnderstand: (Behavior) 13-7
caret 11-18
cascaded messages A-14

case of variable names A-7
case-sensitivity A-2
category

adding 13-10
for errors 11-9
moving methods among 13-10
removing 13-10

category: number: do: (Exception) 11-15
categoryNames (Behavior) 13-10
changed object notification 10-3
changes, receiving notification of 10-3, 10-10–

10-11
by polling 10-12

changeToSegment: (Object) 7-14
changing

cache sizes 12-24–12-27
cluster bucket 12-6
database

notification of 10-5–10-11
notification of<$startange> 10-9
transaction modes and 6-7

invariant objects 8-2
memory allocated to caches 12-25
objects

notification of 10-3–10-11
visibility of to other users 6-8

privileges 7-31
segment before committing transaction

7-6

Character 10-7
literal A-5
locking and 6-16
segment of 7-14

Class 13-1–13-18

Index GemStone Programming Guide

Index-4 GemStone Systems, Inc. July 1996

class
clustering 12-12
determining structure 13-4
history 8-3–8-7

constraints and 8-6
migrating 8-10
names

versioning and 8-6
predefined 2-12
RcHashDictionary, indexing and 6-27
redefining 8-2–8-26
reduced conflict 6-26, 12-25

collections returned by selection 5-16
when to use 6-27

renaming 8-3
storage and reducing conflict 6-26
versions 8-2–8-3

class version, defined 8-3
ClassHistory 8-3–8-7

assigning 8-6
constraints on 8-6
determining 8-5

classVarNames (Behavior) 13-13
cleanupMySession (RcQueue) 6-30
clearCommitOrAbortReleaseLocksSet

(System) 6-24
clearCommitReleaseLocksSet (System)

6-24
clearing notify set 10-8
clearNotifySet (System) 10-8
client, defined 9-2
cluster (Object) 12-8
clusterBehavior (Behavior) 12-13
clusterBehaviorExceptMethods:

(Behavior) 12-13

ClusterBucket 12-3–12-15
assigning 12-11
changing 12-6
concurrency and 12-7–12-8
default 12-6
describing 12-7
determining current 12-6
extent of 12-4
indexing and 12-8
using several 12-11

clusterBucket (Object) 12-11
clusterBucket: (System) 12-6
clusterDepthFirst (Object) 12-11
clusterDescription (Behavior) 12-13
clusterId (ClusterBucket) 12-6
clusterInBucket: (Object) 12-11
clustering 12-2–12-15

as factor in performance 12-2
atomic objects and 12-10
authorization for 12-11
breadth-first, example 12-10
buckets for 12-3

extents of 12-4
classes 12-12
concurrency conflict and 12-7
depth-first 12-11
global variables 12-5
instance variables 12-9
kernel class methods 12-5
maintaining 12-15
messages (table) 12-12
recursion and 12-10
shared page cache size and 12-27
source code for kernel classes 12-5

code formatting A-25

GemStone Programming Guide Index

July 1996 GemStone Systems, Inc. Index-5

Collection
as variable in a path 5-31–5-33
common protocol 4-4
constraining elements 4-8
creating efficiently 4-5
enumerating 4-6
errors while locking 6-20
hierarchy 4-3
indexing and clustering 12-8
indexing and write set 6-10
locking efficiently 6-19
rejecting elements 4-7
returned by selection blocks 5-16
searching 4-7

efficiently 5-1–5-34
selecting elements 4-7
sorting 4-33
streaming over 4-43
subclasses 4-10–4-42
unordered 4-30–4-37
updating indexed 5-27

combining expressions A-13
commands, executing operating system 9-9
comment A-3
commitAndReleaseLocks (System) 6-23,

6-24
commitOrAbortReleaseLocksSet-

Includes: (System) 6-26
commitReleaseLocksSetIncludes:

(System) 6-26
committing a transaction 6-2

after changing segments 7-6
after recomputing index segments 5-28
effects of 6-8
failure 6-10, 6-11
frequency of, to optimize performance

12-23
moving objects to disk and 12-11
performance 6-27
releasing locks when 6-23
when 6-2
write locks to guarantee success 6-15

communicating between sessions 10-2–10-23
communicating from session to session

diagram 10-16
comparing

instances of kernel classes 5-7
InvariantStrings 4-29
literal strings 4-29
messages and selection block predicates

5-10
nil 5-8
selection blocks 5-7
SequenceableCollection 4-17
Strings 4-29

compileAccessingMethodsFor:
(Behavior) 13-2

compiledMethodAt: (Behavior) 13-7
CompileError 3-5
compileMethod: dictionaries:

category: (Behavior) 13-5
compiler error numbers 13-6
compiling methods programmatically 13-5
concatenating strings 4-27, 12-22
concurrency 6-1

cluster buckets and 12-7–12-8
conflict 6-7

concurrency control
optimistic 6-6–6-11

when to use 6-5
pessimistic 6-13–6-14

CONCURRENCY_MODE 6-5
conditional

execution and blocks A-22
repetition A-23
selection A-22

configuration parameter 12-24–12-25
CONCURRENCY_MODE 6-5
GEM_PRIVATE_PAGE_CACHE_KB

12-25
GEM_TEMPOBJ_CACHE_SIZE 12-25
SHR_PAGE_CACHE_SIZE_KB 12-25
STN_GEM_ABORT_TIMEOUT 6-12
STN_PRIVATE_PAGE_CACHE_KB

Index GemStone Programming Guide

Index-6 GemStone Systems, Inc. July 1996

12-25

conflict 6-7–6-26
checking 6-5
keys (table) 6-9
on indexing structure 6-11
read set 6-4
read/write 6-5, 6-27
reducing 6-26–6-31, 12-25

performance 6-27
semantics of 6-26
while overriding a method 6-10
with cluster buckets 12-7
write set 6-4
write/write 6-5, 6-27

conjoining predicate terms 5-9
consistency of database, preserving 6-3
constants A-8
constrained collections, sorting 4-33
constraining

class history 8-6
elements of a collection 4-8
instance variables 2-5
paths 5-6

constraints 2-5
and instance migration 8-20
circular 2-7
determining 4-9
error with classes having the same name

8-6
full 5-6
inheritance of 2-6
partial 5-6

constructors, array A-15
contentsAndTypesOfDirectory:

onClient (GsFile) 9-8
contentsOfDirectory: onClient:

(GsFile) 9-8
context exception, defined 11-6
continueTransaction (System) 6-12
control, flow of 4-6
copying

objects 12-22

cr (GsFile) 9-5
createDictionary: (UserProfile) 3-6
createEqualityIndexOn: (Bag) 5-22
createEqualityIndexOn: (Collection)

5-24, 5-29
createIdentityIndexOn: (Bag) 5-21
creating

arrays 4-20
equality indexes 5-22
files 9-3
identity indexes 5-21
subclass A-2
symbol list dictionaries 3-6

curly braces for selection blocks 5-4
currentClusterBucket (System) 12-6
currentSegment: (System) 7-6
currentSessionNames (System) 10-17
currentSessions (System) 10-19
customizing data retention during migration

8-16

D
data

efficient retrieval 12-2–12-15
retaining during migration 8-13–8-26
sending large amounts of 10-23

data curator 3-3
database

disk for 12-23
estimated size 12-27
logging in 6-7–6-13
logging out 6-7–6-13
modifying 6-8

outside a transaction 6-4
transaction mode and 6-7

pointers to objects in 12-24
preserving consistency 6-3
querying 5-4–5-19

DataCurator
privilege of 7-31

deadlocks, detecting 6-18

GemStone Programming Guide Index

July 1996 GemStone Systems, Inc. Index-7

declaring temporary variables A-8
decrement (RcCounter) 6-28
default

cluster bucket 12-6
segment 7-6

defining
error category 11-9
error numbers 11-9

definition (Class) 13-4
deleteObjectAt: (Repository) 7-30
deletePrivilege: (UserProfile) 7-32
DependencyList 6-11
depth-first clustering 12-11
describing

cluster buckets 12-7

description: (ClusterBucket) 12-7
detect: (Collection) 4-31, 5-19
determining

a class's storage format 13-16
class version 8-5
current cluster bucket 12-6
inheritance 13-4
lock status 6-24
object location on disk 12-14
structure of class 13-4

Dictionary 4-2, 4-10
for GemStone errors 11-10
Globals 3-3
internal structure 4-10
keys 4-10
shared 3-2–3-12
UserGlobals 3-3
values 4-10

dictionaryNames (UserProfile) 3-4
directory, examining 9-8
dirty locks 6-18
disableSignaledAbortError (System)

6-13
disableSignaledGemStoneSession-

Error (System) 10-21
disableSignaledObjectsError

(System) 10-10

disk
access 12-2–12-15
efficient use and number of cluster

buckets 12-7
location of database 12-23
location of objects 12-2–12-15
moving objects immediately to 12-11
page for atomic objects 12-14
pages cached from 12-24
pages read or written per session 12-2

do: (Collection) 4-6
do: (RcQueue) 6-29
do: (SequenceableCollection) 4-18

E
efficiency

creating collections 4-5
data retrieval 12-2–12-15
large arrays 4-22
large strings 4-28
locking collections 6-19
searching collections 5-1–5-34
selecting objects with streams 5-17
Smalltalk DB execution 12-15–12-23
sorting 5-34
storage

cache sizes and 12-26

Employee
example class 4-38–4-40
relation (table) 4-38, 5-2
relation example 5-2

empty blocks A-20
empty paths

index creation 5-23
sorting 4-35

enableNotifyError 11-8
enableSignalAbortError 11-8
enableSignaledAbortError (System)

6-13
enableSignaledGemStoneSession-

Error (System) 10-21

Index GemStone Programming Guide

Index-8 GemStone Systems, Inc. July 1996

enableSignaledObjectsError 11-8
enableSignaledObjectsError (System)

10-10
ending a transaction 6-7–6-13
enumerating SequenceableCollections 4-18
enumeration protocol 4-6
environment variable in file specification 9-2
equality

building indexes 5-22
indexes 5-22

creating 5-22
re-creating within an application 5-15

InvariantStrings 4-29
operators 5-7

redefining 5-8, 5-10–5-15
rules 5-10

queries 5-22
SequenceableCollections 4-17
strings 4-29

equalityIndexedPaths (Collection) 5-25
equalityIndexedPathsAnd-

Constraints (Collection) 5-25
equalityIndexedPathsAndConstraint

s (Collection) 5-28
error 11-1–11-25

flow of control and 11-9
locking collections 6-20
message, receiving from Stone 10-10,

10-20
recursive 11-24
RT_ERR_SIGNAL_COMMIT 10-10
RT_ERR_SIGNAL_GEMSTONE-

_SESSION 10-19, 10-20
RT_ERR_SIGNAL_GEMSTONE_SESSIO

N 10-20
uncontinuable 11-24
while comparing 5-8
while compiling 13-6
while creating indexes 5-29
while executing operating system

commands 9-9
while migrating 8-11, 8-22

error category, defining 11-9
error dictionaries 11-2

names of standard 3-5

error messages
defining 11-2

error numbers
compiler 13-6
defining 11-2, 11-9

errors
aborting B-1
fatal B-2

ErrorSymbols 11-10, 11-16
generic error in 11-10

examining
directory 9-8
symbol lists 3-4

Exception 11-5
exception 11-1–11-25

context, defined 11-6
raising 11-15, 11-16
removing 11-23
resignaling 11-21
static, defined 11-6
to receive intersession signals 10-20
to receive notification of changes 10-11

exclusive locks 6-14
defined 6-15

exclusiveLock: (System) 6-16
exclusiveLockAll: (System) 6-20
executing

blocks A-19
operating system commands 9-9

exists: (GsFile) 9-7
expressions

combining A-13
kinds A-4
message A-9
order of evaluation A-13
syntax A-3
value of A-18

GemStone Programming Guide Index

July 1996 GemStone Systems, Inc. Index-9

extent
cluster buckets and 12-4
size of 12-5

extentForPage: (Repository) 12-14
extentId (ClusterBucket) 12-5
extentId: (ClusterBucket) 12-5

F
fatal errors B-2
FatalError 3-5
ff (GsFile) 9-5
file 9-2–9-9

creating 9-3
data in 9-10
determining if open 9-7
external to GemStone 6-11
reading 9-5
removing 9-7
specifying 9-2
temporary, for profiling 12-16
testing for existence 9-7
writing 9-5

fileName: (ProfMonitor) 12-16
fileSizeReport (Repository) 12-4
findDisconnectedObjects (Repository)

12-22
findFirst: (SequenceableCollection) 4-18
finding

instances 8-8

findLast: (SequenceableCollection) 4-18
findPattern:startingAt: (String) 4-25
floating point number

performance of 12-21

flow of control
and blocks A-22
changing with exceptions 11-9
looping

through a collection 4-6

format (Behavior) 13-16
formatting, code A-25

free variable
defined 5-5
in selection blocks 5-5

fully constrained paths 5-6

G
gatherResults (ProfMonitor) 12-17
Gem

private page cache 12-24
increasing size 12-26
memory allocated for 12-25

-to-Gem signaling 10-15–10-21
with exceptions 10-20

gemprofile.tmp 12-16
gemSignalAction: (GSSession) 10-20
GemStone

C Interface
acquiring locks and 6-18
linking your application 9-2
logging in with 7-2

caches 12-24–12-27
hierarchy 2-12
Smalltalk Interface

acquiring locks and 6-18
logging in with 7-2

GemStoneError 11-10
genericError 11-16
genericSignal:text: (System class)

11-16
Globals dictionary 3-3
grammar, Smalltalk A-27
group

membership and performance 12-22

group: authorization: (Segment) 7-31
groupId

instance variable for Segment 7-12

GsFile 9-2–9-9
GsSocket 9-12

Index GemStone Programming Guide

Index-10 GemStone Systems, Inc. July 1996

H
handling errors 11-1–11-25
heap space for signals 10-19, 10-22
hierarchy (Class) 13-4
host machine

RAM 12-27

I
identification, user 7-2
identifying

object 11-5
session 10-20

identity
indexes 5-20

creating 5-21
InvariantString 4-29
literal strings 4-29
operator 5-7
queries 5-6, 5-20
sets 4-29
strings 4-29

identity collection 4-37
IdentityBag 4-30–4-37

accessing elements 4-31
adding to 4-31
nil values 4-30
sorting 4-33

identityIndexedPaths (Collection) 5-25
IdentitySet 4-37–4-42

nil values 4-30

implicit indexes 5-24
includesSelector: (Behavior) 13-7
increment (RcCounter) 6-28
indexed associative access 5-1–5-34

comparing strings 5-10

indexed instance variables 4-8

indexing 5-1–5-34
atomic objects 5-24
authorization and 5-28
automatically 5-24
cluster buckets and 12-8
concurrency control and 6-10–6-11
creating equality index 5-22
creating identity index 5-21
equality 5-22
errors while 5-29
identity 5-20
implicitly 5-24
inquiring about 5-25
keys 5-20
locking and 6-22
migration and 8-12
NaN 5-30
nil 5-30
not preserved as passive object 9-10
notify set and 10-11, 10-13
on empty paths 5-23
performance and 5-28
RcBag and 6-29
RcHashDictionary and 6-27
re-creating equality, for user-defined

operators 5-15
removing 5-26
sorting 5-34
specifying 5-20
structure 5-3, 5-30

conflict on 6-11
transactions and 5-30
transferring to new collection 5-26
updating indexed collections 5-27

IndexList 6-11
inheritance

and constraints 2-6
defined 2-12
determining 13-4

inquiring
about indexes 5-25
about notify set 10-8

GemStone Programming Guide Index

July 1996 GemStone Systems, Inc. Index-11

insertDictionary:At: (UserProfile) 3-6
inserting

in a SequenceableCollection 4-15
symbol list dictionaries 3-6

inspecting objects 3-5
instance

finding 8-8

instance variables
changing constraints of, and migration

8-20
clustering 12-9
constraining 2-5
creating indexes on 5-20
indexed 4-8
migration and 8-13–8-26
named

in collections 4-2
unordered 4-2

constraining 4-8
determining constraints of 4-10
in Bags 4-30

write set 6-10

instSize (Behavior) 13-16
instVarMapping: (Object) 8-17
instVarNames (Behavior) 13-13
Integer

performance of 12-21

interfaces 6-18, 10-20
linkable vs. remote 12-22
returning control to, after error 11-5

interpreter
halting because of authorization problem

7-16
halting while executing operating system

command 9-9
method context in 11-6

intersession signal
with exceptions 10-20

interval, sampling, for profiling 12-16
interval: (ProfMonitor) 12-16
inTransaction (System) 6-8
invalidElementConstraintWhenMigra

tingInto: for: (Object) 8-24
invariant classes 4-22
invariant objects

changing 8-2

InvariantArray 4-22
InvariantString

comparing 4-29
identity 4-29

isBytes (Behavior) 13-16
isIndexable (Behavior) 13-16
isInvariant (Behavior) 13-16
isNsc (Behavior) 13-16
isPointers (Behavior) 13-16
iteration 4-6
itsOwner (instance variable for Segment)

7-12
itsRepository (instance variable for

Segment) 7-12

K
kernel objects

clustering methods 12-5
clustering source code 12-5
comparing 5-7

key
dictionary 4-10
sorting on secondary 4-36

keyword messages A-12, A-14
maximum number of arguments A-12

L
lf (GsFile) 9-5
linkable interface 12-22
listing

contents of directory 9-8

listInstances: (Repository) 8-8
listReferences: (Repository) 8-9

Index GemStone Programming Guide

Index-12 GemStone Systems, Inc. July 1996

literal
array 4-22, A-7
blocks A-19
character A-5
number A-4
symbol A-6
syntax A-4

locks 6-8, 6-13–6-14
aborting, effect of 6-23
acquiring 6-16
atomic objects and 6-16
authorization for 6-16
Boolean 6-16
Character 6-16
committing, effect of 6-23
denial of 6-17
difference between write and read 6-15
dirty 6-18
exclusive 6-14

defined 6-15
indexes and 6-22
inquiring about 6-24–6-26
limit on concurrent 6-14
logging out, effect of 6-22
manual transaction mode and 6-14
nil 6-16
on collections 6-19
performance and 6-6
read 6-13

defined 6-14
releasing upon commit 6-23
releasing upon commit or abort 6-23
removing 6-22
shared 6-15
SmallInteger 6-16
types 6-14
upgrading 6-21
write 6-13

defined 6-15

logging in 6-7–6-13
logging out 6-7–6-13

effect on locks 6-22

loops 4-6

M
maintaining clustering 12-15
manual transaction mode 6-7–6-8

defined 6-7
locking and 6-14

markForCollection (Repository) 12-23
maxClusterBucket (System) 12-5
maximum number of

arguments to a method A-12
characters in a class name A-2
cluster buckets for performance 12-7
elements in a Bag 4-30
elements in an unordered collection 4-30

memory 12-25
changing allocations for caches 12-25
increasing allocation for Gem private

page cache 12-26
increasing allocation for shared page

cache 12-27
increasing allocation for Stone private

page cache 12-26
increasing allocation for temporary object

space 12-25
of host machine 12-27
requirements for passive objects 9-11

message
arguments A-12
binary A-12, A-13
cascaded A-14
expressions A-9
keyword A-12, A-14
privileged

Segment 7-31
sending, vs. path notation, performance of

12-21
unary A-12, A-13

GemStone Programming Guide Index

July 1996 GemStone Systems, Inc. Index-13

method
accessing 13-2
adding 13-2
clustering for kernel classes 12-5
compiling programmatically 13-5
executing while profiling 12-16
primitive 12-21
recategorizing 13-10
removing 13-4
updating 13-2

migrate (Object) 8-9
migrateFrom:instVarMap: (Object) 8-18
migrateInstances:to: (Object) 8-10
migrateInstancesTo: (Object) 8-10
migrateTo: (Object) 8-7
Migrating

indexed collection 5-27

migrating
all instances of a class 8-10
authorization errors and 8-13
changed instance variable constraints and

8-20
collection of instances 8-9
errors during 8-11–8-13, 8-22
indexed instances 8-12
instance variable values and 8-13–8-26
instances 8-7–8-26
preparing for 8-8
self 8-11

migration destination
defined 8-7
ignoring 8-10

millisecondsToRun: (System) 12-18
mixed-mode arithmetic 12-21
mode of transactions 6-7
modeling 1-3
modifying, see changing 8-1
monitorBlock: (ProfMonitor) 12-16
monitoring Smalltalk DB code 12-15
MonthNames 3-5
moveMethod:toCategory: (Behavior)

13-10

moveToDisk (Object) 12-11
moveToDiskInBucket: (Object) 12-11
moving

methods between categories 13-10
objects among segments 7-13

authorization, indexing and 5-28
objects on disk 12-15
objects to disk immediately 12-11

N
named instance variables

in collections 4-2

names
of new versions 8-3
variable A-7

NaNs
and indexed queries 5-30
sorting 4-35

Native Code 12-28
enabling 12-28
limitations of 12-29
parameters 12-28

nativeLanguage (System) 11-3
nativeLanguage: (System) 11-3
new (ClusterBucket) 12-6
newForExtent: (ClusterBucket) 12-7
newInRepository: (Segment class) 7-31
next (RangeIndexReadStream) 5-17
nextPutAll: (GsFile) 9-5
nil 10-7

comparing 5-8
defined A-8
in UnorderedCollection 4-30
locking and 6-16
segment of 7-14
selection 5-30

nonsequenceable collection
searching efficiently 5-1–5-34

notifiers 10-3

Index GemStone Programming Guide

Index-14 GemStone Systems, Inc. July 1996

notify set
adding objects 10-8
asynchronous error for 11-8
clearing 10-8
defined 10-3
indexing and 10-11, 10-13
inquiring about 10-8
permitted objects in 10-7
removing objects 10-8
size of 10-8

notifying user of changes 10-2–10-11
by polling 10-12
frequent changes 10-11
improving performance 10-21

notifySet (System) 10-8
null values

in large strings 4-28
in new strings 4-24

Number
literal A-4

numberOfExtents (Repository) 12-14

O
object

average size 12-27
change notification 10-2
copying 12-22
identifying 11-5
local to application 6-12, 6-13
moving 12-15
moving among segments 7-13

object identifier, reporting in errors 11-5
object table 12-24

cache for 12-27

operand
defined 5-6
selection block predicate 5-6–5-8

operating system
accessing from Smalltalk 9-1
executing commands from Smalltalk 9-9
sockets 9-12

operator
selection block predicate 5-7

optimistic concurrency control 6-11
when to use 6-5

optimized selectors A-10
optimizing 12-1–12-27

arrays vs. sets 12-21
complexity of blocks and 12-22
copying objects and 12-22
creating HashDictionary 12-21
frequency of commits and 12-23
hints 12-21–12-23
integers vs. floating point numbers 12-21
linked vs. remote interface 12-22
mixed-mode arithmetic and 12-21
primitive methods and 12-21
reclaiming storage and 12-22
Smalltalk DB code 12-15–12-23
string concatenation and 12-22
using path notation vs. message-sends

12-21

OR (in selection blocks) 5-9
order of evaluation for expressions A-13
owner (Segment) 7-15
owner authorization 7-15
owner, changing, of a segment 7-15
owner: (Segment) 7-15
ownerAuthorization: (Segment) 7-31

P
page (Object) 12-14
page cache

clustering and 12-27
estimating size available to a transaction

GemStone Programming Guide Index

July 1996 GemStone Systems, Inc. Index-15

12-23
Gem private 12-24

memory for 12-25
increasing size 12-26, 12-27
shared 12-24

memory allocated for 12-25
Stone private 12-24

memory for 12-25

pageReads (System) 12-2
pageWrites (System) 12-2
parameters A-12

block A-20

partially constrained paths 5-6
Pascal

comparing arrays 4-20

passivate (Object) 9-11
passivate: toStream: (PassiveObject)

9-10
PassiveObject 9-10–9-12

memory and 9-11
restrictions on 9-10
security considerations of 9-10
sending through a socket 9-12

password 7-2
path A-17–A-18

constrained 5-6
containing collection 5-31–5-33
defined A-17
empty

in index creation 5-23
sorting 4-35

operating system 9-2
performance of, vs. message-sending

12-21

pathName (GsFile) 9-7
pattern-matching in strings 4-26
peek (GsFile) 9-6

performance 12-1–12-27
arrays vs. sets 12-21
cluster buckets and 12-7
complexity of blocks and 12-22
copying objects 12-22
creating HashDictionary 12-21
determining bottlenecks 12-15
frequency of commits and 12-23
group membership and 12-22
indexing and 5-28
integers vs. floating point numbers 12-21
linked vs. remote interface 12-22
locking and 6-6
mixed-mode arithmetic 12-21
of primitive methods 12-21
of signals and notifiers, improving 10-21
path notation vs. message-sends 12-21
profiling 12-15
reclaiming storage and 12-22
reducing conflict and 6-27
segment participation in too many group

authorizations 12-22
string concatenation and 12-22
tuning cache sizes 12-24–12-27

performOnServer: (System) 9-9
polling

to receive intersession signal 10-16, 10-20
to receive notification of changes 10-12

pool dictionaries
accessing 13-13

portability among versions 8-18
PositionableStream 4-43
precedence rules A-13
predicate

defined 5-5
in selection blocks 5-5
operators 5-7
terms 5-6

primitive methods 12-21
printable strings, creating with Stream 4-46
printing

strings 4-46

Index GemStone Programming Guide

Index-16 GemStone Systems, Inc. July 1996

printOn: (Stream) 4-46
privilege

changing 7-31
defined 7-31
garbage collection 12-23

process, spawning 9-9
profileOff (ProfMonitor) 12-18
profileOn (ProfMonitor class) 12-18
profiling

report 12-19
Smalltalk DB code 12-15

ProfMonitor 12-15–12-21
method tally 12-16
sampling interval 12-16
temporary file for 12-16

pseudovariables 12-22, A-8
nil A-8
self A-9
super A-9
true A-9

PublishedSegment 3-12

Q
query 5-4–5-19

Boolean operators in 5-9
equality 5-22
identity 5-20
language 5-5

R
radix representation A-5
raising exceptions 11-15, 11-16
random access to SequenceableCollections

4-42
RangeIndexReadStream 5-17
RcBag 5-16, 6-6, 6-26, 6-29

converting from bag 5-16
indexing and 6-29
methods implemented, compared to Bag

6-29

RcCounter 6-6, 6-26, 6-27–6-28
RcHashDictionary 6-6, 6-26, 6-31

indexing and 6-27

RcQueue 6-6, 6-26, 6-29–6-30
order of objects 6-30
reclaiming storage from 6-30

read locks
defined 6-14
difference with write 6-15

read set 6-4, 6-5
assigning object to segment 6-4
indexing and 6-4

read/write authorization 7-10
read/write conflict

defined 6-5
reduced conflict classes and 6-27
transaction conflict key 6-9

reading
files 9-5
in transactions 6-3
outside a transaction 6-4
SequenceableCollection 4-42
with locks 6-13

readLock: (System) 6-16
readLockAll: (System) 6-20
ReadStream 4-43
receiving

error message from Stone 10-10, 10-20
intersession signal 10-19

by polling 10-20
with exceptions 10-20

notification of changes 10-10–10-11
by polling 10-12
with exceptions 10-11

signals by automatic notification 10-16

reclaiming storage 6-12, 12-22
from temporary object space 12-24
RcQueues and 6-30
removing segments and 7-30

recomputeIndexSegments (AbstractBag)
5-28

GemStone Programming Guide Index

July 1996 GemStone Systems, Inc. Index-17

recursive
clustering 12-10
errors 11-24

redefining
classes 8-2–8-26

naming 8-3
equality operators 5-8, 5-10–5-15

rules 5-10

reduced conflict class 6-26–6-31
collections returned by selection 5-16
performance and 6-27
storage and 6-26
temporary objects and 12-25
when to use 6-27

reject: (Collection) 4-7, 5-19
reject: (IdentityBag) 4-7
relations 4-38

Bags and Sets as 5-2

remote interface 12-22
file access and 9-2

remove (Exception) 11-23
remove: (RcBag) 6-29
remove: (RcQueue) 6-29
removeAllFromNotifySet: (System) 10-8
removeCategory: (Behavior) 13-10
removeClientFile: (GsFile) 9-7
removeDictionaryAt: (UserProfile) 3-8
removeFromCommitOrAbortRelease-

LocksSet: (System) 6-24
removeFromCommitReleaseLocksSet:

(System) 6-24
removeFromNotifySet: (System) 10-8
removeLock: (System) 6-22
removeLockAll: (System) 6-23
removeLocksForSession (System) 6-23
removeObjectFromBtrees (Object) 5-15
removeServerFile: (GsFile) 9-7
removeValue: (Repository) 7-31

removing
category 13-10
exception 11-23
files 9-7
indexes 5-26
locks 6-22
method 13-4
objects from notify set 10-8
segments 7-30
symbol list dictionaries 3-6, 3-8

renameCategory:to: (Behavior) 13-10
renaming a class 8-3
reordering symbol lists 3-6
repeating

blocks A-23
conditionally A-23

report (ProfMonitor) 12-17
reporting

errors to user 11-1
performance profile 12-19

reserved selectors A-10
resignal:number:args: (Exception)

11-21
resignaling another exception 11-21
resolving symbols 3-2–3-12
retaining data during migration 8-13–8-26
retrieving data quickly 12-2–12-15
return character

in exception handler 11-18

returning values A-18
from exceptions 11-18

reverseDo: (SequenceableCollection) 4-18
RT_ERR_SIGNAL_ABORT 6-12
RT_ERR_SIGNAL_COMMIT 11-8
rtErrCommitAbortPending 11-25
rtErrHardBreak 11-25
rtErrMessageBreakpoint 11-25
rtErrMethodBreakpoint 11-25
rtErrStackLimit 11-25
rtErrStep 11-25
rtErrUncontinuable 11-25
RuntimeError 3-5

Index GemStone Programming Guide

Index-18 GemStone Systems, Inc. July 1996

S
sampling interval for profiling 12-16
saving

data 9-10–9-12
objects 6-11

schema 8-2
scientific notation A-5
scopeHas:ifTrue: (Behavior) 13-13
searching

collections see also indexed associative
access 4-7, 5-3

protocol 5-3
SequenceableCollection 4-18

secondary keys, sorting on 4-36
security

locking and 6-16
passive objects and 9-10

Segment
assigning ownership 7-15
changing before committing transaction

7-6
default 7-6
defined 7-3
group authorization and performance

12-22
moving objects 7-13

authorization, indexing, and 5-28
not preserved as passive object 9-10
ownership 7-15
predefined 7-12
privileged messages 7-31
published (defined) 3-12
removing 7-30

segment
authorization of 7-9

segment (Object) 7-13, 7-30
select: (Bag) 5-3
select: (Collection) 4-7, 5-3–5-10
select: (IdentityBag) 4-7
selectAsStream: (Collection) 5-17

limitations of 5-18

selecting elements of a collection 4-7
selection block 5-4–5-15

Boolean operators in 5-9
collections returned 5-16
comparing 5-7
defined 5-3
predicate

comparing and 5-10
defined 5-5
free variables and 5-5
operands 5-6–5-8
operators 5-7

streams returned 5-16

selection, conditional A-22
selector

optimized A-10
reserved A-10

selectors (Behavior) 13-7
selectorsIn: (Behavior) 13-10
self 12-22

migrating 8-11

sending
large amounts of data 10-23
signal 10-17–10-21
signal to another Gem session 10-18–

10-20

sendSignal: (System) 10-19
sendSignal:to:withMessage: (System)

10-19
SequenceableCollection 4-13–4-30

accessing 4-14
accessing with streams 4-42
adding to 4-14, 4-15
comparing 4-17
enumerating 4-18
equality of 4-17
inserting in 4-15
searching 4-18
updating 4-14

server, defined 9-2

GemStone Programming Guide Index

July 1996 GemStone Systems, Inc. Index-19

session 6-28
communicating between 10-2–10-23
identifying 10-20
pages read or written 12-2
private page cache 12-24
signaling all current 10-18

Set
as relation 5-2
identity 4-29
nil values 4-30
performance of 12-21

shallow copy 4-18
shared

dictionaries 3-2–3-12
locks

defined 6-15
page cache 12-24

clustering and 12-27
estimating size available to a

transaction 12-23
increasing size 12-27
memory allocated for 12-25

sharedPools (Behavior) 13-13
sharing objects 3-2–3-12
shell script 9-9
signal 10-15

receiving 10-19
by polling 10-16, 10-20

sending 10-17–10-21
to abort, from Stone 6-12

signal:args:signalDict: (System) 11-2
signaledAbortErrorStatus 6-13
signaledGemStoneSessionError-

Status (System) 10-21
signaledObjects (System) 10-11
signaledObjectsErrorStatus (System)

10-11
signalFromGemStoneSession (System)

10-19, 10-20

signaling
all current sessions 10-18
another session 10-18

asynchronous error for 11-8
by polling 10-20

errors 11-2
Gem-to-Gem 10-15–10-21
improving performance 10-21
order of receiving 10-19

size (RcQueue) 6-29
size: (Object) 4-20
sizeOf (GsFile) 9-7
skip: (GsFile) 9-6
SmallInteger 10-7

locking and 6-16
segment of 7-14

Smalltalk
BNF syntax for A-27
syntax A-1–A-26

socket 9-12–9-13
sending passive objects through 9-12

sockets 10-21
sorting

constrained collections 4-33
empty paths 4-35
indexing 5-34
NaN 4-35

sortWith: (IdentityBag) 4-37
source code clustering 12-5
sourceCodeAt: (Behavior) 13-7
spacing in Smalltalk programs A-25
spawning a subprocess 9-9
special

objects
clustering and 12-10
disk page of 12-14
indexing and 5-24
locking and 6-16

selectors A-10

specifying files 9-2
spyOn: (ProfMonitor) 12-16
Stack (example class) 4-21

Index GemStone Programming Guide

Index-20 GemStone Systems, Inc. July 1996

stack overflow 11-24
starting a transaction 6-7–6-13
startMonitoring (ProfMonitor) 12-17
state transition diagram of view 6-3
statement

assignment A-9
defined A-2

static exception
defined 11-6

stdout 9-9, 10-19, 10-22
Stone private page cache 12-24

increasing size 12-26
memory allocated for 12-25

stopMonitoring (ProfMonitor) 12-17
storage

format
determining a class's 13-16

reclaiming 6-12, 12-22
from temporary object space 12-24
RcQueues and 6-30
removing segments and 7-30

reduced conflict classes and 6-26

Stream 4-42–4-46
on a collection 4-43
returned by selection blocks 5-16
to create printable strings 4-46

String 4-24–4-29
comparing 4-29

using associative access 5-10
concatenating 4-27, 12-22
identity 4-29
large, and efficiency 4-28
literal A-6
pattern matching 4-26
searching and comparing (table) 4-25
using Streams to build 4-46

subclass, defined 2-12
subprocess, spawning 9-9
super 12-22
superclass

defined 2-12

Symbol 3-2–3-12, 4-29
determining symbol list for 3-11
literal A-6
resolving 3-2–3-12
white space in A-6

symbol list 3-2–3-10, 8-5
examining 3-3, 3-4
order of searches 3-5
removing dictionaries from 3-8
reordering 3-6

symbol list dictionaries
creating 3-6
inserting 3-6
removing 3-6

SymbolDictionary 4-12
used to define errors 11-2

symbolList
update from GsSession 3-10

symbolList instance variable of class
UserProfile 3-2

symbolResolutionOf: (UserProfile) 3-11
syntax of Smalltalk A-1–A-26
System 6-9, 6-16
system administrator

setting configuration parameters 12-25

SystemRepository
not preserved as passive object 9-10

SystemSegment 7-14
SystemSegment (predefined system object)

defined 7-12

SystemUser (instance of UserProfile)
and SystemSegment 7-12

SystemUser, privileges of 7-31

T
tally of methods executed while profiling

12-16
temporary object space 12-24

increasing size 12-25
memory allocated for 12-25

temporary objects 10-7

GemStone Programming Guide Index

July 1996 GemStone Systems, Inc. Index-21

temporary variables A-8
declaring A-8

term
predicate, conjoining 5-9
predicate, defined 5-6
selection block predicate 5-6

Topaz
logging in with 7-2
viewing symbol list dictionaries in 3-5

tracer 12-2
transaction 6-1

aborting 6-11
views 6-11

automatic mode 6-7
defined 6-7

committing
after changing segments 7-6
after recomputing index segments

5-28
moving objects to disk 12-11
performance 6-27, 12-23

conflict keys (table) 6-9
creating indexes in 5-30
defined 6-7
ending 6-7–6-13
failing to commit 6-10
manual mode 6-7–6-8

defined 6-7
locking 6-14

mode 6-7–6-13
modifying database 6-7

read set 6-5
reading in 6-3
reading outside 6-4
starting 6-7–6-13
updating views 6-12
when to commit 6-2

to optimize performance 12-23
write set 6-5
writing in 6-4
writing outside 6-4

transactionConflicts (System) 6-9

transactionMode (System) 6-7
transactionMode: (System) 6-7
transferring indexes 5-26
tuples 4-38
type-checking of instance variables 2-5

U
unary messages A-12, A-13
uncontinuable errors 11-24
uniqueness and dictionaries 4-10
UNIX commands, executing from Smalltalk

9-9
UNIX process, spawning 9-9
unordered collection

maximum size 4-30

unordered collections 4-30–4-42
unordered instance variables 4-2

constraining 4-8
determining constraints of 4-10
in Bags 4-30

UnorderedCollection 4-30
updating

indexed structures 5-27
method 13-2
views and 6-12

upgrading locks 6-21
user ID 7-2
user-defined class

redefining equality operators 5-8, 5-10–
5-15

rules 5-10

UserGlobals 3-3
UserProfile

creating 7-3
establishing login identity 7-2
group membership and performance

12-22
native language variable used for errors

11-2
not preserved as passive object 9-10
symbol lists and 3-2

Index GemStone Programming Guide

Index-22 GemStone Systems, Inc. July 1996

V
value

dictionary 4-10
returning A-18

value (block) A-19
value (RcCounter) 6-28
variables

accessing 13-3, 13-13
constraining instance 2-5
creating indexes on instance 5-20
free, in selection blocks 5-5
global

clustering 12-5
instance

clustering 12-9
indexing and write set 6-10

limits on length A-7
names A-7

case of A-7
determining which class defines 13-13

retaining values during migration 8-13–
8-26

temporary A-8
type of 2-5

versioning classes 8-2–8-3
defined 8-3
reusable code and 8-18

view 6-8
aborting a transaction 6-11
defined 6-7
invalid 6-12
transition diagram 6-3
updating a transaction 6-12

visibility of modifications 6-8

W
WeekDayNames 3-5
whichClassIncludesSelector:

(Behavior) 13-7
whileFalse: (Boolean) A-23

whileTrue: (Boolean) A-23
white space in Smalltalk programs A-25
wild card character 4-26

in file specification 9-2

workspace 3-5
GemStone 3-5

world authorization 7-11
worldAuthorization: (Segment) 7-31
write locks

defined 6-15
difference with read 6-15

write set 6-4, 6-5
assigning object to segment 6-4
indexing and 6-4
instance variables 6-10

write/write conflict
defined 6-5
reduced conflict classes and 6-27
transaction conflict key 6-9
while overriding a method 6-10

writeLock: (System) 6-16
writeLockAll: (System) 6-20
writeLockAll:ifInComplete: (System)

6-20
WriteStream 4-43
write-write conflict 6-5
writing

files 9-5
in transactions 6-4
outside a transaction 6-4
SequenceableCollection 4-42
with locks 6-13

