
183

Chapter 9: Organizing
Data

In this chapter I’ll discuss several refactorings that make working with
data easier. For many people Self Encapsulate Field (185) will seem
unnecessary. It’s long been a matter of good-natured debate about
whether an object should access its own data directly or through acces-
sors. Sometimes you do need the accessors and then you can get them
with Self Encapsulate Field (185). I generally use direct access as I find it
simple to do this refactoring when I need it.

One of the useful things about object languages is that they allow you
to define new types that go beyond what can be done with the simple
data types of traditional languages. It takes a while to get used to how
to do this, however, and often you start with a simple data value and
then realize that an object would be more useful. Replace Data Value
with Object (189) allows you to turn dumb data into articulate objects.
When you realize that these objects are instances that will be needed in
many parts of the program then you can use Change Value to Reference
(193) to make them into reference objects. If you see an array acting as
a data structure, you can make the data structure clearer with Replace
Array with Object (197). In all these cases the object is but the first step -
the real advantage comes as you use Move Method (160) to add behav-
ior to the new objects.

Magic numbers, numbers with special meaning, have long been a
problem. I remember being told not to use them in my earliest pro-
gramming days. They do keep appearing, however, and I use Replace
Magic Number with Symbolic Constant (217) to get rid of them whenever
I figure out what they are doing.

Links between objects can be one-way or two-way. One-way links are
easier, but sometimes you need to Change Unidirectional Association to
Bidirectional (209) to support new function. Change Bidirectional Associa-

184 ORGANIZING DATA

tion to Unidirectional (213) removes unnecessary complexity should
you find you don’t need this any more.

I’ve often run into cases where gui classes are doing business logic that
they shouldn’t. To move the behavior into proper domain classes you
need to have the data in the domain class as well as supporting the gui
by using Duplicate Data From Presentation to Domain (201). Normally I
don’t like duplicating data, but this is an exception that is usually
impossible to avoid.

One of the key tenets of object-oriented programming is encapsula-
tion. So if there’s any public data streaking around, you can use Encap-
sulate Field (219) to decorously cover it up. If that data is a collection
then use Encapsulate Collection (221) instead as that has special proto-
col. If you have a whole naked record then use Replace Record with Data
Class (228)

One form of data that requires particular treatment is the type code:
some special value that indicates something particular about what
type of instance we are dealing with. These often show up as enumera-
tions, often implemented as static final integers. If the codes are for
information and do not alter the behavior of the class, then you can use
Replace Type Code with Class (229), which gives you better type check-
ing and a platform for moving behavior later. If the behavior of a class
is affected by a type code then use Replace Type Code with Subclasses
(235) if possible, or if you can’t do that use the more complicated (but
more flexible) Replace Type Code with State/Strategy (239).

SELF ENCAPSULATE FIELD 185

Self Encapsulate Field

You are using accessing a field directly, but the coupling to the field
is becoming awkward.

Create Getting and Setting Methods for the field and
use only those to access the field

Motivation

When it comes to accessing fields there are two schools of thought.
One is that within the class where the variable is defined, you should
access it the variable freely (direct variable access). The other says that
even within the class you should always use accessors (indirect vari-
able access). Debates between the two can get heated. (see also the dis-
cussion in [Beck].

Essentially the advantages of indirect variable access are

• it allows a subclass to override how to get that information with a
method

private int _low, _high;
boolean includes (int arg) {

return arg >= _low && arg <= _high;
}

private int _low, _high;
boolean includes (int arg) {

return arg >= getLow() && arg <= getHigh();
}
int getLow() {return _low;}
int getHigh() {return _high;}

186 ORGANIZING DATA

• it supports more flexibility in managing the data, such as lazy ini-
tialization which only initializes the value when you need to use it.

The advantage of direct variable access is

• the code is easier to read - you don’t need to stop and say “this is
just a getting method”

I’m always in two minds with this choice, so I’m usually happy to do
what the rest of the team wants to do. Left to myself though I like to
use direct variable access as a first resort, until it gets in the way. Once
things start becoming awkward I switch to indirect variable access.
Refactoring gives you the freedom to change your mind.

The most important time to do this is when you are accessing a field in
a superclass, but you want to override this variable access with a com-
puted value in the subclass. Self-encapsulating the field is the first
step, after that you can override the Getting and Setting methods as
you need to.

Mechanics
❍ Create a Getting and Setting Method for the field
❍ Find all references to the field and replace them with a getting or

setting method
☞ For accesses to the field, replace with a call to the getting method, for assignments

replace it with a call to the setting method.
☞ You can’t entirely rely on the compiler in a strongly typed language here, as it is

not an error to refer to the field in its own class.
❍ Make the field private.

☞ Smalltalk cannot do this (all subclasses can see a superclass variable). Making a
field private will allow the compiler to catch any subclass using the field, but the
compiler will still not catch references with the field’s class

❍ Double check you have caught all references
❍ Compile and Test

Example

This seems almost too simple for an example, but hey at least it’ll be
quick to write.

class IntRange {

private int _low, _high;

SELF ENCAPSULATE FIELD 187

boolean includes (int arg) {
return arg >= _low && arg <= _high;

}

void grow(int factor) {
_high = _high * factor;

}

IntRange (int low, int high) {
_low = low;
_high = high;

}

To self encapsulate I define getting and setting methods (if they don’t
already exist) and use those.

class IntRange {

boolean includes (int arg) {
return arg >= getLow() && arg <= getHigh();

}

void grow(int factor) {
setHigh (getHigh() * factor);

}

private int _low, _high;

int getLow() {
return _low;

}

int getHigh() {
return _high;

}

void setLow(int arg) {
_low = arg;

}

void setHigh(int arg) {
_high = arg;

}

In cases like this you have to be more careful about using the setting
method in the constructor. Often it is assumed that you use the setting
method for changes after the object is created, so the setting method
has different semantics. So in cases like this I prefer a separate initial-
ization method.

188 ORGANIZING DATA

IntRange (int low, int high) {
initialize (low, high);

}

private void initialize (int low, int high) {
_low = low;
_high = high;

}

The value in doing all this comes when you have a subclass.

class CappedRange extends IntRange {

CappedRange (int low, int high, int cap) {
super (low, high);
_cap = cap;

}

private int _cap;

int getCap() {
return _cap;

}

int getHigh() {
return Math.min(super.getHigh(), getCap());

}
}

I can override all of IntRange’s behavior to take into account the cap,
without changing any of that behavior.

REPLACE DATA VALUE WITH OBJECT 189

Replace Data Value with Object

You have a data item that needs additional data or behavior

Turn the data item into an object

Motivation

Often in early stages of development you make decisions about repre-
senting simple facts as simple data items. As development proceeds
you realize that those simple items aren’t so simple any more. A tele-
phone number may be represented as a string for a while, but later on
you realize that the telephone needs special behavior for formatting,
extracting the area code and the like. For one or two items you may
just put the methods in the owning object, but quickly the code smells
of duplication and feature envy.

When the smell begins turn the data value into an object.

Mechanics
❍ Create the class for the value. Give it a final field of the same type as

the value in the source class. Add an getter and a constructor that

customer: String

Order

name: String

Customer
Order

1

190 ORGANIZING DATA

takes the field as an argument.
❍ Compile
❍ Change the type of the field in the source class to the new class
❍ Change the getter in the source class to call the getter in the new

class
❍ If the field is mentioned in the source class constructor, assign the

field using the new class’s constructor
❍ Change the getting method to create a new instance of the new

class.
❍ Compile and test.
❍ You may now need to use Change Value to Reference (193) on the new

object.

Example

I’ll start with an order class that’s stored the customer of the order as a
string and would like to turn the customer into an object. This way we
have somewhere to store data such as an address, credit rating and the
like (as well as useful behavior that uses this information).

class Order...
public Order (String customer) {

_customer = customer;
}
public String getCustomer() {

return _customer;
}
public void setCustomer(String arg) {

_customer = arg;
}
private String _customer;

Some client code that uses this looks like

 int numberOfOrdersFor(Vector listOfOrders, String customer) {
int result = 0;
Enumeration e = listOfOrders.elements();
while (e.hasMoreElements()) {

Order each = (Order) e.nextElement();
if (each.getCustomer().equals(customer)) result++;

}
return result;

}

REPLACE DATA VALUE WITH OBJECT 191

First I create the new customer class. I give it a final field for a string
attribute, as that is that the order currently uses. I call it name, since
that seems to be what the string is used for. I also add a getting method
and provide a constructor that uses the attribute.

class Customer {
public Customer (String name) {

_name = name;
}
public String getName() {

return _name;
}
private final String _name;

}

Now I change the type of the customer field and change methods that
reference it to use the appropriate references on the customer class.
The getter and constructor are obvious. For the setter I create a new
customer.

class Order...
public Order (String customer) {

_customer = new Customer(customer);
}
public String getCustomer() {

return _customer.getName();
}
private Customer _customer;

public void setCustomer(String arg) {
_customer = new Customer(customer);

}

The setter creates a new customer because the old string attribute was
a value objects, and thus the customer currently is also a value object.
This means that each order has its own customer objects. As a rule
value objects should be immutable — this avoids some nasty aliasing
bugs. Later on we will want customer to be a reference object, but
that’s another refactoring.

At this point we can compile and test.

Now we should look at the methods on order that manipulate cus-
tomer and make some changes to make the new state of affairs clearer.

With the getter we use Rename Method (235)

public String getCustomerName() {
return _customer.getName();

192 ORGANIZING DATA

}

On the constructor and setter, we don’t need to change the signature,
but the name of the arguments should change.

public Order (String customerName) {
_customer = new Customer(customerName);

}
public void setCustomer(String customerName) {

_customer = new Customer(customerName);
}

Further refactoring may well cause us to add a new constructor and
setter that takes an existing customer.

This finishes this refactoring, but in this case, as in many others, there
is another step. If we wish to add such things as credit ratings and
addresses to our customer, we cannot do so now. This is because the
customer is treated as a value object. Each customer has it’s own cus-
tomer object. To give a customer these attributes we need to apply
Change Value to Reference (193) to the customer. You’ll find this exam-
ple continued there....

CHANGE VALUE TO REFERENCE 193

Change Value to Reference

You have a class with many equal instances that you want to
replace with a single object

Turn the object into a reference object

Motivation

There is a useful classification you can make of objects in many sys-
tems: reference objects and value objects. A reference object is some-
thing like customer, or account. Each object stands for one object in the
real world. You don’t usually copy reference objects, and you use the
object identity to test if they are equal. Value objects are things like
date, or money. They are entirely defined through their data values.
You don’t mind copying them, you may have hundreds of “1/1/2000”
objects around your system. You do need to tell if two of them are
equal, so you need to override the equals method (and the hashCode
method too.)

name: String

Customer
Order

1

name: String

Customer
Order

1[

194 ORGANIZING DATA

The decision between reference and value is not always clear cut.
Sometimes you start with a value and want to give it some data that
really makes it a reference object. You can do this by turning it into a
reference object.

Mechanics
❍ Use Replace Constructor with Factory Method (263).
❍ Compile and test
❍ Decide what object is responsible for providing access to the objects

☞ This may be a static dictionary or a registry object.

☞ You may have more than one object that acts as an access point for the new object.

❍ Decide whether the objects are pre-created or created on the fly.
☞ If they are pre-created and you are retrieving them from memory you need to

ensure they are loaded before they are needed.
❍ Alter the factory method to return the reference object.

☞ If the objects are pre-computed, you need to decide how to handle errors if some-
one asks for one that does not exist.

☞ You may wish to Rename Method (235) on the factory to convey that it returns an
existing object.

❍ Compile and test

Example

I’ll start with where I left off in the example for Replace Data Value with
Object (189). I have the following customer class.

class Customer {
public Customer (String name) {

_name = name;
}
public String getName() {

return _name;
}
private final String _name;

}

It is used by an order class.

class Order...
public Order (String customerName) {

_customer = new Customer(customerName);
}
public void setCustomer(String customerName) {

_customer = new Customer(customerName);
}
public String getCustomerName() {

CHANGE VALUE TO REFERENCE 195

return _customer.getName();
}
private Customer _customer;

and some client code

 int numberOfOrdersFor(Vector listOfOrders, String customerName) {
int result = 0;
Enumeration e = listOfOrders.elements();
while (e.hasMoreElements()) {

Order each = (Order) e.nextElement();
if (each.getCustomer().equals(customerName)) result++;

}
return result;

}

At the moment it is a value. Each order has it’s own customer object
even if they are for the same concpeptual customer. I want to change
this so that if we have several orders for the same conceptual cus-
tomer, they share a single customer object. For this case this means
that there should only be one customer object for each customer name.

I begin by using Replace Constructor with Factory Method (263). I define the
factory method on customer.

class Customer {
public static Customer create (String name) {

return new Customer(name);
}

Then replace the calls to the constructor with calls to the factory.

class Order {
public Order (String customer) {

_customer = Customer.create(customer);
}

Then I make the constructor private.

class Customer {
private Customer (String name) {

_name = name;
}

Now I have to decide how I access the customers. My preference is to
use another object. Such a situation works well with something like the
line items on an order. The order is responsible for providing access to
the line items. However here there isn’t such an obvious object. In this
situation I usually create a registry object to be the access point. For

196 ORGANIZING DATA

simplicity in this example however, I will store them using a static
field on customer, making the customer class the access point.

private static Dictionary _instances = new Hashtable();

Then I decide whether I create customers on the fly when asked, or
whether they are pre-created. I’ll use the latter. In my application start-
up code I’ll load up the customers that are in use. These could come
from a database or from a file, but again for simplicity I’ll use explicit
code. I can always use Substitute Algorithm (143) to change it later.

class Customer...
static void loadCustomers() {

new Customer ("Lemon Car Hire").store();
new Customer ("Associated Coffee Machines").store();
new Customer ("Bilston Gasworks").store();

}
private void store() {

_instances.put(this.getName(), this);
}

Now I’ll alter the factory method to return the pre-created customer.

public static Customer create (String name) {
return (Customer) _instances.get(name);

}

Since the create method always returns an existing customer, I should
make this clear by using Rename Method (235).

class Customer...
public static Customer getNamed (String name) {

return (Customer) _instances.get(name);
}

REPLACE ARRAY WITH OBJECT 197

Replace Array with Object

You have an array where certain elements mean different things

Replace the array with an object, with a field for each
element

Motivation

Array’s are a common structure for organizing data. However they
should only be used to contain a collection of similar objects in some
order. Sometimes, however you see them used to contain a number of
different things. Conventions such as “the first element on the array is
the person’s name” are hard to remember. With an object you can use
names of fields and methods to convey this information so you don’t
have remember it, or hope the comments are up to date. You can also
encapsulate the information, and use Move Method (160) to add behav-
ior to it.

Mechanics
❍ Create a new class to represent the information in the array. Give it

a public field for the array
❍ Change all users of the array to use the new class
❍ Compile and test
❍ One by one, add getters and setters for each element of the array.

String[] row = new String[3];
row [0] = "Liverpool";
row [1] = "15";

Performance row = new Performance();
row.setName("Liverpool");
row.setWins("15");

198 ORGANIZING DATA

Name the accessors after the purpose of the array element. Change
the clients to use the accessors. Compile and test after each change

❍ When all array accesses are replaced by methods, make the array
private

❍ Compile
❍ For each element of the array, create a field in the class and change

the accessors to use the field.
❍ Compile and test after each element is changed
❍ When all elements have been replaced with fields, delete the array.

Example

I’ll start with an array that’s used to hold the name, wins, and losses of
a sports team. It would be declared as

String[] row = new String[3];

It would be used with code like

row [0] = "Liverpool";
row [1] = "15";

String name = row[0];
int wins = Integer.parseInt(row[1]);

To turn this into an object, we begin by creating a class.

class Performance {}

For our first step we give the new class a public data member. (I know
this is evil and wicked, but I’ll reform in due course.)

public String[] _data = new String[3];

Now I find the spots that create and access the array. Where the array
is created I use

Performance row = new Performance();

Where it is used, I change to

row._data [0] = "Liverpool";
row._data [1] = "15";

String name = row._data[0];
int wins = Integer.parseInt(row._data[1]);

Now, one by one, I add more meaningful getters and setters. I start
with the name.

REPLACE ARRAY WITH OBJECT 199

class Performance...
public String getName() {

return _data[0];
}
public void setName(String arg) {

_data[0] = arg;
}

I alter the users of that row to use the getters and setters instead,

row.setName("Liverpool");
row._data [1] = "15";

String name = row.getName();
int wins = Integer.parseInt(row._data[1]);

I can do the same with the second element. To make matters easier I
can encapsulate the data type conversion as well.

class Performance...
public int getWins() {

return Integer.parseInt(_data[1]);
}
public void setWins(String arg) {

_data[1] = arg;
}

....
client code...

row.setName("Liverpool");
row.setWins("15");

String name = row.getName();
int wins = row.getWins();

Once I’ve done this for each element, I can make the array private.

private String[] _data = new String[3];

The most important part of this refactoring, changing the interface, is
now done. However it is also useful to replace the array internally. I
can do this by adding a field for each array element, and changing the
accessors to use it.

class Peformance...
public String getName() {

return _name;
}
public void setName(String arg) {

_name = arg;
}
private String _name;

200 ORGANIZING DATA

I do this for each element in the array. When I’ve done them all I delete
the array.

DUPLICATE DATA FROM PRESENTATION TO DOMAIN 201

Duplicate Data From Presentation to Domain

You have domain data embedded in a gui control

Copy the data to a domain object. Set up a mecha-
nism to synchronize the two pieces of data.

Motivation

A well layered system will separate the code that handles the user
interface from code that handles the business logic. It does this for sev-
eral reasons: you may want several interfaces for similar business
logic, the user-interface gets too complicated if it does both, it is easier
to maintain and evolve domain objects separate from the gui, or you
may have different developers handling these different pieces.

StartField_FocusLost
EndField_FocusLost
LengthField_FocusLost
calculateLength
calculateEnd

startField: TextField
endField: TextField
lengthField: TextField

Interval Window

StartField_FocusLost
EndField_FocusLost
LengthField_FocusLost

startField: TextField
endField: TextField
lengthField: TextField

Interval Window

calculateLength
calculateEnd

start: String
end: String
length: String

Interval Window

«interface»
Observer

Observable

1

202 ORGANIZING DATA

Although the behavior can be separated easily, the data often cannot.
Data needs to be embedded in gui controls which has the same mean-
ing as data that lives in the domain model. UI frameworks, from MVC
onwards, that are used to a multi-tiered system provide mechanisms
to allow you to provide this data and keep everything in sync.

If you come across that has been developed within a two tier
approach, where business logic is embedded into the UI, you will need
to separate out this behavior. Much of this is about decomposing and
moving methods. For the data however, you cannot just move the
data, you have to duplicate it and provide the synchronization mecha-
nism.

Mechanics
❍ Make the presentation class an observer [Gang of Four] of the

domain class
☞ If there is no domain class yet, create one.

☞ If there is no link from the presentation class to the domain class, put the domain
class in a field of the presentation class.

❍ Use Self Encapsulate Field (185) on the domain data within the gui
class.

❍ Compile and test
❍ Add a call to the setting method in the event handler, to update the

component with its current value using direct access.
☞ That is put a method in the event handler that updates the value of the compo-

nent based on its current value. Of course this is completely unnecessary, you are
just setting the value to its current value, but by using the setting method you
allow any behavior there to execute.

☞ When you do this change, don’t use the getting method for the component, use
direct access to the component. Later on the getting method will pull the value
from the domain, which does not change until the setting method executes.

☞ Make sure the event handling mechanism is triggered by the test code

❍ Compile and test
❍ Define the data and accessor methods in the domain class

☞ Make sure the setting method on the domain triggers the notify mechanism in the
observer pattern.

☞ Use the same data type in the domain as was on the presentation (usually a
string). Convert the data type in a later refactoring.

❍ Redirect the accessors to write to the domain field.
❍ Modify the observer’s update method to copy the data from the

domain field to the gui control.
❍ Compile and test

DUPLICATE DATA FROM PRESENTATION TO DOMAIN 203

Example

I’ll start with the window in Figure 9.1. The behavior is very simple.
Whenever you change the value in one of the text fields, the other ones
update. If you change the start or end fields, it calculates the length, if
you change the length field it calculates the end.

All the methods are on a single IntervalWindow class. The fields are set
to respond to the loss of focus from the field.

public class IntervalWindow extends Frame...
java.awt.TextField _startField;
java.awt.TextField _endField;
java.awt.TextField _lengthField;

class SymFocus extends java.awt.event.FocusAdapter
{

public void focusLost(java.awt.event.FocusEvent event)
{

Object object = event.getSource();
if (object == _startField)

StartField_FocusLost(event);
else if (object == _endField)

EndField_FocusLost(event);
else if (object == _lengthField)

LengthField_FocusLost(event);
}

}

Figure 9.1: A simple gui window

204 ORGANIZING DATA

The listener reacts by calling StartField_FocusLost when focus is lost on
the start field, and EndField_FocusLost and LengthField_FocusLost for the
other fields. These event handling methods look like this:

void StartField_FocusLost(java.awt.event.FocusEvent event) {
if (isNotInteger(_startField.getText()))

_startField.setText("0");
calculateLength();

}

void EndField_FocusLost(java.awt.event.FocusEvent event) {
if (isNotInteger(_endField.getText()))

_endField.setText("0");
calculateLength();

}

void LengthField_FocusLost(java.awt.event.FocusEvent event) {
if (isNotInteger(_lengthField.getText()))

_lengthField.setText("0");
calculateEnd();

}

(If you are wondering why I did the window this way, I just did it the
easiest way my IDE (Cafe) encouraged me to.)

All of them insert a zero if any non integer characters appear and call
the relevant calculation routine.

void calculateLength(){
 try {
 int start = Integer.parseInt(_startField.getText());
 int end = Integer.parseInt(_endField.getText());
 int length = end - start;
 _lengthField.setText(String.valueOf(length));
 } catch (NumberFormatException e) {
 throw new RuntimeException ("Unexpected Number Format Error");
 }
}
void calculateEnd() {
 try {
 int start = Integer.parseInt(_startField.getText());
 int length = Integer.parseInt(_lengthField.getText());
 int end = start + length;
 _endField.setText(String.valueOf(end));
 } catch (NumberFormatException e) {
 throw new RuntimeException ("Unexpected Number Format Error");
 }
}

DUPLICATE DATA FROM PRESENTATION TO DOMAIN 205

My task, should I choose to accept it, is to separate out the non-visual
logic from the gui. Essentially this means moving calculateLength and
calculateEnd to a separate domain class. However to do this they need
to refer to the start, end, and length data without referring to the win-
dow class. The only way I can do this is to duplicate this data in the
domain class and synchronize the data with the gui.

I don’t currently have a domain class, so I create an (empty) one.

class Interval extends Observable {}

The interval window needs a link to this new domain class.

 private Interval _subject;

I then need to properly initialize this field, and make interval window
an observer of the interval. I can do this by putting the following code
in interval window’s constructor.

 _subject = new Interval();
 _subject.addObserver(this);
 update(_subject, null);

I like to put this code at the end of construction process. The call to
update will ensure that as I duplicate the data in the domain class the
gui is initialized from the domain class.

Of course to do this I need to declare that interval window implements
observable.

public class IntervalWindow extends Frame implements Observer

In order to implement Observer I need to create an update method.
For the moment this can be blank.

 public void update(Observable observed, Object arg) {
 }

I can compile and test at this point. I haven’t made any real changes
yet, but I can make mistakes in the simplest places.

Now I can turn my attention to moving fields. As usual I make the
changes one field at a time. To demonstrate my command of the
English language I’ll start with the end field. The first task is to apply
Self Encapsulate Field (185). Text fields are updated with getText and
setText methods. I create accessors that call these

String getEnd() {
return _endField.getText();

206 ORGANIZING DATA

}

void setEnd (String arg) {
_endField.setText(arg);

}

I find every reference to _endField and replace them the appropriate
accessors.

 void calculateLength(){
 try {
 int start = Integer.parseInt(_startField.getText());
 int end = Integer.parseInt(getEnd());
 int length = end - start;
 _lengthField.setText(String.valueOf(length));
 } catch (NumberFormatException e) {
 throw new RuntimeException ("Unexpected Number Format Error");
 }
 }

 void calculateEnd() {
 try {
 int start = Integer.parseInt(_startField.getText());
 int length = Integer.parseInt(_lengthField.getText());
 int end = start + length;
 setEnd(String.valueOf(end));
 } catch (NumberFormatException e) {
 throw new RuntimeException ("Unexpected Number Format Error");
 }
 }

void EndField_FocusLost(java.awt.event.FocusEvent event) {
if (isNotInteger(getEnd()))

setEnd("0");
calculateLength();

}

That’s the normal process for Self Encapsulate Field (185). However
when you are working with a GUI, there is a complication. The user can
change the field value directly without calling setEnd. So I need to put a
call to setEnd into the event handler for the GUI. This call will change
value of the end field to the current value of the end field. Of course
this does nothing at the moment, but it does ensure the user input goes
through the setting method.

void EndField_FocusLost(java.awt.event.FocusEvent event) {
setEnd(_endField.getText());
if (isNotInteger(getEnd()))

setEnd("0");

DUPLICATE DATA FROM PRESENTATION TO DOMAIN 207

calculateLength();
}

You should notice that in this call I don’t use getEnd, instead I access
the field directly. I do this because later on in the refactoring getEnd will
get a value from the domain object, not from the field. At that point
using it would mean that every time the user changed the value of the
field this code would just change it back again, so here I must use
direct access.

At this point I can compile and test the encapsulated behavior.

Now I add the end field to the domain class.

class Interval...
 private String _end = "0";

I initialize it to the same value that it is initialized to in the gui. I now
add getting and setting methods.

class Interval...

String getEnd() {
return _end;

}
void setEnd (String arg) {

_end = arg;
setChanged();
notifyObservers();

}

Since I’m using the observer pattern I have to add the notification code
into the setting method. You’ll also notice that I use string, not a (more
logical) number. This is because I want to make the smallest possible
change. Once I’ve successfully duplicated the data I can look to change
the internal data type to an integer.

I can now do one more compile and test before I perform the duplica-
tion. By getting all this preparatory work done I’ve minimized the risk
in this tricky step.

The first change is updating the accessors on interval window to use
interval.

class IntervalWindow...
String getEnd() {

return _subject.getEnd();
}
void setEnd (String arg) {

208 ORGANIZING DATA

_subject.setEnd(arg);
}

I also need to update update to ensure the gui reacts to the notification.

class IntervalWindow...
 public void update(Observable observed, Object arg) {
 _endField.setText(_subject.getEnd());
 }

This is the other place where I have to use direct access. If I called the
setting method I would get into an infinite recurse.

I can now compile and test and the data is properly duplicated.

I can repeat for the other two fields. Once this is done I can apply Move
Method (160) to move calculateEnd and calculateLength over to the inter-
val class.

CHANGE UNIDIRECTIONAL ASSOCIATION TO BIDIRECTIONAL 209

Change Unidirectional Association to Bidirectional

You have classes that need to have a two way reference

Add back-pointers, change modifiers to update both
sets

Motivation

You may find that you have initially set up two classes so that one
class refers to the other. Over time you may find that a client of the
referred class needs to get to the objects that refer to it. Effectively this
means navigating backwards along the pointer. Pointers are one-way
links, so you can’t do this. Often you can get around this by find
another route. This may cost in computation, but is still reasonable,
and you can have a method on the referred class that uses this behav-
ior.

However sometimes this is not easy, and you need to set up a two-way
reference (sometimes referred to as back pointers). If you aren’t used
to these, it’s easy to get tangled up doing this, but once you get used to
the idiom it is not too complicated.

The idiom is awkward enough that you should have tests, at least until
you are comfortable with the idiom. Since I usually don’t bother test-

Order Customer
1[

Order Customer
1[

210 ORGANIZING DATA

ing accessors (the risk is not high enough) this is the rare case of a
refactoring that adds a test.

This refactoring uses back-pointers to implement the bidirectionality.
There are other techniques, such as link objects, that would require
other refactorings.

Mechanics
❍ Add a field for the back--pointer
❍ Decide which class will control the association
❍ Create a helper method on the non-controlling side of the associa-

tion. Name this to clearly indicate its restricted use.
❍ If the existing modifier is on the controlling side, modify it to

update the back pointers
❍ If the existing modifier is on the controlled side, create a controlling

method on the controlling side and call it from the existing modi-
fier.

Example

I'll start with a simple program that has an order which refers to a cus-
tomer

class Order...
Customer getCustomer() {

return _customer;
}
void setCustomer (Customer arg) {

_customer = arg;
}
Customer _customer;

The customer class has no reference back to the order.

I start the refactoring by adding a field to the customer. As a customer
can have several orders this field will be a collection. Since we don’t
want a customer to have the same order more than once in it’s collec-
tion, the correct collection would be a set. However since I’m using
vanilla Java 1.1 I’ll have to make do with a vector.

class Customer {
private Vector _orders = new Vector();

CHANGE UNIDIRECTIONAL ASSOCIATION TO BIDIRECTIONAL 211

Now I need to decide which class will take charge of the association.
My decision process runs like this

• If both objects are reference objects, and it is a one to many associa-
tion, then the object which has the one reference is the controller.
(That is if one customer has many orders, then the order controls
the association)

• If one object is a component of the other, then the composite
should control the association.

• If both objects are reference objects, and it is a many to many asso-
ciation, then it doesn’t matter.

As the order will take charge I need to add a helper method to the cus-
tomer that the order’s modifier will use. I use name friendOrders to sig-
nal that this method is only to be used in special cases. I also minimize
its visibility by making it package visibility if at all possible. I do have
to make it public if the other class is in another package.

class Customer ...
Vector friendOrders() {
/** should only be used by Order */

return _orders;
}

Now I update the modifier to update the back pointers.

void setCustomer (Customer arg) ...
if (_customer != null) _customer.friendOrders().removeElement(this);
_customer = arg;
if (_customer != null) _customer.friendOrders().addElement(this);

}

The exact code in the controlling modifier will be different depending
on the multiplicity of the association. If the customer is not allowed to
be null, I can forego the null checks (but I need to check for a null argu-
ment). But the basic pattern is always the same, first tell the target
object to disconnect, second reconnect at your end, then tell the new
target to reconnect.

If you want to modify the link through the customer, you let it call the
controlling method.

class Customer ...
void addOrder(Order arg) {

arg.setCustomer(this);
}

212 ORGANIZING DATA

If an order could have many customers, then we would have a many
to many case, and the methods would look like this.

class Order... //controlling methods
void addCustomer (Customer arg) {

arg.friendOrders().addElement(this);
_customers.addElement(arg);

}
void removeCustomer (Customer arg) {

arg.friendOrders().removeElement(this);
_customers.removeElement(arg);

}

class Customer...
void addOrder(Order arg) {

arg.addCustomer(this);
}
void removeOrder(Order arg) {

arg.removeCustomer(this);
}

CHANGE BIDIRECTIONAL ASSOCIATION TO UNIDIRECTIONAL 213

Change Bidirectional Association to Unidirectional

You have a two way association that no longer needs to be two way

Drop the unneeded end of the association

Motivation

Bidirectional associations are useful but they carry a price. The price is
the added complexity of maintaining the two way links and ensuring
that objects are properly created and removed. Bidirectional associa-
tions are not natural for many programmers, and so they often are a
source of errors.

Lots of two way links also make it too easy for mistake to lead to zom-
bies: objects that should be dead but still hang around due to some ref-
erence that never got cleared.

Finally bidirectional associations force an interdependency between
the two classes. Any change to one may cause a change to another. If
the classes are in separate packages, this means you get a interdepen-
dency between the packages. Many interdependencies lead to a highly
coupled system, where any little change leads to lots of unpredictable
ramifications.

Order Customer
1[

Order Customer
1[

214 ORGANIZING DATA

As such you should use bidirectional associations when you need to,
but not when you don’t. As soon as you see a bidirectional association
is no longer pulling its weight, drop the unnecessary end.

Mechanics
❍ Examine all the readers of the field that needs to be eliminated to

see if it is feasible to eliminate the field
☞ Look at direct readers and further methods that call the methods

☞ Consider the possibility of using Substitute Algorithm (143) on the getter for the
field

☞ Consider adding the object as an argument to all methods that use the field

❍ If the change seems feasible then decide whether you need to substi-
tute the getting method.

❍ If you are substituting the getting method, use Self Encapsulate Field
(185), carry out Substitute Algorithm (143) on the getter, compile and
test.

❍ If you aren’t substituting the getter then change each user of the
field so that it gets the object in the field another way. Compile and
test after each change.

❍ When there is no reader left of the field, remove all updates to the
field, and remove the field.

☞ If there are many places that assign the field then use Self Encapsulate Field (185) so
that they all use a single setter. Compile and test. Then change the setter to have
an empty body. Compile and test. If that works then remove the field, the setter,
and all calls to the setter.

❍ Compile and test.

Example

I’ll start from where I ended up from the example in Change Unidirec-
tional Association to Bidirectional (209). I have a customer and order with
a bi-directional link.

class Order...
Customer getCustomer() {

return _customer;
}
void setCustomer (Customer arg) {

if (_customer != null) _customer.friendOrders().removeElement(this);
_customer = arg;
if (_customer != null) _customer.friendOrders().addElement(this);

}
private Customer _customer;

CHANGE BIDIRECTIONAL ASSOCIATION TO UNIDIRECTIONAL 215

class Customer...
void addOrder(Order arg) {

arg.setCustomer(this);
}
private Vector _orders = new Vector();
Vector friendOrders() {

/** should only be used by Order */
return _orders;

}

I’ve now found that in my application I don’t have orders unless I
already have a customer, so I want to break the link to customer.

The hardest part of this refactoring is checking that I can do it. Once I
know it’s safe to do, then it’s easy. The issue is whether code is relying
on the customer field being there. Then in order to remove it, I need to
provide an alternative.

So my first move is to study all the readers of the field, and the meth-
ods that use those readers. Can I find another way to provide the cus-
tomer object? Often this means passing in the customer as an
argument for an operation. Here’s a simplistic example of this.

class Order...
double getDiscountedPrice() {

return getGrossPrice() * (1 - _customer.getDiscount());
}

changes to

class Order...
double getDiscountedPrice(Customer customer) {

return getGrossPrice() * (1 - customer.getDiscount());
}

This works particularly well when the behavior is being called by the
customer, since it’s then easy to pass itself in as an argument. So

class Customer...
double getPriceFor(Order order) {

Assert.isTrue(_orders.contains(order));
return order.getDiscountedPrice();

becomes

class Customer...
double getPriceFor(Order order) {

Assert.isTrue(_orders.contains(order));
return order.getDiscountedPrice(this);

}

216 ORGANIZING DATA

Another alternative I might have is to give order an operation to get a
customer, that does not use the field. Here my aim is to use Substitute
Algorithm (143) on the body of Order.getCustomer. I might do something
like this

Customer getCustomer() {
Enumeration e = Customer.getInstances();
while (e.hasMoreElements()) {

Customer each = (Customer)e.nextElement();
if (each.containsOrder(this)) return each;

}
return null;

}

Slow, but it works. In a database context it may not even be that slow if
I use a database query. If the order class contains methods that use the
customer I can change them to use getCustomer by using Self Encapsulate
Field (185).

If I retain the accessor, then the association is still bidirectional in inter-
face, but unidirectional in implementation. I remove the back-pointer,
but still retain the interdependencies between the two classes.

When I’m doing this I first study all the uses to see if it seems feasible.
If I substitute the getting method, then I substitute that and leave the
rest till later. Otherwise I change the callers one at a time to use the
customer from another source. I compile and test after each change. In
practice this usually is pretty rapid, because if it were complicated I
would give up on this refactoring.

Once I’ve eliminated the readers of the field, I can work on the writers
of the field. This is as simple as removing any assignments to the field,
and then removing the field. Since nobody is reading it any more, that
shouldn’t matter.

REPLACE MAGIC NUMBER WITH SYMBOLIC CONSTANT 217

Replace Magic Number with Symbolic Constant

You have a quoted number with a particular meaning

Create a constant, name it after the meaning, and
replace the number with it.

Motivation

Magic numbers are one of oldest ills in computing. They are numbers
with special values, that are usually not obvious. They are really nasty
when you need to reference the same logical number in more than one
place. If the numbers might ever change, then making the change is a
nightmare. Even if you don’t make a change, you have the difficulty of
figuring out what to do.

Many languages allow you to declare a constant. There is no cost in
performance and a great improvement in readability.

However before you do this refactoring you should always look for an
alternative. Look at how the magic number is used. Often you can find
a better way to use it. If the magic number is a type code then consider
Replace Type Code with Class (229). If it is the length of an array then use
anArray.length instead when you are looping through the array.

double potentialEnergy(double mass, double height) {
return mass * height * 9.81;

}

double potentialEnergy(double mass, double height) {
return mass * GRAVITATIONAL_CONSTANT * height;

}
static final double GRAVITATIONAL_CONSTANT = 9.81;

218 ORGANIZING DATA

Mechanics
❍ Declare a constant and set it to the value of the magic number.
❍ Find all occurrences of the magic number
❍ See if it matches the usage of the constant, if so change it to use the

constant
❍ Compile
❍ When all are changed compile and test, at this point all should work

as nothing has been changed.
☞ A good test for this to see if you can change the constant easily. This may mean

altering some expected results to match the new value. This isn’t always possible,
but it is a good trick when it works.

ENCAPSULATE FIELD 219

Encapsulate Field

There is a public field

Make it private and provide accessors

Motivation

One of the principal tenets of object-orientation is encapsulation, or
data hiding. This says that you should never make your data public.
When you make data public it allows other objects to change and
access data values without the owning object knowing about it. This
separates data from behavior.

This is seen as a bad thing because it reduces the modularity of the
program. When the data and behavior that uses it are clustered
together, then it is easier to change, because the changed code is in one
place rather than scattered all over the program.

This refactoring begins the process by hiding the data and adding
accessors. But this is only the first step. A class with only accessors is a
dumb class that doesn’t really take advantage of the opportunities of
objects, and an object is terrible thing to waste. Once I’ve done Encap-
sulate Field (219) I look for those methods that use the new methods to
see if they fancy packing their bags and moving to the new object with
a quick Move Method (160).

public String _name

private String _name;
public String getName() {return _name;}
public void setName(String arg) {_name = arg;}

220 ORGANIZING DATA

Mechanics
❍ Create getting and setting methods for the field
❍ Find all places outside the class that reference the field. If it uses the

value then replace the reference with a call to the getting method. If
it changes the value then replace with a call to the setting method.

☞ If the field is an object and the client invokes a modifier on the object, then that is
a use. Only use the setting method to replace assignment.

❍ Compile and test after each change
❍ Once all references are changed, declare the field as private.
❍ Compile and test

ENCAPSULATE COLLECTION 221

Encapsulate Collection

A method returns a collection

Make it return a read only view and provide add/
remove methods

Motivation

Often a class will contain a collection of instances. This collection
might be an array, vector, dictionary, or one of the more sophisticated
collections available in Java 1.2. In such cases there is often the usual
getter and setter for that collection.

However collections should use a slightly different protocol to other
kinds of data. The getter should not return the collection object itself,
for that allows clients to manipulate the contents of the collection with-
out the owning class knowing what is going on. Also it reveals too
much to clients about the object’s internal data structures. So a getter
for a multi-valued attribute should return an iterator, which in Java
means an Enumeration.

In addition there should not be a setter for collection, rather there
should be operations to add and remove elements. This gives the own-
ing object control over adding and removing elements from the collec-
tion.

With this protocol the collection is properly encapsulated, which
reduces the coupling of the owning class to its clients.

Mechanics
❍ Add an add and remove method for the collection
❍ Initialize the field to an empty collection
❍ Compile
❍ Find callers of the setting method. Either modify the setting method

to use the add/remove operations or have the clients call those
operations instead.

☞ Two cases are when the setter only is used when the collection is empty, and
when the setter is used to replace a full collection.

222 ORGANIZING DATA

☞ You may wish to rename the setting method to better communicate the intention
using Rename Method (235)

❍ Compile and test
❍ Find all users of the getter that are modifying the collection. Change

them to use the modifier. Compile and test after each change
❍ When all uses of the getter to modify have been changed, modify

the getter to return a copy of the collection
❍ Compile and test
❍ Change the name of the current getter and add a getter to return an

enumeration. Find users of the getter and change them to use one of
the new methods.

☞ If this is too big a jump use Rename Method (235) on the getter, create a new
method that returns an enumeration, and change callers to use the new method.

❍ Compile and test
❍ Find the users of the getter. Look for code that should be on the host

object. Use Extract Method (114) and Move Method (160) to get it
there.

❍

Example

As an example we will have a person taking courses. Our course is
pretty simple

class Course ...
public Course (String name, boolean isAdvanced) {...};
public boolean isAdvanced() {...};

We will not bother with anything further on the course. The interest-
ing class is the person.

class Person...
public Vector getCourses() {

return _courses;
}
public void setCourses(Vector arg) {

_courses = arg;
}
private Vector _courses;

With this interface, clients adds courses with code like

Person kent = new Person();
Vector v = new Vector();
v.addElement(new Course ("Smalltalk Programming", false));
v.addElement(new Course ("Appreciating Single Malts", true));
kent.setCourses(v);
Assert.equals ("courses", 2, kent.getCourses().size());

ENCAPSULATE COLLECTION 223

Course refact = new Course ("Refactoring", true);
kent.getCourses().addElement(refact);
kent.getCourses().addElement(new Course ("Brutal Sarcasm", false));
Assert.equals ("2nd courses", 4, kent.getCourses().size());
kent.getCourses().removeElement(refact);
Assert.equals ("3rd courses", 3, kent.getCourses().size());

A client that wants to know about advanced courses might do it this
way

Enumeration e = person.getCourses().elements();
int count = 0;
while (e.hasMoreElements()) {

Course each = (Course) e.nextElement();
if (each.isAdvanced()) count ++;

}

The first thing I want to do is to create the proper modifiers for the col-
lection and compile

class Person
public void addCourse(Course arg) {

_courses.addElement(arg);
}
public void removeCourse(Course arg) {

_courses.removeElement(arg);
}

Life will be easier if I initialize the field as well

private Vector _courses = new Vector();

I then look at the users of the setter. If there are many clients, and the
vector is used heavily then I will need to replace the body of the setter
to use the add/remove operations. The complexity of this depends on
how the setter is used. There are two cases. In the simplest case the cli-
ent uses the setter to initialize the values, i.e. there are no courses
before the setter is applied. In this case I replace the body of the setter
to use the add method.

class Person...
public void setCourses(Vector arg) {

Assert.isTrue(_courses.isEmpty());
Enumeration e = arg.elements();
while (e.hasMoreElements()) {

addCourse((Course) e.nextElement());
}

}

224 ORGANIZING DATA

After changing the body like this it is wise to use Rename Method (235)
to make the intention clearer

public void initializeCourses(Vector arg) {
Assert.isTrue(_courses.isEmpty());
Enumeration e = arg.elements();
while (e.hasMoreElements()) {

addCourse((Course) e.nextElement());
}

}

In the more general case I have to use the remove method to remove
every element first and then add the elements. But I find that occurs
rarely (general cases often are).

However if the clients simply set up a vector and use it, I can get them
to use the add and remove methods directly, and remove the setter
completely. So code like

Person kent = new Person();
Vector v = new Vector();
v.addElement(new Course ("Smalltalk Programming", false));
v.addElement(new Course ("Appreciating Single Malts", true));
kent.setCourses(v);

becomes

Person kent = new Person();
kent.addCourse (new Course ("Smalltalk Programming", false));
kent.addCourse (new Course ("Appreciating Single Malts", true));

Now I start looking at users of the getter. My first concern are those
cases where somebody uses the getter to modify the underlying collec-
tion, cases like

kent.getCourses().addElement(new Course ("Brutal Sarcasm", false));

I need to replace this with a call to the new modifier.

kent.addCourse(new Course ("Brutal Sarcasm", false));

Once I’ve done this for everyone I can check that nobody is modifying
through the getter by changing the getter body to return a copy.

class Person...
Vector getCourses() {

return (Vector) _courses.clone();
}

At this point I’ve encapsulated the collection. Nobody can change the
elements of collection except through the person. However returning a

ENCAPSULATE COLLECTION 225

collection is still poor style, and most of the time not that helpful to its
clients. Often an enumeration is more helpful since they will usually
be enumerating through the collection. So in this case change the name
of the existing getter and create a new getter that returns an enumera-
tion

public Vector getCoursesVector() {
return (Vector) _courses.clone();

}
public Enumeration getCourses() {

return _courses.elements();
}

Now I go back to all the users of the getter. I either change them to use
the enumeration, or let them call the new method. In many cases call-
ers will get the vector in order to get the enumeration

Enumeration e = person.getCourses().elements();

The new interface makes that simpler.

Enumeration e = person.getCourses();

When I’ve changed all these I can compile and test. If that is too big a
change I can use Rename Method (235) to change getCourses to
getCoursesVector, and then alter callers one by one to use the enumera-
tion directly. Most of the time I find it easier to do the two together as I
am working through the caller anyway.

Now I have the right interface. Once I’ve done that, however, I like to
look at the users of the getter, looking for code that ought to be on Per-
son. Code like

Enumeration e = person.getCourses();
int count = 0;
while (e.hasMoreElements()) {

Course each = (Course) e.nextElement();
if (each.isAdvanced()) count ++;

}

Is probably better moved to person. First I use Extract Method (114) on
the code

 int numberOfAdvancedCourses(Person person) {
Enumeration e = person.getCourses();
int count = 0;
while (e.hasMoreElements()) {

Course each = (Course) e.nextElement();

226 ORGANIZING DATA

if (each.isAdvanced()) count ++;
}
return count;

}

And then I use Move Method (160) to move it to person.

class Person...
public int numberOfAdvancedCourses() {

Enumeration e = getCourses();
int count = 0;
while (e.hasMoreElements()) {

Course each = (Course) e.nextElement();
if (each.isAdvanced()) count ++;

}
return count;

}

A common case is

kent.getCoursesVector().size()

which can be changed to

kent.numberOfCourses()

class Person...
public int numberOfCourses() {

return _courses.size();
}

A few years ago I was concerned that moving this kind of behavior
over to person would lead to a bloated person class. In practice, I’ve
found that usually isn’t a problem.

If your collection is an array, it is a little harder. You can provide an
enumeration with an inner class

private String[] _skills = new String[10];

public Enumeration getSkills() {
return new Enumeration () {

private int _position = 0;
public boolean hasMoreElements() {

return (_position < _skills.length);
}
public Object nextElement() throws NoSuchElementException {

if (hasMoreElements())
return _skills[_position++];

else throw new NoSuchElementException();
}

};

ENCAPSULATE COLLECTION 227

}

Similarly you can provide methods to update the array. Usually, how-
ever, I find it easier to just change the field to be a vector instead of an
array. That way I get all of the behavior of vector and I don’t have to
worry about sizing the array. You can use the copyInto method of vec-
tor to provide an array for clients who need the array.

private Vector _skills = new Vector();
public String[] getSkillsArray() {

Object[] result = new Object[_skills.size()];
_skills.copyInto(result);
return (String[]) result;

}

228 ORGANIZING DATA

Replace Record with Data Class

You have a record structure in a traditional programming environ-
ment. How do you begin to make this object oriented?

Make a dumb data object for the record.

Motivation

Record structures are a common feature of programming environ-
ments. There are various reasons you may want to bring them into an
object-oriented program. You could be copying a legacy program as in
Replace Program With Class (305), you could be communicating a struc-
tured record with a traditional programming API, or a data base
record. In these cases it is useful to create an interfacing class to deal
with this external element. It is simplest to make the class look just like
the external record. You then move other fields and methods into the
class later.

A less obvious, but very compelling case of this is an array where the
element in each index has some special meaning. In this case you use
Replace Array with Object (197).

Mechanics
❍ Create a class to represent the record
❍ Give the class a private field with a getting method and a setting

method for each data item.

You now have a dumb data object, it has no behavior yet, but further
refactoring will explore that issue.

REPLACE TYPE CODE WITH CLASS 229

Replace Type Code with Class

You have a numeric type code that does not affect behavior

Replace the number with a new class

Motivation

Numeric type codes, or enumerations, are a common feature of C-
based languages. With symbolic names they can be quite readable. The
problem is that the symbolic name is only an alias, the compiler still
sees the underlying number. Thus the compiler type checks using the
number not the symbolic name. Any method that takes the type code
as an argument will expect a number, and there is nothing to force a
symbolic name to be used. This can reduce readability and be a source
of bugs.

If you replace the number with a class, the compiler can now type
check on the class. By providing factory methods for the class you can
statically check that only valid instances are created, and that those
instances are passed on to the correct objects.

Before you do this, however, you need to consider the other type code
replacements. Only replace the type code with a class if the type code

O: int
A : int
B : int
AB : int
bloodGroup : int

Person

O: BloodGroup
A : BloodGroup
B : BloodGroup
AB : BloodGroup

BloodGroup

Person

1

230 ORGANIZING DATA

is pure data, that is it does not cause different behavior inside a switch
statement somewhere. For a start Java can only switch on an integer,
not an arbitrary class, so the replacement will fail. But more impor-
tantly than that, any switch needs to be removed by Replace Conditional
with Polymorphism (154). In order to do that the type code has to be
dealt with by Replace Type Code with Subclasses (235) or Replace Type
Code with State/Strategy (239) first.

Even if a type code does not cause different behavior depending on its
value, there might be behavior that is better placed in the type code
class, so be alert to the value of a Move Method (160) or two.

Mechanics
❍ Create a new class for the type code

☞ The class needs a code field which matches the type code, and a getting method
for this value. It should have static variables for the allowable instances of the
class, and a static method which returns the appropriate instance from an argu-
ment based on the original code.

❍ Modify the implementation of the source class to use the new class
☞ Maintain the old code-based interface, but change the static fields to use new class

to generate the codes, and alter the other code based methods to get the code
numbers from the new class

❍ Compile and Test
☞ At this point the new class can do run time checking of the codes.

❍ For each method on the source class that uses the code, create a new
method that uses the new class instead.

☞ Methods that use the code as an argument need new methods using an instance
of the new class as an argument. Methods that return a code need a new method
returning the code. It is often wise to use Rename Method (235) on an old accessor
before creating a new one, to make the program clearer when it is using an old
code

❍ One by one, change the clients of the source class to use the new
interface

❍ Compile and test after each client is updated
☞ You may need to alter several methods before you have enough consistency to

compile and test.
❍ Remove the old interface that uses the codes, and the static declara-

tions of the codes
❍ Compile and test.

REPLACE TYPE CODE WITH CLASS 231

Example

I’ll start with a person who has a blood group modeled with a type
code

class Person {

public static final int O = 0;
public static final int A = 1;
public static final int B = 2;
public static final int AB = 3;

private int _bloodGroup;

public Person (int bloodGroup) {
_bloodGroup = bloodGroup;

}

public void setBloodGroup(int arg) {
_bloodGroup = arg;

}

public int getBloodGroup() {
return _bloodGroup;

}
}

I start by creating a new blood group class with instances that contain
the type code number.

class BloodGroup {
public static final BloodGroup O = new BloodGroup(0);
public static final BloodGroup A = new BloodGroup(1);
public static final BloodGroup B = new BloodGroup(2);
public static final BloodGroup AB = new BloodGroup(3);
private static final BloodGroup[] _values = {O, A, B, AB};

private final int _code;

private BloodGroup (int code) {
_code = code;

}

public int getCode() {
return _code;

}

public static BloodGroup code(int arg) {
return _values[arg];

}

232 ORGANIZING DATA

}

I then replace the code in Person with code that uses the new class.

class Person {

public static final int O = BloodGroup.O.getCode();
public static final int A = BloodGroup.A.getCode();
public static final int B = BloodGroup.B.getCode();
public static final int AB = BloodGroup.AB.getCode();

private BloodGroup _bloodGroup;

public Person (int bloodGroup) {
_bloodGroup = BloodGroup.code(bloodGroup);

}

public int getBloodGroup() {
return _bloodGroup.getCode();

}

public void setBloodGroup(int arg) {
_bloodGroup = BloodGroup.code (arg);

}
}

At this point I now have run-time checking within the blood group
class. But to really gain from the change I have to alter the users of the
person class to use blood group instead of integers.

To begin this I use Rename Method (235) on the accessor for the person’s
blood group to clarify the new state of affairs and add a new getting
method that uses the new class

class Person...
public int getBloodGroupCode() {

return _bloodGroup.getCode();
}
public int getBloodGroup() {

return _bloodGroup;
}

I also create a new constructor and setting method that uses the class.

public Person (BloodGroup bloodGroup) {
_bloodGroup = bloodGroup;

}

REPLACE TYPE CODE WITH CLASS 233

public void setBloodGroup(BloodGroup arg) {
_bloodGroup = arg;

}

Now I go to work on the clients of Person. The art is to do one client at
a time so that you can take smaller steps. Each client may need various
changes, however, that makes it more tricky. Any reference to the
static variables needs to be changed. So

Person thePerson = new Person(Person.A)

becomes

Person thePerson = new Person(BloodGroup.A);

References to the getting method need to use the new one, so

thePerson.getBloodGroupCode()

becomes

thePerson.getBloodGroup()

The same is true for setting methods, so

thePerson.setBloodGroup(Person.AB)

becomes

thePerson.setBloodGroup(BloodGroup.AB)

Once this is done for all clients of person, I can remove the getting
method, constructor, static definitions, and setting methods that use
the integer.

class Person ...
public static final int O = BloodGroup.O.getCode();
public static final int A = BloodGroup.A.getCode();
public static final int B = BloodGroup.B.getCode();
public static final int AB = BloodGroup.AB.getCode();
public Person (int bloodGroup) {

_bloodGroup = BloodGroup.code(bloodGroup);
}
public int getBloodGroup() {

return _bloodGroup.getCode();
}
public void setBloodGroup(int arg) {

_bloodGroup = BloodGroup.code (arg);
}

I can also privatize the methods on blood group that use the code.

234 ORGANIZING DATA

class BloodGroup...
private int getCode() {

return _code;
}

private static BloodGroup code(int arg) {
return _values[arg];

}

REPLACE TYPE CODE WITH SUBCLASSES 235

Replace Type Code with Subclasses

You have a type code which affects the behavior of a class

Replace the type code with subclasses

Motivation

If you have a type code that does not affect behavior, then you can use
Replace Type Code with Class (229). However if the type code affects
behavior, then the best thing to do is to use polymorphism to handle
the variant behavior.

This situation is usually indicated by the presence of case-like condi-
tional statements. These may be switches or if-then-else constructs. In
either case they test the value of the type code and then execute differ-
ent code depending on the type code’s value. Such conditionals need
to be refactored with Replace Conditional with Polymorphism (154). How-
ever to do this the type code needs to be replaced with an inheritance
structure which will host the polymorphic behavior. Such an inherit-
ance structure will have a class with subclasses for each type code

The simplest way to do this is this refactoring. Here you take the class
that has the type code and create a subclass for each type code. How-
ever there are cases when you can’t do this.

ENGINEER : int
SALESMAN : int
type : int

Employee
Employee

Engineer Salesman

236 ORGANIZING DATA

• The value of the type code changes after the object is created
• The class with the type code is already subclassed for another rea-

son.

In either of these cases you need to use Replace Type Code with State/
Strategy (239).

This refactoring is primarily a scaffolding move that enables Replace
Conditional with Polymorphism (154). So the trigger to do this is the pres-
ence of such conditional statements. If there are no such conditional
statements then Replace Type Code with Class (229) is the better (and less
critical move).

Another reason to do this refactoring is if there are features that are
only relevant to objects with certain type codes. Once you’ve done this
refactoring you can use Push Down Method (279) and Push Down Field
(281) to clarify that these features are only relevant in certain cases.

The advantage of this refactoring is that it moves the knowledge of the
variant behavior from clients of the class to the class itself. If we add
new variants, all we need to do is add a subclass. Without polymor-
phism we have to find all the conditionals and change those. So this is
particularly valuable when these variants keep changing.

Mechanics
❍ Self encapsulate the type code.

☞ If the type code is passed into the constructor, you will need to replace the construc-
tor with a factory method.

❍ For each value of the type code create a subclass. Override the get-
ting method of the type code in the subclass to return the relevant
value.

☞ This value will be hard coded into the return (e.g. “return 1). This looks messy but
it is a temporary measure until all case statements have been replaced.

❍ Compile and test after replacing each type code value with a sub-
class.

❍ Remove the type code field from the superclass. Declare the acces-
sors for the type code as abstract.

❍ Compile and test

Example

I will use the boring and unrealistic employee payment example.

REPLACE TYPE CODE WITH SUBCLASSES 237

class Employee...
private int _type;
static final int ENGINEER = 0;
static final int SALESMAN = 1;
static final int MANAGER = 2;

Employee (int type) {
_type = type;

}

The first step is to use Self Encapsulate Field (185) on the type code.

int getType() {
return _type;

}

Since the employee’s constructor uses a type code as a parameter, I
need to replace it with a factory method.

Employee create(int type) {
return new Employee(type);

}

private Employee (int type) {
_type = type;

}

I can now start with the engineer as a subclass. First I create the sub-
class and the overriding method for the type code.

class Engineer extends Employee {

int getType() {
return Employee.ENGINEER;

}

}

I also need to alter the factory method to create the appropriate object.

class Employee
static Employee create(int type) {

if (type == ENGINEER) return new Engineer();
else return new Employee(type);

}

I continue, one by one, until all the codes are replaced by subclasses.
At this point I can get rid of the type code field on employee and make

238 ORGANIZING DATA

getType an abstract method. At this point the factory method looks like
this.

abstract int getType();

static Employee create(int type) {
switch (type) {

case ENGINEER:
return new Engineer();

case SALESMAN:
return new Salesman();

case MANAGER:
return new Manager();

default:
throw new IllegalArgumentException("Incorrect type code value");

}
}

Of course this is the kind of switch statement I would prefer to avoid.
But there is only one of them, and it is only used at creation. There are
ways to deal with this too, see the discussion in Replace Constructor
with Factory Method (263).

Naturally once you have created the subclasses you should use Push
Down Method (279) and Push Down Field (281) on any methods and
fields that are only relevant for particular types of employee.

REPLACE TYPE CODE WITH STATE/STRATEGY 239

Replace Type Code with State/Strategy

You have a type code which affects the behavior of a class. The class
is already subclassed or the type code is mutable.

Replace it with a state object.

Motivation

This is similar to Replace Type Code with Subclasses (235), but can be
used if the type code changes during the life of the object, or if some
other reason prevents subclassing. It uses either the state or strategy
pattern [Gang of Four].

State and strategy are very similar, so the refactoring is the same
whichever you use, and it doesn’t really matter. Choose the pattern
based on what fits the specific circumstances better. If you are moving
for a single algorithm, then strategy is the better term. If you are going
to move state specific data and you think of the object as changing
state use the state pattern.

Mechanics
❍ Self encapsulate the type code.
❍ Create a new class, name it after the purpose of the type code. This

is the state object.
❍ Add subclasses of the state object, one for each type code.

☞ It is easier to do them all at once, rather than one at a time.

ENGINEER : int
SALESMAN : int
type : int

Employee
Employee Type

Engineer Salesman

Employee
1

240 ORGANIZING DATA

❍ Create an abstract query in the state object to return the type code.
Create overriding queries of each state object subclass to return the
correct type code.

❍ Compile
❍ Create a field in the old class for the new state object.
❍ Adjust the type code query on the original class to delegate to the

state object.
❍ Adjust the type code setting methods on the original class to assign

an instance of the appropriate state object subclass.
❍ Compile and test.

Example

I’ll use the tiresome and brainless employee example.

class Employee {

private int _type;
static final int ENGINEER = 0;
static final int SALESMAN = 1;
static final int MANAGER = 2;

Employee (int type) {
_type = type;

}

int payAmount() {
switch (_type) {

case ENGINEER:
return _monthlySalary;

case SALESMAN:
return _monthlySalary + _commission;

case MANAGER:
return _monthlySalary + _bonus;

default:
throw new RuntimeException("Incorrect Employee");

}
}

I assume this is an exciting and go-ahead company that allows promo-
tion of managers to engineers. Thus the type code is mutable and I
can’t use subclassing. My first step, as ever, is to self-encapsulate the
type code.

Employee (int type) {
setType (type);

}

REPLACE TYPE CODE WITH STATE/STRATEGY 241

int getType() {
return _type;

}

void setType(int arg) {
_type = arg;

}

int payAmount() {
switch (getType()) {

case ENGINEER:
return _monthlySalary;

case SALESMAN:
return _monthlySalary + _commission;

case MANAGER:
return _monthlySalary + _bonus;

default:
throw new RuntimeException("Incorrect Employee");

}
}

Now I declare the state class. I declare this as an abstract class and pro-
vide an abstract method for returning the type code.

abstract class EmployeeType {
abstract int getTypeCode();

}

I’ll now create the subclasses.

class Engineer extends EmployeeType {

int getTypeCode () {
return Employee.ENGINEER;

}
}

class Manager extends EmployeeType {

int getTypeCode () {
return Employee.MANAGER;

}
}

class Salesman extends EmployeeType {

int getTypeCode () {
return Employee.SALESMAN;

}
}

242 ORGANIZING DATA

I compile so far, and it is all so trivial that, even for me, it compiles eas-
ily. Now I actually hook the subclasses into the employee by modify-
ing the accessors for the type code.

class Employee…
private EmployeeType _type;

int getType() {
return _type.getTypeCode();

}

void setType(int arg) {
switch (arg) {

case ENGINEER:
_type = new Engineer();
break;

case SALESMAN:
_type = new Salesman();
break;

case MANAGER:
_type = new Manager();
break;

default:
throw new IllegalArgumentException("Incorrect Employee Code");

}
}

Of course this means I now have a switch statement here. But once I’m
done refactoring it will be the only one anywhere in the code, and it
will only be executed when the type is changed. All the other case
statements can now be eliminated by Replace Conditional with Polymor-
phism (154).

Still I like to finish the job by moving all knowledge of the type codes
and subclasses over to the new class. First I copy the type code defini-
tions into the employee type, create a factory method for employee
types, and adjust the setting method on employee

class Employee…
void setType(int arg) {

_type = EmployeeType.newType(arg);
}

class EmployeeType…
static EmployeeType newType(int code) {

switch (code) {
case ENGINEER:

return new Engineer();
case SALESMAN:

REPLACE TYPE CODE WITH STATE/STRATEGY 243

return new Salesman();
case MANAGER:

return new Manager();
default:

throw new IllegalArgumentException("Incorrect Employee Code");
}

}
static final int ENGINEER = 0;
static final int SALESMAN = 1;
static final int MANAGER = 2;

Then I remove the type code definitions from the employee and
replace them with references to the employee type.

class Employee…
int payAmount() {

switch (getType()) {
case EmployeeType.ENGINEER:

return _monthlySalary;
case EmployeeType.SALESMAN:

return _monthlySalary + _commission;
case EmployeeType.MANAGER:

return _monthlySalary + _bonus;
default:

throw new RuntimeException("Incorrect Employee");
}

}

I’m now ready to use Replace Conditional with Polymorphism (154) on
payAmount.

244 ORGANIZING DATA

