Chapter 2: Principles in Refactoring

The preceding example should have given you a good feel for what refactoring is all about. Now it’s time to step back and look at the key principles of refactoring, and look at some of the issues you need to think about in using refactoring.

A Definition of Refactoring

I’m always a little leery of definitions, for everyone has their own, but when you write a book you get to choose your own definition. So here goes

Refactoring is a change made to the internal structure of a software component to make it easier to understand and modify, without changing the interface of that software component.

You use the word refactoring both for large changes: “I need to spend some time refactoring the video billing software in order to make it support html bills”. You also use it for the small steps, such as the items in the catalog of refactorings. They are both refactorings, but a different scale.

 I should amplify a couple of points in my definition. Firstly the purpose of refactoring is all about making the software easier to understand and modify. There are many changes you could do to software that make little or no change to the interface. But only those that are made in order to make the software easier to understand are refactorings. A good contrast is performance optimization. Like refactoring, performance optimization does not usually change the interface of a component, it only alters the internal structure. However it’s purpose is different. Usually performance optimizations make code harder to understand, but in order to gain performance you do need to that from time to time (I’ll talk more about performance optimization later.)

The second thing I want to highlight is that it does not change the interface of the software component. Actually that isn’t 100% true, but it is true most of the time. In all the refactorings in video example only one refactoring caused me to change the test code. And I could have easily avoided that if I had wanted to. But some times it is worth changing the interface, so I don’t make it an absolute rule even though it is really part of the definition.

Semantics-Preserving Refactorings

So good refactorings are intention-clarifying and interface-preserving. There is a particular category of refactorings that are especially interesting: those that are semantics-preserving. Semantics-preserving refactorings go beyond interface-preserving in that not just is the interface not changed, but you can guarantee that there is no change to the external behavior of the component. A simple example of a semantics-preserving change is the renaming of a method. If you rename a method, and you catch all the references to that method, then you can be absolutely certain that the software component works the same way. You can do this with more complex changes. It is possible to move a method from one class to another in a way that is semantics-preserving.

Semantics-preserving refactorings are important for a couple of reasons. Firstly they are a strong basis for manual refactorings. If you follow a semantics preserving refactoring, then you know that providing you don’t make a mistake in following the refactoring, then you are not going to introduce a bug into the software. Therefore it is important to find semantics preserving refactorings and to use them as much as possible. There is still room for non-semantics-preserving refactorings, but they introduce a higher risk of error.

Semantics-preserving refactorings are particularly important for tool builders. If you can make the transformation in a tool, and prove that the transformation is semantics-preserving, then a user of the tool can use the refactoring freely and be confident that it won’t introduce a bug.

Where did refactoring come from?

I’ve not succeeded in pinning down the real birth of the term refactoring. Certainly good programmers have spent at least some time cleaning up their code. They do this because they have learned that clean code is easier to change than complex and messy code, and good programmers know that they rarely write clean code first time around.

Refactoring goes beyond this. In this book I’m advocating refactoring as a key element in the whole process of software development. Two of the first people to recognize this were Ward Cunningham and Kent Beck, who worked with Smalltalk from the 80’s onwards. Smalltalk is an environment which, even then, was particularly hospitable to refactoring. It is a very dynamic environment which allows you to quickly write very functional software. It has a very short compile-link-execute cycle, which makes it easy to change things quickly. It is also object-oriented, and thus gives you powerful tools to minimize the impact of change behind well-defined interfaces. Ward and Kent worked hard at developing a software development process which was geared to working with this kind of environment. (Kent currently refers to this style as “Extreme Programming”.) They realized that refactoring was a big factor in improving their productivity and ever since have been working with refactoring, applying it to serious software projects and refining the process.

Their ideas have always been a strong influence on the Smalltalk community, and the notion of refactoring has become a important element in the Smalltalk culture. Another leading figure in the Smalltalk community is Ralph Johnson, a professor at the University of Illinois at Urbana-Champaign. One of Ralph’s biggest interests is in developing software frameworks, and he explored the ideas of how refactoring can help develop an efficient and flexible framework.

Bill Opdyke was one of Ralph’s doctorate students, particularly interested in frameworks. He saw the potential value of refactoring, and saw that it could be applied to much more than just Smalltalk. His doctorate research looked at refactoring from a tool builder’s perspective. He investigated the refactorings that would be useful for C++ framework development, and researched the necessary semantics-preserving refactorings, how to prove they were semantics preserving, and how a tool could implement these ideas. His doctorate thesis [Opdyke] is the most substantial work on refactoring to date.

I remember meeting BIll at OOPSLA 92, we sat in a cafe and discussed some of work I’d done in building a conceptual framework for healthcare. He told me about his research and I remember thinking: “interesting, but not really that important”. Boy was I wrong!

John Brant and Don Roberts have taken the tool ideas in refactoring much further to produce Refactory, a refactoring tool for Smalltalk, which I’ll discuss below.

And me? I’d always been inclined to clean code, but I’d never considered it to be that important. Then I worked on a project with Kent, and saw they way he used refactoring. I saw how the difference it made to productivity and quality. This convinced me that refactoring was a very important technique. However I was frustrated because there was no book that I could give to a working programmer, and not of the experts above had any plans to write such a book. So, with their help, I did.

Why Should You Refactor?

I don’t want to proclaim refactoring as the cure for all of software ills. It is no ‘silver bullet’. Yet it is a valuable tool, a pair of silver pliers that helps you keep a good grip on your code. A tool that can, and should, be used for several purposes.

The fundamental reason is that refactoring will help you develop software more quickly. It does this because it fixes those things that otherwise slow you down. Working around a bad design slows you down. Failing to understand the code slows you down. In several projects where refactoring was used they reacted to reduced productivity by a burst of more intensive refactoring. They noticed that that always improved productivity. (I’m speaking of C3 here – but I’m other readers will have other examples, haven’t you?)

The most obvious reason for refactoring is the one I’ve alluded to above: refactoring improves the structure of existing code. Without refactoring the program’s design will decay. As people make changes to the code — changes done to realize short term goals, or changes made without a full comprehension of the design of the code — that code will lose its structure. It becomes harder to see the design by reading the code. Refactoring is rather like tidying up the code. Working to remove bits that aren’t really in the right place. Loss of structure to code has a cumulative effect. The harder it is to see the design in the code, the harder it is to preserve it, and the more rapidly it decays. Regular refactoring helps it retain its shape.

Poorly designed code usually takes more code to do the same things, often because the code quite literally does the same thing in several places. Refactoring eliminates duplicate code. The importance of this lies in future modifications to the code. Reducing the amount of code won’t make the system run any faster, its affect on the programs footprint is rarely significant, but it makes a big difference to the modification of the code. The more code there is, the harder it is to modify correctly. There’s more code to understand. You change this bit of code here but the system doesn’t do what you expect because you didn’t change that bit over there that does much the same thing in a slightly different context. By eliminating the duplicates you ensure that the code says everything once, which is really the essence of good design. Refactoring reduces the size of your code, that’s a good thing.

An old engineering adage I like is “the more there is, there more there is to go wrong”. Duplicate code often leads to bugs, so refactoring remove bugs by removing unnecessary code. It goes deeper than this, however. When you refactor you are forced to look again at your own code, or concentrate on a piece of new code. The best refactoring is often done the first time you work with someone else’s code. Refactoring is a very effective way of spotting bugs, especially when you are trying to improve its structure. Indeed there is a whole technique of software inspection, with many studies showing that inspection is more effective than testing at finding bugs. Refactoring is a very active and engaged form of inspection, and I’ve often found bugs when refactoring.

Programming is in many ways a conversation with a computer. You write code that tells the computer what to do, and it responds by doing exactly what you tell it. In time you close the gap between what you want it to do and what you tell it to do. Programming in this mode is all about saying exactly what you want. But there is another user of your source code. Someone who will try to read your code in a few months time to make some changes. We easily forget that extra user of the code, yet that user is actually the most important. Who cares if the computer takes a few more cycles to compile something? Yet it really matters if it takes a programmer a week to make a change that would only have taken an hour if she could have understood your code more easily.

The trouble is that when you are trying to get the program to work, you are not thinking about that future developer. It needs a change of rhythm to make those changes that make the code easier to understand. Refactoring helps you to make your code more readable. When refactoring you have code that works, but is not ideally structured. A little time spent refactoring can make the code better communicate its purpose.

Useful code never stays still. You always need to change it do something that was not expected when it was written. When looking at unfamiliar code you have to try to understand what it does. You look at a couple of lines and say to yourself, oh yes that’s what this code is doing. With refactoring you don’t stop at the mental note. You actually change the code to better reflect your understanding, and then test that understanding by re-running the code to see if it still works. In this case refactoring helps you understand unfamiliar code.

Now you have understood the code you need to do something new with it, something that was not envisaged by the original writer. If this is the case the code is not structured to help you, indeed you may have to do a work-round to get around this failing in the original code. So? Don’t work around the original code. You can refactor the code to change the way it works so it better supports you. Refactoring enhances code to support new requirements. The techniques are all about not changing what it does, you won’t break the existing functionality. But now the code will support your new requirements better, allowing you to make the same changes with less new code to write and maintain.

Refactoring and Up Front Design

Refactoring has a special role as a complement to design. When I first learned to program, I just wrote the program and muddled my way through it. In time I learned that thinking about the design in advance helped me avoid costly rework. In time I got more into this style of up front design. Many people consider that design is the key piece and that programming is just mechanics – drawing the analogy of the design as an engineering drawing and the code as the construction work. But software is still very different to physical machines. It is much more malleable and it is all about thinking. As Alistair Cockburn puts it “with design I can think very fast, but my thinking is full of little holes”.

There is an argument which says that refactoring could be an alternative to up front design. In this scenario you don’t do any design at all. You just code the first approach that comes into your head, get it working, and then refactor it into shape. Actually this approach can work. I’ve seen people do this and come out with a very well designed piece of software. Those who support Extreme Programming are often portrayed as advocating this approach.

But while doing only refactoring does work, it is not the most efficient way to work. Even the extreme programmers will do some design first. They will try out various ideas with CRC cars or the like, until they have a plausible first solution. Only after generating a plausible first shot will they code and then refactor. The point is that refactoring changes the role of up front design. If you don’t refactor then there is a lot of pressure in getting that up front design right. The sense is that any changes to the design later on are going to be expensive. Thus you put more time and effort into the up front design to avoid the need for such changes.

But with refactoring the emphasis changes. You still do up front design, but now you don’t try to find the solution. Instead all you want is some reasonable solution. You know that as you build the solution, as you understand more about the problem, you will realize that the best solution is different from that you originally came up with. With refactoring this is not a problem, for it is no longer expensive to make the changes.

An important result of this change in emphasis is a greater movement towards simplicity of design. Before I used refactoring I always looking for flexible solutions. With any requirement I would be wondering about how that requirement would change during the life of the system. Since design changes were expensive I would look to build a design that would stand up to the changes that I could foresee. The problem with building a flexible solution like this is that flexibility costs. Flexible solutions are more complex than simple ones. The resulting software is then more difficult to maintain in general, although easier to flex in the direction I had in mind. Although even there you have to understand how to flex the design. For one or two aspects this is no big deal, but changes occur throughout the system. Building this flexibility in all these places makes the overall system a lot more complex and expensive to maintain. The big frustration, of course, is that all this flexibility is not needed. Some of it will be, and it’s impossible to predict which peices of flexibility are needed. So to gain the flexibility you need you have to put in a lot more flexibility than you need.

With refactoring you approach the risks of change differently. You still think about potential changes, you still consider flexible solutions. But instead of implementing these flexible solutions you ask yourself “how difficult is it going to be to refactor a simple solution into the flexible solution”. If, as happens most of the time, the answer is “pretty easy”, then you just implement the simple solution.

So refactoring can lead to simpler designs, without sacrificing flexibility. This makes the design process easier, and less stressful. Once you get a broad sense of those things that refactor easily, you don’t even think of the flexible solutions. You have the confidence to refactor if the time comes. You build the simplest thing that could possibly work. As for the flexible, complex design: most of the time you aren’t going to need it.

The role of testing

One thing that you should have gathered from the video example is that testing plays a crucial role in refactoring. A good refactoring is designed to minimize the risk of introducing a bug. But when a human is involved, you can never eliminate the risk of introducing a bug. After all humans do make mistakes. Your primary defense against mistakes is good tests.

Over the last few years I’ve been following a development and testing approach that I call self-testing software. The idea is that whenever I write code that does something, I also write code that tests that my production code does what it is supposed to do. I’m not done writing the production code unless these unit tests are also written and working. I do this on a very low level of granularity. Even a couple of hours putting in a feature, will also require an appropriate unit test.

An important part of these unit tests is that they are self-checking. They don’t run and return some value, which I then have to look up on some piece of paper somewhere. They include code which checks the value from running the code against the pre-determined answer. When I run any unit test, or suite of unit tests, I’ll either get the answer “OK” or a list of failures. I also set things up so that I can run my unit tests very quickly. This way I can run tests as easily as compiling.

I don’t make a huge deal out of these tests. You can read books on testing that talk in great detail about flow-graph analysis, state analysis. They tell you test every method with every potential combination of classes of input. Such tests are worthy, but they are a lot of effort. I’ve found that faced with such an amount of effort a developer soon feels that the tests are getting in the way, and stops writing the tests. My approach is more risk driven. I don’t test accessor methods, there’s little risk that simple accessors hide a bug. I don’t test every possible case, but I do try to test all the important ones. I don’t use complex tools to write and run tests, instead I write test code in simple test code classes that go in my production packages.

In many ways writing self-testing code is very little extra work. Most developers will set up a quick driver program as they write new functionality to check that it works. The only differences for me is that I put this driver program inside a test class, I use the test to check the result, and I keep that test forever.

With this pattern of work, I slowly build up the tests as I develop the code, and they never seem too onerous since I’m always alternating between writing some code and writing a test. Sometimes I write the test before I write the code. I find that helps me to think about the interface to the production code.

The whole notion of frequent testing is an important part of Extreme Programming. The name conjures up notions of programmers who are fast and loose hackers. But extreme programmers are very dedicated testers. They want to develop software as fast as possible, and they know that tests help you to go as fast as you possibly can.

Running the tests

With the tests in place I then run them regularly. In the early days the tests run in under a minute, and I run them every time I compile. The great thing about this is that if I introduce a bug into an old feature while I add a new one, I find it immediately. Since I run the tests every time I compile, it’s easy to find the bug since there is not much that has changed. That simple effect is made a huge difference to my productivity, for I hardly ever spend hours bug-hunting any more.

Of course as the tests build up they take longer to run, and I can’t run every test with every compile. So I pick out a subset of tests that exercises the main parts of code that I’m working on. Again it is a risk driven choice. I choose those tests that I think are most likely to catch bugs that I might introduce with this feature I’m adding. I run this subset of tests with every compile while I’m working on this feature.

I run the full set of tests whenever I get a suitable break from programming: when I go home, when I go to lunch, when I go to a meeting. It’s not as good as every compile, but at least it narrows the bug to a few hours work. And I’m broadly familiar with that area of the code too, which helps me find things. Finally I run the full set of tests before and after I integrate.

The whole point of this frequent test running is that it spots bugs more quickly, and you have a limited area to look in to find the bug. Thus you spend less time debugging, and more time adding new features. Hence your productivity goes up.

Unit and System Tests

I should stress the difference between unit tests and system tests. These tests I’m talking about are unit tests. I write them to improve my productivity as a programmer. If they make the QA department happier, that’s just a side effect. They are also very localized. Each test class works within a single package. It tests the interfaces to other packages, but beyond that it assumes the rest just works.

System tests are a different animal. They are written to ensure the software as a whole works. They provide quality assurance to the customer, and don’t care about programmer productivity. They should be developed by a different team who delight in finding bugs. They will use heavy-weight tools and techniques to help them do this.

For refactoring purposes, it is the unit tests - the programmer’s friend - that I count on.

Organizing Unit Test Code

There are various ways to organize unit test code. Java people encourage the “testing main” idiom. Put the tests for a class in the main method for the class. That’s a reasonable approach, but I confess to taking a different tack.

I prefer to use separate test classes. A test class is usually responsible for testing the classes within one package. I may have several test classes per package, but each test class only operates within a single package. I prefer it that way because it is easy to spot and remove the test classes if you need to for delivery purposes. It also allows the test classes to work with a testing framework.

I don’t try to test every method. Instead I test based on every important feature I add. Each time I add a feature I ask myself “how can I test this”. I then add a group of tests to test the feature. I find that more motivating than testing every method. It allows me to get a sense of closure - when all the tests work, then I’m done programming that feature.

A good framework makes quite a difference in helping you put together these tests. I use a simple but very useful framework for Java unit tests called JUnit [JUnit]. JUnit was put together by Kent Beck and Erich Gamma, and is based on Kent’s earlier unit testing framework for Smalltalk. It’s worth spending a little time talking about this framework, so you can see what a good unit test framework looks like.

The core of the framework is the test case class. When I write test classes for my features, I create a class which is a subclass of test case. Such a class is two things: a fixture and a series of tests. The fixture is a set of objects which I use as example objects for the test. So in the video refactoring exercise, my fixture is a bunch of customers and their rentals. I might start with just one customer and a couple rentals, and then I add more later on as I add more tests. Most of the time, however, I can use the same objects with new tests for new function. You create the fixture by implementing a method called setup. If you need to release any resources when you are done, there is also a teardown method.

Each of the tests are a single method in the test class. When a test is run it first executes the setup to build the fixture, then it calls the test method. The fixture is rebuilt for every method, so you don’t have to worry about tests interfering with each other. You write the test by perhaps calling a few modifiers to run various operations against the fixture. Then when you are ready you do some testing of values.

You test values with the various assert methods. The main assert methods are the assertEquals methods. You supply a message string, a pre-determined expected value, and an actual value obtained from method invocations against the fixture. The framework checks to see if the actual is the same as your expected value. If so it does nothing. If they values are not equal it will prints out a message, together with the expected and actual values it found.

Usually I don’t run a single test, I run a suite of tests. JUnit allows you to create suites of tests. It collects together the results of the tests for you. If all tests passed it just prints “OK”. If any test fails, it prints out the failure message. If you get an unhandled exception, it marks the test as failed and prints a suitable message.

JUnit comes with both a command line and a gui interface. It is simple to set up so you can run a suite of tests with just a single command or button press. You see the results quickly. JUnit makes it easy for me to set up a suite to run every time I compile, and another suite for running complete tests. It’s is a great, yet very simple tool. Furthermore it’s free. I love it!

Problems with Refactoring

When you learn a new technique that greatly improves your productivity, it is hard to see when it does not apply. Usually you learn it within a specific context, often just a single project. It is hard what factors cause that technique to be less effective, even harmful. Ten years ago it was like that with Objects. If someone asked me when they shouldn’t use objects, it was hard to answer. It wasn’t that I didn’t think objects had limitations - I’m too cynical for that. It was just that I didn’t know what those limitations were, while I knew what the benefits were.

Refactoring is like that now. We know the benefits of refactoring, we know they can make a palpable difference to our work, but we haven’t had the broad enough experience to see where the limitations apply.

So this section is shorter than I would like, and is more tentative. As more people learn about refactoring we will learn more. For you this means that while I certainly believe you should try refactoring for the real gains it can provide, you should also monitor it’s progress. Look out for problems that refactoring may be introducing. Let us know about these problems. As we learn more about refactoring we will come up with more solutions to problems, and learn about what problems are difficult to solve.

Databases

The first problem area for refactoring is with databases. Most business applications are tightly coupled to the database schema that supports them. That’s one reason that the database is difficult to change. Another reason is data migration. Even if you have carefully layered your system to minimize the dependencies between the database schema and the object model, changing the database schema forces you to migrate the data - which is a long and fraught task.

With non-object databases the way to deal with this problem is to realize that you do not have to keep the object model and the database model looking similar. The two models can be different, at the cost of making the mapping code more complex. Most of your refactoring will occur in the object model. You then need to update your database mapping code to cope with the data changes produced by the refactoring. On the whole this is not too bad providing you don’t couple your mapping code too deeply into the object model. If you give the object model a clear interface for the mapping code to use, then you can retain that interface as you refactor the object model.

You don’t have to start with a clear interface to do this. As you notice parts of your object model become volatile, you can create the interface for them then. This way you get the greatest leverage for your changes.

You can also change your database schema, but this is not something that is as suitable to taking small steps due to the migration issues. Certainly database schema design needs more planning than the object model.

One technique is to create dummy classes that look like database tables to help you manage a change. Before you change the table design, create a class that mimics the original table. Redirect all uses of this table through this class. Then when you change the table you only need to change this one class. If using this class introduces inefficiencies you can then remove this class in a step by step manner. Although this adds an overhead to create the class, it allows you change the mapping code in smaller steps.

Object databases can be more work. With no separation between the object model and the data model - all your refactoring has to work with data migration. In this situation you have to be more wary about changes to the data structure of classes. You can still freely move behavior around, but you have to be more cautious with moving fields. You need to use accessors to give the illusion that the data has moved, even when it hasn’t. Then when you are pretty sure you know where the data ought to be, you can move and migrate the data in single move. Only the accessors need to change, reducing the risk of problems with bugs.

Needing to Change Interfaces

Often carrying out refactoring leads you to want to change the public interfaces of classes. Of course nearly all the time you can delegate from old public methods to new methods so that the software still works. But you end up with a more complex interface which you would like to clean up.

If you are a reasonably tight-nit development team you can then clean up the interfaces. Some groups will happily change interfaces and change code in calling modules to ensure things still work. A full run of all unit tests guards against errors. If you have a strong code-ownership system, or if you are producing a very public API, this will not work.

In these cases you need mechanism to indicate that you want to get rid of the old interface. In Java you have deprecation mechanism to do this. You mark the method as deprecated and any use of a deprecated method is flagged by a compiler warning. After a period time being deprecated, you then remove the method. Users of the component know that deprecated interfaces will be removed and get some time to make the changes.

If you can it is worth doing this. A complex interface makes a class much harder to understand and work with. So use deprecation to keep this under control.

There is one area in Java, however, where you do run into problems with changing interfaces. This is if you add an exception to the throws clause. This is not a change in signature, so you cannot use delegation to cover for it. The compiler will not let it compile, however. It is tough to deal with this. You can choose a new name for the method, let the old method call it, and convert the checked into an unchecked exception. You can also just throw an unchecked exception, although then you lose the checking ability. When you do this you can alert your callers that it will become a checked exception at a future date. They then have some time to put the handlers into their code. For this reason I prefer to only declare abstract exceptions for public methods (such as SQLException).

Design Changes that are Difficult to Refactor

Can you refactor your way out of any design mistake, or are some design decisions so central that you cannot count on refactoring to change your mind later? This is an area where we have very incomplete data. Certainly we have often been surprised by situations where we can refactor efficiently. But there are places where this is difficult. One project found it very hard to refactor a system built with no security requirements into one with good security.

At this stage my approach is to imagine the refactoring. As I consider design alternatives I ask myself how difficult it would be to refactor from one design into another. If it seems easy, I don’t worry too much about the choice, and I pick the simplest design - even if it does not cover all the potential requirements. However if I cannot see a simple way to refactor, then I put more effort into the design. I do find such situations are in the minority.

When Shouldn’t you Refactor?

There are times when you should not refactor at all.

The principle example is when you should rewrite from scratch instead. There are times when the existing code is such a mess that, although you could refactor it, it will be easier to start from the beginning. This decision is not an easy one to make, and I’ll admit that I don’t really have good guidelines for it.

A compromise route is to refactor a large piece of software into components with strong encapsulation. Then you can make a refactor vs. rebuild decision for each component one at a time. This is a promising approach, but I don’t have enough data to write good rules yet for doing that. With a key legacy system, this would certainly be an appealing direction to take.

The other time you should avoid refactoring is when you are close to a deadline. At this point the productivity gain you would get from refactoring would appear after the deadline, and thus be too late. Ward Cunningham has a good way to think of this. He describes unfinished refactoring as going into debt. Most companies need some debt in order to function efficiently. However with debt comes interest payments: i.e. the extra cost of maintenance and extension caused by over-complex code. You can bear some interest payments, but if the payments get too great then you will be overwhelmed. Thus it is important to manage your debt, paying parts of it off with refactoring.

Other than when you are very close to a deadline, however, you should not put off refactoring because you haven’t got time. Experience from several projects has shown that a bout of refactoring results in increased productivity. So not having enough time usually is a sign that you need to do some refactoring.

Tools for Refactoring

In this book I put a lot of emphasis on using small steps, frequent compile / test cycles, and strong tests. I do this because people make mistakes and nothing slows down software development more than debugging. Manual refactoring will always require tests to ensure that the external behavior of the software is unchanged.

Many of the refactorings I describe, however, are semantics-preserving refactorings. This means that it is possible to prove that such a refactoring, if done correctly, cannot cause a change to the behavior of the program. If you can make a semantics-preserving change and be sure you don’t make a mistake, then you don’t need to compile and test.

Humans cannot do this, but a computer tool could. With such a tool I could just indicate the refactoring I want, and the tool would carry out the refactoring. I win in two ways. Firstly the tool can do all the steps faster than I can, and secondly I don’t have to even compile and test to ensure nothing is broken.

There has been a fair bit of research, both commercial and academic, into such software restructuring tools. Within the object-oriented community a principle such group has been Ralph Johnson’s group at the University of Illinois at Urbana-Champaign.

Bill Opdyke’s thesis [Opdyke] is all about research into refactorings that could be done by tools. He describes several refactorings and the mathematical proofs required to show the semantics preservation. John Brant and Don Roberts have built on this research to provide a practical tool for refactoring Smalltalk programs: Refactory [Refactory].

Strictly a discussion of Refactory is outside the scope of this book. Refactory is a Smalltalk tool and not usable for Java. However it is useful to understand the features of such a tool as I believe such tools will become available for Java over the next few years. Such tools will have a significant effect on software development.

I’ll concentrate on a couple of the refactorings that Refactory provides. They are simple to use, and hide a lot that needs to be done to implement them.

Refactory allows you change the signature of any method, and it guarantees that all senders and implementers of that method change appropriately. You can even change the name of such fundamental methods as the new method, which creates new objects in Smalltalk.

One of the most impressive refactorings is the one to extract a method. If you take a look at the catalog, you’ll see that method extraction can be quite involved due to the presence of local variables. You need to do quite a bit of analysis in order to do this and guarantee semantics preservation in all cases. With Refactory you highlight the code you want to extract. Refactory then analyzes the local variables in the code. Variables only used within the selected code are entirely moved in, local variables read but not written to are passed in as parameters. For more complex cases Refactory cannot do the transformation safely, so it issues a suitable message. When it can, which is most of the time, it prompts you to name the new method and its arguments and performs the transformation. All this takes but a few seconds, and you don’t even need to test the result.

I believe such tools will be become common over the next few years. The companies who build them will get a significant competitive advantage over those that don’t. If you have the chance it is worth spending some time with Refactory to familiarize yourself with what future software development tools will be like. Not just is this tool quite an amazing herald of the future, it is also free. That’s one aspect of this tool that is never going to be improved on.

Refactoring and Evolutionary Development

If you’ve read much that I’ve written over the years, you’ll know that I consider evolutionary development to be essential for developing software systems. Indeed I agree with Alistair Cockburn that not just is incremental development a critical success factor in a project, but that it’s absence is a critical failure indicator.

Refactoring is important to evolutionary development because it is the mechanism that makes the iterative part of evolutionary development work well. For a recap remember that when we hear terms like evolutionary development we are talking about two things: iterative and incremental. Incremental development implies adding functionality in pieces as fully tested and integrated chunks. A project could be incremental and not iterative if it added the software chunk by chunk and never changed a prior chunk when it added new ones. Iterative development, however, implies reworking existing chunks. A purely iterative development would continuously rework a single delivery until it was satisfactory. Good evolutionary development is both incremental and iterative, with the incremental part taking the lead.

Refactoring is something you do continuously throughout the project. It is driven by the incremental process. Typically you begin a new increment of function to add to the system. You realize the structure of the existing code makes it harder to add the new function than it might be. You thus refactor the existing code to make it easy to add the new function. Such an incremental driver is important because it provides the justification for refactoring. If you refactor just for the sake of refactoring, you end up suffering from prototypis - where you just iterate and iterate, never delivering, until your customer puts you out of their misery.

So should refactoring always be driven by adding a new increment. My answer is “mostly”. Sometimes you get the situation where some code needs to be refactored but it isn’t really for a specific increment. It wouldn’t be worth doing for just that increment, but as increments follow each other there is a collective weight that does make it worthwhile. A few times I’ve seen a project losing productivity and developers feeling uncomfortable about the state of the code base. Then it is worthwhile to concentrate on refactoring for a couple of weeks, even if it means pushing off some incremental function to a future stage. You shouldn’t do this often (maybe a couple of times a year) and you should keep such bouts short (within a single incremental stage).

Pair Programming

Pair Programming is a technique that is frequently stressed by extreme programmers. It describes programming done by having developers work on the same code at a single workstation.

The first reaction to pair programming is usually a puzzled opposition. Surely if two programmers are working on the same code they can only go half as fast two programmers working on different pieces of code? This would only be true if the hardest part of programming was typing.

My contention is that the key to productivity is producing software with a high internal quality and keeping that internal quality high. Code that is difficult to understand is hard to change - which slows you down. Code that has bugs hidden in it needs to be debugged, which means you have to find the bugs - which slows you down. If you have a code base that is well structured and free of bugs you can quickly add new features - and productivity is all about the speed with which you add new features.

Having two programmer work together improves internal quality and productivity for several reasons.

· Often you lose time by working your way down a dead end. One developer, head deep in the code, is more likely to get stuck like this. A second head more than often spots this and stops it.

· Two programmers can freely exchange design ideas and as such keep feeding better designs into the software.

· A second programmer helps spot design mistakes by acting as a real time code inspector.

· Two programmers are less suspect to interruption. While one is fielding a phone call the other is making progress. With the partner there the interrupted developer comes back up to speed more quickly.

· If two programmers work on every piece of code, you have always have two people who know about every piece of code. This leaves you less vulnerable if one is unavailable due to sickness, vacation, or departure.

· Working with a partner allows them to teach each other development techniques, improving both their practices.

· Also working with a partner is more fun, increases team spirit, which increases motivation. And motivation is the key to productivity.

As in many areas of software development, there is not much objective evidence to back up my assessment. However [Nosek] reported an experiment with experienced system programmers that showed that pair programmers produced more functional and readable solutions, expressed higher confidence in their work, and enjoyed their work more than lone programmers.

Well maybe you’re not convinced about the benefits of pair programming in general development. But in refactoring pair programming has a particular virtue. Often refactoring occurs when a programmer needs to add a new feature to existing code and that existing code was written by someone else. In these cases you should have both the original author (who knows the code) and the one adding the function (who knows what they want to do with the code) work together.

Refactoring and Performance

A common concern with refactoring is the effect it has on the performance of a program. In order to make the software easier to understand, you often make changes that will cause the program to run more slowly. This is an important issue. I’m not one of the school of thought that ignores performance in favor of design purity or in hope of faster hardware. Software has been rejected for being too slow, and faster machines merely move the goalposts. Refactoring certainly will make software go more slowly, but it also makes the software more amenable to performance tuning. And the secret to fast software, in all but hard-real time contexts, is to write tunable software first, and then to tune it to get sufficient speed.

In general I’ve seen three approaches to writing fast software. The most serious of these is time budgeting, used often in hard real time systems. This situation as you decompose the design you give portion a budget for resources: time and footprint. That component must not exceed it’s budget, although some mechanism for exchanging budgeted times is allowed. Such a mechanism focuses hard attention on hard performance times. It is essential for such systems as heart pacemakers when late data is always bad data. But this technique is overkill for other kinds of systems, such as the corporate information systems that I usually work in.

The second approach is the constant attention approach. Here every programmer, all the time, does whatever they can to keep performance high. This is a common approach, has intuitive attraction, but does not work very well. Changes that improve performance usually make the program harder to work with. This slows down development speed. This would be a cost worth paying if the resulting software was quicker, but usually it is not. The performance improvements are spread all around the program, and are done with a narrow perspective of the program’s behavior.

The interesting thing about performance is that if you analyze most programs, you find that they most of their time in a small fraction of the code. So if you optimize all the code equally, you end up with 90% of the optimizations wasted, because you are optimizing code that isn’t run much. The time spent making it fast, the time lost because of the lack of clarity, is all wasted time.

The third approach to performance improvement takes advantage of this statistic. In this approach you build your program in a well-factored manner, without paying attention to performance, until you begin a performance optimization stage (usually fairly late in development). During the performance optimization stage you follow a specific process to tune the program.

You begin by running the program under a profiler that monitors the program and tells you where it is consuming time and space. This way you can find that small part of the program where the performance hot spots lie. Then you focus on those performance hot spots and use the same optimizations that you would use if you were using the constant attention approach. But since you are focusing your attention on a hot spot, you are having much more effect for less work. Even so you remain cautious. Like refactoring you make the changes in small steps. After each step you compile, test, and re-run the profiler. If you haven’t improved performance, you back out the change. You continue the process of finding and removing hot spots until you get the performance that your users are satisfied with.

Having a well-factored program helps you do this in two ways. Firstly it gives to time to spend on the performance tuning. Since you have well factored code, you can add function quicker. This gives you more time to focus on performance. (And profiling ensures you focus that time on the right place.) Secondly with a well-factored program you have a finer granularity for your performance analysis. Your profiler leads you to smaller parts of the code, which are easier to tune. Since the code is clearer, you have a better understanding of your options, and of what kind of tuning will work.

So I’ve found that refactoring helps me write fast software. It slows the software down in the short term while I’m refactoring; but it makes the software easier to tune during optimization. I end up well ahead.

Reference

[Nosek] Nosek, John T, The Case for Collaborative Programming, Communications of the ACM, vol 41 no 3, pp105-108

1
Page 2-3

