Chapter 7: Simplifying
Conditional
Expressions

Conditional logic has a way of getting tricky, so here are a number of
refactorings you can use to simplify it. The core refactoring here is
Decompose Conditional (136) which talks about how to decompose the
conditional into pieces. In many ways it is an obvious refactoring, but
it’s one that often makes a huge difference to the clarity of code.

The other refactorings here look into other important cases. Use Con-
solidate Conditional Expression (139) when you have several tests all
with the same effect, use Consolidate duplicate conditional fragments (142)
to remove any duplication within the conditional code.

If you are working with code developed in a one-exit point mentality
you often find control flags which are there to allow the conditions to
work with this rule. | don’t follow the rule about one exit point from a
method. Hence I'll use Replace Nested Conditional with Guard Clauses
(149) to clarify special case conditionals and Remove Control Flag (144)
to get rid of the awkward control flags.

Object-oriented programs often have less conditional behavior than
procedural programs because much of the conditional behavior is han-
dled by polymorphism. Polymorphism is better because the caller
does not need to know about the conditional behavior and it is thus
easier to extend the conditions. As a result object-oriented programs
rarely have switch (case) statements. So any that show up are prime
candidates for Replace Conditional with Polymorphism (154).

One of the most useful, but less obvious, uses of polymorphism is to
use Introduce Null Object (159) to remove checks for a null value.

v

v ¥ SIMPLIFYING CONDITIONAL EXPRESSIONS

Decompose Conditional

You have a complicated conditional (if-then-else) statement

Extract methods from the condition, then part, and
else parts.

if (date.before (SUMMER_START) || date.after(SUMMER_END))
charge = quantity « _winterRate + _winterServiceCharge;
else charge = quantity _summerRate;

if (notSummer(date))
charge = winterCharge(quantity);
else charge = summerCharge (quantity);

Motivation

One of the most common areas of complexity in a program lies in com-
plex conditional logic. As you write code to test conditions, and to do
various things depending on various conditions, you quickly end up
with a pretty long method. Length of a method is in itself a factor that
makes it harder to read, but conditions increase the difficulty. The
problem usually lies in the fact that the code, both in the condition
checks and in the actions, tells you what happens but can easily
obscure the why.

As with any large block of code, you can make your intention clearer
by decomposing it, replacing chunks of code with a method call that is
named after the intention of that block of code. With conditions you
can get a further benefit by doing this for the conditional part and each
of the alternatives. This way you highlight the condition and make it

DEcoMPOSE CONDITIONAL

clearly what you are branching on, and why you are doing the branch-
ing.

Mechanics

0 Extract the condition into its own method
0 Extract the ‘then part’ and the ‘else part’ into their own methods

If | find a nested conditional | will usually first look to see if | should
Replace Nested Conditional with Guard Clauses (149). If that does not
make sense | will decompose each of the conditionals.

Example

Suppose you are calculating the charge for something that has a sepa-
rate rate for winter and for summer
if (date.before (SUMMER_START) || date.after(SUMMER_END))

charge = quantity » _winterRate + _winterServiceCharge;
else charge = quantity * _summerRate;

Extract the conditional and each leg into

if (notSummer(date))
charge = winterCharge(quantity);
else charge = summerCharge (quantity);

private boolean notSummer(Date date) {
return date.before (SUMMER_START) || date.after(SUMMER_END);

}

private double summerCharge(int quantity) {
return quantity = _summerRate;

}

private double winterCharge(int quantity) {
return quantity « _winterRate + _winterServiceCharge;

}

Here I've shown the result of the complete refactoring for clarity. In
practice, however, | would do each extraction separately, compiling
and testing after each one.

Many people don’t extract the condition parts in situations like this.
The conditions are often quite short, so it hardly seems worth it. But
although the condition is often short, there is often a big gap between
the intention of the code and its body. Even in this little case reading

v ¥ SIMPLIFYING CONDITIONAL EXPRESSIONS

(notSummer(date)) conveys more clearly to me than the original code.
With the original | have to look at the code and figure out what it is
doing. It’s not difficult to do that here, but even so the extracted
method reads more like a comment.

CONSOLIDATE CONDITIONAL EXPRESSION v

Consolidate Conditional Expression

You have a sequence of conditional tests with the same result

Combine them into a single conditional expression,
and extract it

double disabilityAmount() {
if (_seniority < 2) return 0;
if (_monthsDisabled > 12) return 0;
if (_isPartTime) return 0;
// compute the disability amount

double disabilityAmount() {
if (isEligableForDisability()) return 0;
// compute the disability amount

Motivation

Sometimes you see a series of conditional checks, where each check is
different yet the resulting action is the same. When you see this you
should consolidate them into a single conditional check, using ands
and ors, with the single result.

Consolidating the conditional code is important for two reasons.
Firstly it makes the check clearer by showing that you are really mak-
ing a single check that’s or’ing the other checks together. The sequence
has the same effect but it communicates carrying out a sequence of
separate checks that just happen to be done together. The second rea-
son for this refactoring is that it often sets you up to do Extract Method
(114). Extracting a condition is one of the most useful things you can
do to clarify your code, for it replaces a statement of what you are
doing with why you are doing it.

¥ SIMPLIFYING CONDITIONAL EXPRESSIONS

Those reasons in favor of consolidating conditionals also point to
when you shouldn’t do it. If you think the checks are really indepen-
dent, and shouldn’t be thought of as a single check; then don’t do the
refactoring. Your code already communicates your intention.

Mechanics

O Replace the string of conditionals with a single conditional state-
ment using logical operators

0 Compile and test

0 Consider using Extract Method (114) on the condition.

Example: ors

The state of the code for this is along the lines of the following.

double disabilityAmount() {
if (_seniority < 2) return 0;
if (_monthsDisabled > 12) return 0;
if (_isPartTime) return 0;
// compute the disability amount

Here we see a sequence of conditional checks that all result in the same
thing. With sequential code like this they are the equivalent of an or
statement.

double disabilityAmount() {

if ((_seniority < 2) || (_monthsDisabled > 12) || (_isPartTime)) return 0;
// compute the disability amount

Now | can look at the condition and use Extract Method (114) to com-
municate what the condition is looking for.
double disabilityAmount() {

if (isEligableForDisability()) return 0;
// compute the disability amount

}

boolean isEligableForDisability() {
return ((_seniority < 2) || (_monthsDisabled > 12) || (_isPartTime));
}

CONSOLIDATE CONDITIONAL EXPRESSION

Example: ands
That example showed ors, but you can do the same with ands. Here
the set up is something like

if (onVacation())
if (lengthOfService() > 10)
return 1;
return 0.5;

This would be changed to

if (onVacation() && TengthOfService() > 10) return 1;
else return 0.5;

You may well find you get a combination of these that yield an expres-
sion with ands ors and nots.

If the routine you are looking at only tests the condition and returns a
value; then you can turn the routine into a single return statement
using the tertiary operator. So

if (onVacation() && TengthOfService() > 10) return 1;
else return 0.5;

becomes
return (onVacation() & lengthOfService() > 10) ? 1 : 0.5;

In this case the condition speaks for itself as clearly as any method
name would — so | won’t extract it.

v ¥ SIMPLIFYING CONDITIONAL EXPRESSIONS

Consolidate duplicate conditional fragments

The same fragment of code is in all branches of a conditional
expression

Move it outside of the expression

if (isSpecialDeal()) {
total = price « 0.95
send();

}

else {
total = price = 0.98;
send();

}

if (isSpecialDeal())
total = price « 0.95
else
total = price « 0.98;
send();

Motivation

Sometimes you will find the same code executed in all legs of a condi-
tional. In that case you should move the code to outside the condi-
tional. This makes it clearer as it what varies, and what stays the same.

Mechanics
O Identify code that gets executed the same regardless of the condi-
tion
O If the common code is at the beginning, then move it to before the
conditional
O Ifitisatthe end, move it to after
O Ifitisinthe middle look to see if the code before or after it changes

CONSOLIDATE DUPLICATE CONDITIONAL FRAGMENTS

anything. If so you can move the common code forwards or back-
wards to the ends you can then move it as above

O If there is more than a single statement then you should extract that
code into a method.

Example

The Kind of situation you find this is with code like

if (isSpecialDeal()) {
total = price « 0.95
send();

}

else {
total = price « 0.98;
send();

}

Since the send method is executed in either case you should move it
out of the conditional.
if (isSpecialDeal())
total = price « 0.95
else
total = price « 0.98;
send();
The same situation can apply to exceptions. If code is repeated after an
exception causing statement in the try block and all the catch blocks,
then you can move it to the finally block.

v ¥ SIMPLIFYING CONDITIONAL EXPRESSIONS

Remove Control Flag

You have a control flag that is acting as a control flag cfor a series of
boolean expression.

Use a break or return instead

Motivation

When you have a series of conditional expressions, you often see a
control flag used to determine when to stop looking.

set done to false
while not done
if (condition)
do something
set done to true
next step of loop

Such control flags are more trouble than they are worth. They come
from the rules of structured programming that call for routines with
one entry and one exit point. | agree with (and modern languages
enforce) one entry point, but the one exit point rule leads you to very
convoluted conditionals with these awkward flags in the code. This is
why languages have the break and continue statements to get out of a
complex conditional. It is often surprising what you can do when you
get rid of a control flag, the real purpose of the conditional becomes so
much more clear.

Mechanics

The obvious way to deal with this is using the break or continue state-
ments present in Java.

O Find the value of the control flag that get’s you out of the logic state-
ment
0 Replace assignments of the break out value with a break or continue
statement
[0 Break is used to end processing in that code fragment, continue is used to take
another trip round a loop.
00 Compile and test after each replacement

REMOVE CONTROL FLAG

Another approach, also usable in languages without break and con-
tinue

0 Extract the logic into a method

O Find the value of the control flag that get’s you out of the logic state-
ment

0 Replace assignments of the break out value with a return

0 Compile and test after each replacement

Indeed even in languages with a break or continue, | usually prefer the
use of a extraction and the use of return. The return clearly signals that
no more code in the method gets executed. Often if you have that kind
of code, you need to extract that piece anyway.

Keep an eye on whether the control flag also indicates some result
information. If so you still need it if you use the break, or you can
return the value if you have extracted a method.

Example - simple control flag replaced with break

The following function checks to see if a list of people contains a cou-
ple of hard coded suspicious characters.

void checkSecurity(String[] people) {
boolean found = false;
for (int i = 0; i < people.length; i++) {
if (! found) {
if (people[i].equals ("Don")){
sendAlert();
found = true;
}
if (people[i].equals ("John")){
sendAlert();
found = true;
}
}

}

In a case like this it is easy to see the control flag, it’s the piece that sets
the found variable to true. | can introduce the breaks one at a time

void checkSecurity(String[] people) {
boolean found = false;
for (int i = 0; 1 < people.length; i++) {
if (! found) {
if (people[i].equals ("Don")){
sendAlert();

¥ SIMPLIFYING CONDITIONAL EXPRESSIONS

break;

}
if (people[i].equals ("John")){
sendAlert();
found = true;
}
}

}
Until | have them all.

void checkSecurity(String[] people) {
boolean found = false;
for (int i = 0; i < people.length; i++) {
if (! found) {
if (people[i].equals ("Don")){
sendAlert();
break;
}
if (people[i].equals ("John")){
sendAlert();
break;
}
}

}
Then | can remove all references to the control flag

void checkSecurity(String[] people) {
for (int i = 0; i < people.length; i++) {

if (people[i].equals ("Don")){
sendATert();
break;

}

if (people[i].equals ("John")){
sendAlert();
break;

}

Example - using return with a control flag result

The other style of refactoring uses a return. I'll illustrate this with a
variant that uses the control flag as a result value.

void checkSecurity(String[] people) {

String found = "";
for (int i = 0; 1 < people.length; i++) {

REMOVE CONTROL FLAG

if (found.equals("")) {
if (people[i].equals ("Don")){
sendAlert();
found = "Don";
}
if (people[i].equals ("John")){
sendATert();
found = "John";
}
}
}
someLaterCode(found);

}

Here found is doing two things, it is both indicating a result and acting
as a control flag. When | see this | like to extract the code that is deter-
mining found into its own method.

void checkSecurity(String[] people) {
String found = foundMiscreant(people);
someLaterCode(found);

}

String foundMiscreant(String[] people){
String found = "";
for (int i = 0; 1 < people.length; i++) {
if (found.equals("")) {
if (people[i].equals ("Don")){
sendAlert();
found = "Don";
}
if (people[i].equals ("John")){
sendAlert();
found = "John";
}
}
}

return found;

}
Then | can replace the control flag with a return.

String foundMiscreant(String[] people){
String found = "";
for (int i = 0; 1 < people.length; i++) {
if (found.equals("")) {
if (people[i].equals ("Don")){
sendAlert();
return "Don";
}
if (people[i].equals ("John")){

v ¥ SIMPLIFYING CONDITIONAL EXPRESSIONS

sendAlert();
found = "John";
}
}
}
return found;

}
Until | have removed the control flag.

String foundMiscreant(String[] people){
for (int i = 0; i < people.length; i++) {

if (people[i].equals ("Don")){
sendAlert();
return "Don";

}

if (people[i].equals ("John")){
sendAlert();
return "John";

}
}

return "";

}

You can also use the return style when you’re not returning a value.
Just use return without the argument.

Of course this has the problem of a function with side-effects. So |
want to Separate Query from Modifier (237). You’'ll find this example
continued there....

REPLACE NESTED CONDITIONAL WITH GUARD CLAUSES

Replace Nested Conditional with Guard Clauses

A method has conditional behavior that does not make clear what
the normal path of execution is

Use Guard Clauses for all the special cases

doubTe getPayAmount() {
double result;
if (_isDead) result = deadAmount();

else {
if (_isSeparated) result = separatedAmount();

else {
if (_isRetired) result = retiredAmount();
else result = normalPayAmount();
it
}
return result;

i3

doubTe getPayAmount() {
if (_isDead) return deadAmount();
if (_isSeparated) return separatedAmount();
if (_isRetired) return retiredAmount();
return normalPayAmount();

It

Motivation

| often find that conditional expressions come in two forms. The first
form is a check whether either course is part of the normal behavior,
the second case is where one answer from the conditional indicates
normal behavior and the other indicates an unusual condition.

v ¥ SIMPLIFYING CONDITIONAL EXPRESSIONS

These kinds of conditionals have a different intention, and this inten-
tion should come through in the code. If both are part of normal
behavior, then use a condition with an if and an else leg. However if
the condition is an unusual condition then check the condition and
return if the condition is true. This kind of check is often called a Guard
Clause [Beck].

The key point about this refactoring is one of emphasis. If you are
using an if-then-else construct you are giving equal weight to the if leg
and the else leg. This communicates to the reader that they are equally
likely and important. Instead the guard clause says “this is rare, and if
it happens do something and get out”.

| often find | use this refactoring when I’'m working with a program-
mer who has been taught to have only one entry and one exit point
from a method. One entry point is enforced by modern languages, and
one exit point is really not a useful rule. Clarity is the key principle: if it
is clearer with one exit point then use one exit point, otherwise don’t.

Mechanics

0 For each check put the guard clause in.
[0 The guard clause will either return, or throw an exception.
0 Compile and test after each check is replaced with a guard clause.
[l If all the guard clauses yield the same result then Consolidate the Conditional
Expressions.

Example

Imagine a run of a payroll system where you have special rules for
dead, separated, and retiried employees. Such cases are unusual but
they do happen from time to time.

If you write the code like this

double getPayAmount() {
double result;
if (_isDead) result = deadAmount();
else {
if (_isSeparated) result = separatedAmount();
else {
if (_isRetired) result = retiredAmount();
else result = normalPayAmount();

b

REPLACE NESTED CONDITIONAL WITH GUARD CLAUSES

return result;

b

Then the checking is masking the normal course of action behind the
checking. So instead it is clearer to use guard clauses. | can introduce
these one at a time. | like to go from the top.

doubTe getPayAmount() {

double result;

if (_isDead) return deadAmount();

if (_isSeparated) result = separatedAmount();

else {
if (_isRetired) result = retiredAmount();
else result = normalPayAmount();

b

return result;

b
| then continue one at a time

doubTe getPayAmount() {
double result;
if (_isDead) return deadAmount();
if (_isSeparated) return separatedAmount();
if (_isRetired) result = retiredAmount();
else result = normalPayAmount();
return result;

b
and then

doubTe getPayAmount() {
double result;
if (_isDead) return deadAmount();
if (_isSeparated) return separatedAmount();
if (_isRetired) return retiredAmount();
result = normalPayAmount();
return result;

H
By this point the result temp isn’t pulling its weight so | nuke it.

doubTe getPayAmount() {
if (_isDead) return deadAmount();
if (_isSeparated) return separatedAmount();
if (_isRetired) return retiredAmount();
return normalPayAmount();

b

¥ SIMPLIFYING CONDITIONAL EXPRESSIONS

Example: reversing the conditions

In reviewing this, Joshua Kerievsky pointed out that you often do this
refactoring by reversing the conditional expressions. He kindly came
up with an example to save further taxing my imagination.

public double getAdjustedCapital() {

double result = 0.0;

if (_capital > 0.0) {
if (_intRate > 0.0 & _duration > 0.0) {

result = (_income / _duration) « ADJ_FACTOR;

}

}

return result;

}

Again | do this one at a time, but this time | reverse the conditional as |
put in the guard clause.

public double getAdjustedCapital() {
double result = 0.0;
if (_capital <= 0.0) return result;
if (_intRate > 0.0 & _duration > 0.0) {
result = (_income / _duration) « ADJ_FACTOR;
}
return result;

}

As the next conditional is a bit more complicated, | can reverse it in
two steps. First | just add a not.

public double getAdjustedCapital() {
double result = 0.0;
if (_capital <= 0.0) return result;
if (!(_intRate > 0.0 & _duration > 0.0)) return result;
result = (_income / _duration) = ADJ_FACTOR;
return result;

}

Leaving nots in a conditional like that twists my mind around at a
painful angle, so | simplify it.

public double getAdjustedCapital() {
double result = 0.0;
if (_capital <= 0.0) return result;
if (_intRate <= 0.0 || _duration <= 0.0) return result;
result = (_income / _duration) = ADJ_FACTOR;
return result;

REPLACE NESTED CONDITIONAL WITH GUARD CLAUSES

In these situations | prefer to put an explicit value on the returns from
the guards. That way you can easily see the result of the guard failing.
(I would also consider Replace Magic Number with Symbolic Constant
(217) here.)

public double getAdjustedCapital() {
double result = 0.0;
if (_capital <= 0.0) return 0.0;
if (_intRate <= 0.0 || _duration <= 0.0) return 0.0;
result = (_income / _duration) = ADJ_FACTOR;
return result;

}
With that done I can also remove the temp.

public double getAdjustedCapital() {
if (_capital <= 0.0) return 0.0;
if (_intRate <= 0.0 || _duration <= 0.0) return 0.0;
return (_income / _duration) = ADJ_FACTOR;

¥ SIMPLIFYING CONDITIONAL EXPRESSIONS

Replace Conditional with Polymorphism

You have a conditional that chooses different behavior depending
on the type of an object

Move each leg of the conditional to a subclass

doubTe getSpeed() {
switch (_type) {
case EUROPEAN:
return getBaseSpeed();
case AFRICAN:
return getBaseSpeed() - getLoadFactor() _numberOfCoconuts;
case NORWEIGIAN_BLUE:
return (_isNailed) ? @ : getBaseSpeed(_voltage);

}
throw new RuntimeException ("Should be unreachable");
}
Bird
getSpeed
\
\ | |
European African Norweigian Blue
getSpeed getSpeed getSpeed
Motivation

One of the grandest sounding words in object jargon is “polymor-
phism”. The essence of polymorphsim is that it allows you to avoid

REPLACE CONDITIONAL WITH POLYMORPHISM

writing an explicit conditional when you have objects whose behavior
varies depending on their types.

As a result you find that switch statements that switch on type codes,
or if-then-else statements that switch on type strings, are much less
common in an object-oriented program.

Polomorphism gives you many advantages. The biggest gain occurs
when this same set of conditions appears in many places in the pro-
gram. If you want to add a new type you have to find and update all
the conditionals. But with subclasses you just create a new subclass
and provide the appropriate methods. Clients of the class don’t need
to know about the subclasses, which reduces the dependencies in your
system, making it easier to update.

Mechanics

Before you can begin with this refactoring you need to have the neces-
sary inheritance structure. You may already have this structure from
previous refactorings. If you don’t have the structure you will need to
create it.

To create the inheritance structue you have two options:; Replace Type
Code with Subclasses (235) and Replace Type Code with State/Strategy
(239). Subclasses are the simplest option so you should use it if you
can. If you update the type code after the object is created, however,
you cannot use subclassing and have to use the state/strategy pattern
instead. You also need to use the state/strategy pattern if you are
already subclassing this class for some other reason. Remember that if
you have several case statements switching on the same type code you
only need to create one inheritance structure for that type code.

You can now attack the conditional. The code you target may be a
switch (case) statement or an if statement.

O If the conditional statement is one part of a larger method then take
the conditional statement part and use Extract Method (114)

O If necessary use Move Method (160) to get the conditional onto the
top of the inheritance structure

O Pick one of the subclasses. Create a subclass method that overrides
the conditional statement method. Copy the body of that leg of the
conditional statement into the subclass method, and adjust it to fit.

[0 You may need to make some private members of the superclass protected in

¥ SIMPLIFYING CONDITIONAL EXPRESSIONS

order to do this.
Compile and test
Remove that leg of the conditional statement
Compile and test.

[y R |

turned into subclass methods.
0 Make the superclass method abstract

Example

Repeat with each leg of the conditional statement until all legs are

I’ll use the tedious and simplistic employee pay example. I'm using the
classes after the using Replace Type Code with State/Strategy (239) so the
objects look like this (see the example there for how we got here) .

_type
Employee Employee Type

Engineer

Salesman

Manager

Figure 7.1: The inheritance structure

class Employee..
int payAmount() {
switch (getType()) {

case EmployeeType.ENGINEER:
return _monthlySalary;

case EmployeeType.SALESMAN:
return _monthlySalary + _commission;

case EmployeeType.MANAGER:
return _monthlySalary + _bonus;

REPLACE CONDITIONAL WITH POLYMORPHISM

default:
throw new RuntimeException("Incorrect Employee");

}

int getType() {
return _type.getTypeCode();

}
private EmployeeType _type;

abstract class EmployeeType..
abstract int getTypeCode();

class Engineer extends EmployeeType..
int getTypeCode() {
return Employee.ENGINEER;
}

.. and other subclasses

The case statement is already nicely extracted, so there is nothing to do
there. | do need to move it into the employee type, as that is the class
that is being subclassed.

class EmployeeType...
int payAmount(Employee emp) {
switch (getTypeCode()) {
case ENGINEER:
return emp.getMonthlySalary();
case SALESMAN:
return emp.getMonthTySalary() + emp.getCommission();
case MANAGER:
return emp.getMonthlySalary() + emp.getBonus();
default:
throw new RuntimeException("Incorrect Employee");

}

Since | need data from the employee, | need to pass in the employee as
an argument. Some of this data might be moved to the employee type
object, but that is an issue for another refactoring.

When this compiles | change the payAmount method in employee to
delegate to the new class.

class Employee...
int payAmount() {
return _type.payAmount(this);
}

¥ SIMPLIFYING CONDITIONAL EXPRESSIONS

Now | can go to work on the case statement. It’s rather like the way
small boys kill insects — | remove one leg at a time. First | copy the
engineer leg of the case statement onto the engineer class.

class Engineer..
int payAmount(Employee emp) {
return emp.getMonthlySalary();
}

This new method will override the whole case statement for engineers.
If you want to be sure of that you can put in a trap in the case state-
ment.

class EmployeeType..
int payAmount(Employee emp) {
switch (getTypeCode()) {
case ENGINEER:
throw new RuntimeException (“Should be being overridden");
case SALESMAN:
return emp.getMonthTySalary() + emp.getCommission();
case MANAGER:
return emp.getMonthlySalary() + emp.getBonus();
default:
throw new RuntimeException("Incorrect Employee");

}
Carry on until all the legs are removed.

class Salesman..
int payAmount(Employee emp) {
return emp.getMonthlySalary() + emp.getCommission();

}

class Manager..
int payAmount(Employee emp) {
return emp.getMonthlySalary() + emp.getBonus();
}

And then declare the superclass method as abstract.

class EmployeeType..
abstract int payAmount(Employee emp);

INTRODUCE NULL OBJECT v

Introduce Null Object

You have repeated checks for a null value

Replace the null value with a null object

if (customer == null) plan = BillingPlan.basic();
else plan = customer.getPlan();

Customer

getPlan

Null Customer

getPlan

Motivation

The essence of polymorphism is that instead of asking an object what
type it is and then invoking some behavior based on the answer; you
just invoke the behavior. The object, depending on its type, does the
right thing. One of the less intuitive places to do this is when you have
a null value in a field. I'll let Ron Jeffries tell the story.

We first started using the Null Object pattern when Rich Garzaniti found that there
was lots of code in the system that would check objects for presence before sending
a message to it. We might ask an object for its person, then ask the result whether it
was null, then if it was there, ask it for its rate. We were doing this in several places
and resulting duplicate code was getting annoying.

¥ SIMPLIFYING CONDITIONAL EXPRESSIONS

So we implemented a missing person object that answered a zero rate (we call our
null objects missing objects). Soon missing person knew a lot of methods like rate.
Now we have over eighty null object classes.

Our most common use of these objects is in the display of information. When we
display, say, a person, the object may or may not have any of perhaps twenty
instance variables. If these were allowed to be null, the printing of a person would be
very complex. Instead, we plug in various null objects, all of which know how to dis-
play themselves in an orderly way. This got rid of huge amounts of procedural code.

Our most clever use of null object was the missing Gemstone session. We use the
Gemstone database for production, but we prefer to develop without it and push
the new code to Gemstone every week or so. There are various points in the code
where we have to log into a Gemstone session. When we are running without Gem-
stone we simply plug in a missing Gemstone session. It looks the same as the real
thing, but allows us to develop and test without realizing the database isn t there.

Another very helpful use was the missing bin. A bin is a collection of payroll values
that often need to be summed or looped over. If a particular bin doesn't exist, we
answer a missing bin, which acts just like an empty bin. The missing bin knows it has
zero balance and no values. By using this approach, we eliminated the creation of
tens of empty bins for each of our thousands of employees.

An interesting characteristic of using null objects is that things almost never blow up.
Since the null object responds to all the same messages as a real one, the system
generally behaves normally. This can sometimes make it difficult to detect or find a
problem, because nothing ever breaks. Of course, as soon as you being inspecting
the objects, you'll find the null object somewhere where it shouldn't be.

Remember, null objects are always constant: nothing about them ever changes.
Accordingly, we implement them using the Singleton pattern [Gang of Four]. When-
ever you ask for, say, a missing person, you always get the single instance of that
class.

- - Ron Jeffries

You can find more details about the Null Object pattern in [Woolf].

Mechanics

a Create a subclass of the source class to act is a null version of the
class. Create an isNull operation on the source class and the null
class. For the source class it should return false, for the null class it

INTRODUCE NULL OBJECT

should return true.
0 You may find it useful to create an explicit Nullable interface for the isNull
method.
[0 Asan alternative you can use a testing interface to test for nullness.
Compile
Find all places that can give out a null when asked for a source
object. Replace them to give out a null object instead.
Find all places that compare a variable of the source type to null,
and replace them with a call is isNul1.
[0 You may be able to do this by replacing one source and its clients at a time, and
compiling and testing between working on sources.
[0 A few assertions that check for null in places where you should no longer see it
can be useful.
Compile and test
Look for cases where clients invoke an operation if not null and do
some alternative behavior if null.
For each of these cases override the operation in the null class with
the alternative behavior.
Remove the condition check for those that use the overriden behav-
ior, compile and test.

Example

A utility company knows about Sites: the houses and apartments that
use the utility’s services. At any time a site will have a customer.

class Site...
Customer getCustomer() {

}

return _customer;

Customer _customer;

There are various features of a customer. I'll look at three of them.

class Customer...
public String getName() {...}
public BillingPlan getPlan() {...}
public PaymentHistory getHistory() {...}

The payment history has its own features.

public class PaymentHistory...
int getWeeksDelinquentInLastYear()

¥ SIMPLIFYING CONDITIONAL EXPRESSIONS

The getters I’ve shown allow clients to get at this data. However some-
times we don’t have a customer for a site. Someone may have moved
out and we don’t know who has moved in yet. Because this can hap-
pen we have to ensure any code that uses the customer can handle
nulls. Here are a few example fragments.

Customer customer = site.getCustomer();

BiTlingPlan plan;

if (customer == null) plan = BillingPlan.basic();
else plan = customer.getPlan();

String customerNanme;
if (customer == null) customerName = "occupant";
else customerName = customer.getName();

int weeksDelinquent;

if (customer == null) weeksDelinquent = 0;

else weeksDeTinquent = customer.getHistory().getWeeksDelinquentInLastYear();
In these situations you may have many clients of site and customer, all
of which have to check for nulls and all of which do the same thing
when it finds one. Sounds like its time for a null object.

The first step is to create the null customer class and modify the cus-
tomer class to support a query for a null test.
class NullCustomer extends Customer {
public boolean isNull() {
return true;

}
}

class Customer...
pubTic boolean isNull() {
return false;

}
protected Customer() {} //needed by the NullCustomer

(If you aren’t able to modify the Customer class you can use a testing
interface, see page 165.)

If you like you can signal the use of null object by an interface

interface Nullable {
booTean isNull();

}

class Customer implements Nullable

INTRODUCE NULL OBJECT

| like to add a factory method to create null customers. That way cli-
ents don’t have to know about the null class.

class Customer...
static Customer newNull() {
return new NullCustomer();

}

Now comes the difficult bit. Now we have to return this new null
object whenever we expect a null, and replace the tests of the form foo
== null with tests of the form foo.isNuT1(). I find it useful to look for all
the places where you ask for a customer, and modify them so that they
return a null customer rather than null.

class Site...
Customer getCustomer() {
return (_customer == null) ?
Customer.newNul1():
_customer;

}

| also have to alter all uses of this value so that they test with isNuT1()
rather than == null.

Customer customer = site.getCustomer();

BiTlingPlan plan;

if (customer.isNul1()) plan = BillingPlan.basic();

else plan = customer.getPlan();

String customerName;
if (customer.isNul1()) customerName = "occupant";
else customerName = customer.getName();

int weeksDelinquent;
if (customer.isNul1()) weeksDelinquent = 0;
else weeksDelinquent = customer.getHistory().getWeeksDelinquentInLastYear();

There’s no doubt that this is the trickiest part of this refactoring. For
each source of a null you replace, you have to find all the times it is
tested for nullness and replace them. If the object is widely passed
around, these can be hard to track. You have to find every variable of
type customer and find everywhere it is used. It is hard to break this
into small steps. Sometimes you find one source that is only used in a
few places, and you can replace that source only. But most of the time
you have to make many widespread changes. The changes aren’t too

¥ SIMPLIFYING CONDITIONAL EXPRESSIONS

difficult to back out, since you can find calls of isNull without too
much difficulty, but this is still a messy step.

Once this step is done, and I've compiled and tested, | can smile. Now
the fun begins. As it stands | gain nothing from using isNull rather
than == null. The gain comes as | move behavior to the null customer
and remove conditionals. | can do these moves one at a time. | begin
with the name. Currently | have client code that says

String customerName;

if (customer.isNul1()) customerName = "occupant";
else customerName = customer.getName();

| add a suitable name method to the null customer.

class NullCustomer...
public String getName(){
return "occupant”;

}
Now | can make the conditional code go away.
String customerName = customer.getName();

I can do the same for any other method where there is a sensible gen-
eral response to a query. | can also do appropriate action for modifiers.
So client code such as

if (! customer.isNul1())
customer.setPTan(BillingPlan.special());

can be replaced by

customer.setPTan(Bil1lingPlan.special());

class NullCustomer...
public void setPlan (BiTlingPlan arg) {}

Remember that this movement of behavior makes sense only when
most clients want the same response. Notice | said “most” not “all”.
Any clients who want a different response to the standard one can still
test using isNull. You benefit when many clients want to do the same
thing, they can just rely on the default null behavior.

The example contains a slightly different case. Client code that uses
the result of a call to customer.

if (customer.isNul1()) weeksDelinquent = 0;
else weeksDelinquent = customer.getHistory().getWeeksDelinquentInlLastYear();

INTRODUCE NULL OBJECT

I can handle this by creating a null payment history.

class NullPaymentHistory extends PaymentHistory...
int getWeeksDelinquentInLastYear() {
return 0;

}
I modify the null customer to return it when asked.

class NullCustomer...
public PaymentHistory getHistory() {
return PaymentHistory.newNull();

}
And again | can remove the conditional code
int weeksDelinquent = customer.getHistory().getWeeksDelinquentInLastYear();

You often find that null objects return other null objects.

When carrying out this refactoring remember that you can have sev-
eral kinds of null. Often there is a difference between there is no cus-
tomer (new building and not yet moved in) and a unknown customer
(we think there is someone there but we don’t know who it is). If that
is the case you can build separate classes for the different null cases.
Sometimes null objects can actually carry data: such as usage records
for the unknown customer so that we can bill them when we find out
who they are.

Example - Testing Interface

The testing interface is an alternative to defining an isNull method. In
this approach you create a Null interface with no methods defined.
interface Null {}
You then implement null in your null objects.
class NullCustomer extends Customer implements Null...
You then test for nullness with the instanceof operator
aCustomer instanceof Null

I normally run away screaming from the instanceof operator, but in
this case it is okay to use it. It has the particular advantage that you
don’t need to change the customer class. This allows you to use the
null object even when you don’t have access to customer’s source
code.

¥ SIMPLIFYING CONDITIONAL EXPRESSIONS

