
455

List of Soundbites

Page 9 When you find you have to add a feature to a program, 
and the program’s code is not structured in a convenient 
way to add the feature; first refactor the program to make 
it easy to add the feature, then add the feature.

Page 10 Before you start refactoring, check that you have a solid 
suite of tests. These tests must be self-checking.

Page 14 Refactoring changes the programs in small steps: so if 
you make a mistake, it is easy to find where the bug is.

Page 17 Any fool can write code that a computer can understand, 
good programmers write code that humans can 
understand.

Page 57 Refactoring is a change made to the internal structure of 
a software component to make it easier to understand and 
cheaper to modify, without changing the observable 
behavior of that software component.

Page 65 Don't publish interfaces prematurely. Modify your code 
ownership policies to smooth refactoring.

Page 72 Surely if two programmers are working together on the 
same machine they can only go half as fast two 
programmers working separately? This would be true if 
the hardest part of programming was typing.

Page 83 “If it stinks, change it.” 
— Grandma Beck, discussing child raising philosophy

Page 93 When you feel the need to write a comment, try first to 
refactor the code so that any comment would be 
superfluous.



456

Page 96 Make sure all tests are fully automatic and check their 
own results.

Page 96 A suite of tests is a powerful bug detector that decapitates 
the time it takes to find bugs.

Page 97 Don’t let the fear that tests can’t catch every bug stop you 
from testing. If your tests only get half the bugs, they are 
still worthwhile, and you will usually do much better 
than that.

Page 101 Run your tests frequently. Localized tests whenever you 
compile, every test at least every day.

Page 106 Think of the boundary conditions where things that 
might go wrong and concentrate your tests there

Page 107 Don’t forget to test that exceptions are raised when 
things should go wrong

Page 381 Make a clear distinction between Reference Objects (e.g. 
Person) and Value Objects (e.g. Date). Value objects 
should always be immutable.

Page 382 Refactoring is an active form of code inspection.

Page 406 You do the early refactorings to learn more about the 
program, these set you up for later ones that really 
simplify the structure.

Page 408 Don’t let fear of the future stop you from doing a 
refactoring now. Refactorings aren’t difficult to change, 
and learning you gain repays the effort.


