
329

Chapter 14: Refactoring
with Tool Support

by John Brant and Don Roberts
University of Illinois and Urbana-Champaign

In this book, I’ve concentrated on manual refactoring that anyone with a regular
development environment can do. This is not the way that belive refactoring will
work in the future. In the future we will have tools that carry out many of the refac-
torings. As I’ve said earlier, such a tool already exists in Smalltalk. So for this chapter
I thought I’d give you a glimpse of what refactoring is like when you have a good tool.
As this tool only exists for Smalltalk, I can only do this with a Smalltalk example. So if
you don’t understand Smalltalk this chapter may not be as useful for you. But I hope
it will give you a flavor of what this kind of tool can do.

The program comes from a thread in the newsgroup comp.lang.smalltalk. An asser-
tion had been made that refactoring is a better way to clarify a complicated program
than commenting. A challange was made for a program to act as a demonstration. So
someone posted the following program, recoded directly from a published algo-
rithm. One of the properties claimed for this algorithm is that it is much faster than
the built in sort capability in Smalltalk.

Once the program was posted John Brant, one of the authors of the Refactoring
Browser, posted this response, showing how refactoring could clarify even a messy
program such as this. I’ve decided to leave John’s text as it is, as I think he describes
things better than I could. His partner on the work for the Smalltalk Browser is Don
Roberts, and Don has added comments in the side frames.

- - Martin Fowler

330 REFACTORING WITH TOOL SUPPORT

The Starting Program
Object subclass: #Sort
 instanceVariableNames:
 'data i j ii ij il iu k l m t tt '
 classVariableNames: ''
 poolDictionaries: ''

Sort class methods

array: anArray
 "Answer a sorted array."
 ^self new sort: anArray size: anArray size.!

condense: anArray size: anInteger
 "Answer sorted array removing nils.
 Parameter size: is without nils."
 | index element array n |
 n := anInteger.
 array := Array new: n.
 index := anArray size.
 [index > 0]
 whileTrue: [
 (element := anArray at: index) == nil
 ifFalse: [array at: n put: element.
 n := n - 1].
 index := index - 1].
 ^self new sort: array size: anInteger

Help
^'ACM #347 by Singleton, the fastest known sort, was
converted to Smalltalk with minimal changes.

Answers sorted array in ascending order. Send result array
the message "reversed" to get a descending answer.

The execute: method implements "goto", needed for the
algorithm as published, without filling Smalltalk`s call
stack on large arrays.

"Sort array: anArray" returns a sorted array. Nil values
cannot be compared so they must be removed from arrays
before sorting. Condense: anArray size: aSize removes nils
then sorts the result..'! !

331

Sort methods

execute: aLabel
 "Go to."
 | current |
 current := aLabel.
 [current isNil]
 whileFalse: [current := self perform: current]

label1
 "Perform L1."
 ij := i + j // 2.
 t := data at: ij.
 k := i.
 l := j.
 (data at: i) > t
 ifTrue: [self swap: i].
 (data at: j) < t
 ifTrue: [self swap: j.
 (data at: i) > t
 ifTrue: [self swap: i]].
 ^#label2.

label2
 "Perform L2."
 l := l - 1.
 [(data at: l) > t]
 whileTrue: [l := l - 1].
 tt := data at: l.
 ^#label3.

label3
 "Perform L3."
 k := k + 1.
 [(data at: k) < t]
 whileTrue:[k := k + 1].
 k <= l
 ifTrue: [data at: l put: (data at: k).
 data at: k put: tt.
 ^#label2].
 (l - i) > (j - k)
 ifTrue: [il at: m put: i.
 iu at: m put: l.
 i := k]
 ifFalse:[il at: m put: k.
 iu at: m put: j.
 j := l].
 m := m + 1.
 ^#label4

332 REFACTORING WITH TOOL SUPPORT

label4
 "Perform L4."
 j - i > 10
 ifTrue: [^#label1].
 i = ii
 ifTrue: [i < j
 ifTrue: [^#label1]].
 i + 1 to: j do:[:n| i := n.
 t := data at: i.
 k := i - 1.
 (data at: k) > t
 ifTrue: [self label5]].
 m := m - 1.
 m > 0
 ifTrue: [i := il at: m.
 j := iu at: m.
 ^#label4].
 ^nil

label5
 "Perform L5."
 [data at: k + 1 put: (data at: k).
 k := k - 1.
 (data at: k) > t]
 whileTrue: [].
 data at: k + 1 put: t

sort: array size: aSize
 "Answer sorted data in ascending order
 using ACM #347 by Singleton."
 | limit stream |
 data := array.
 i := ii := m := 1.
 (j := aSize) > 131071
 ifTrue: [stream := '' asStream.
 j printOn: stream.
 limit := stream contents size * 4]
 ifFalse:[limit := 16].
 il := Array new: limit. "exact limit := j ln // 2 ln"
 iu := Array new: limit.
 self execute: #label4.
 ^data

swap: element
 "Swap data elements."
 data at: ij put: (data at: element).
 data at: element put: t.
 t := data at: ij.

333

The Refactoring

First, I paste in all the code into VisualWorks, and write a test case:

TestCase subclass: #SorterTestCase
instanceVariableNames: "
classVariableNames: "
poolDictionaries: "

TestCase>>sort
| collection newCollection |
collection := Object withAllSubclasses collect: [:each | each name].
newCollection := Sort array: collection.
newCollection inject: "
into: [:sum :each |
self should: [sum <= each].
each]

I run the test case "(TestCase
selector: #sort) run" and it
passes so I go onto refactor-
ing the class.

After browsing the code, I
outline some goals:

1. I'd like to remove the execute: method

2. Rename the badly named methods/variables.

Also, I'd like to record what could be done automatically using the
Refactoring Browser, and what had to be done manually (on the steps
below, I've marked the Refactoring Browser steps with "[Refactoring
Browser]" and the manual steps with "[manual]).

Anyway, on to the refactoring.

I like to start with the class methods to get an idea of how to create the
class, so I look at the condense:size: method. I don't see any senders of
this method and I don't know how to use it, so I remove it [Refactoring
Browser].

Next, I look at the array: method. It just forwards itself to the sort:size:
method. However, the second argument is just dependent on the first

Even given sophisticated refactoring tools that can
ensure behavior-preservation, there are always trans-
formations that are not behavior-preserving in gen-
eral, but are behavior-preserving for this particular
application.

Therefore, you should always have a set of tests in
place before refactoring.

334 REFACTORING WITH TOOL SUPPORT

so I'd like to get rid of it.
So I go to the sort:size:
method and look at all
senders, and there is only
one. Therefore, I change
the sort:size: method into
a sort: method (removing
the old sort:size: method)
[manual]:

sort: array
"Answer sorted data in ascending order
using ACM #347 by Singleton."

| limit stream aSize |
aSize := array size.
data := array.
i := ii := m := 1.
(j := aSize) > 131071

ifTrue:
[stream := WriteStream on: ''.
j printOn: stream.
limit := stream contents size * 4]

ifFalse: [limit := 16].
il := Array new: limit."exact limit := j ln // 2 ln"
iu := Array new: limit.
self execute: #label4.
^data

and change the sender:

array: anArray
"Answer a sorted array."

^self new sort: anArray

I then run my test case, and everything still works.

I move on to the sort: method, and start looking at the variables it
uses. I see variables i, ii, m, j, il, and iu. Looking at the references to
each variable, I see that ii is only assigned to 1 so I change its use to 1
and remove the variable [manual]. My tests still work.

Looking at the i & j variables, it appears that they are indices into the
collection and i is always less than j. Also, i starts out at 1 and j at the
array size. So I guess that i is the startIndex and j is the stopIndex, and

You do not have to completely understand code to
refactor it. In fact, often the act of refactoring will
help you understand it. Tests give you the freedom to
explore because they will tell you if something
breaks.

Code that is hard to understand is often in a poorly
factored state. Arranging the code so it is compre-
hensible is almost always a good thing.

335

rename the variables. I may be wrong, but I'll rename them later if I am
-- right now I just need to understand the algorithm [Refactoring
Browser].

I look at the m, il, and iu variables, and couldn't understand them, so I
leave them for now.

Once again I look at the sort: method. I see that the aSize variable
really isn't doing much. It is only used once, so we might as well inline
it into its reference [Refactoring Browser]:

sort: array
"Answer sorted data in ascending order
using ACM #347 by Singleton."

| limit stream |
data := array.
startIndex := m := 1.
(stopIndex := array size) > 131071

ifTrue:
[stream := WriteStream on: ''.
stopIndex printOn: stream.
limit := stream contents size * 4]

ifFalse: [limit := 16].
il := Array new: limit."exact limit := j ln // 2 ln"
iu := Array new: limit.
self execute: #label4.
^data

I really don't have any ideas on what the rest of this code is doing, so I
move onto another method (label1). In this method I see ij :=
(startIndex + stopIndex) // 2 which is really the middle index, so I
rename ij to middleIndex [Refactoring Browser].

Next I see that t is the value of data at the middleIndex, so I'll guess that
it should be named middleElement, and rename it [Refactoring Browser].

I can't determine what k and l are so I leave them. Now looking at the
rest of the label1 method, it appears that we are putting the median
value of the first, middle, and last elements into the middle index. This
is one of the steps in the median of three quick sort algorithm, so I
rename label1 to medianOfThreeQuickSort [Refactoring Browser]. I don't
know that it is the median of three quick sort algorithm, but at least we
have a better name than label1.

336 REFACTORING WITH TOOL SUPPORT

I don't see much more that I can do with the medianOfThreeQuickSort
method for now, so I move onto the label2 method. The method looks
like we are searching back-
wards until we find an element
that is less than the middle ele-
ment, so I rename it to be
findLastElementLessThanMiddleElement, and move onto the label3 method
[Refactoring Browser].

The label3 method is a long method and I'd
like to break it up. Looking at the first two
lines, it appears that we are searching for
some value greater than the middle ele-
ment. So I extract it to be [Refactoring
Browser]:

findFirstElementGreaterThanMiddleElement
k := k + 1.
[(data at: k) < middleElement] whileTrue: [k := k + 1]

I don't really understand the rest of label3
so I'll leave it for now.

Now, I'd like to remove some of the symbols being returned. Looking
at the execute: method it appears that where ever a symbol is returned,
it will just perform that symbol, so they can be replaced with self
sends. I try to replace all returns with self sends, but when I run my
test, I break it after a couple seconds (either I made a mistake or the
direct sends are too slow). So I back out of the replacement which is
easy since I hadn't made too many changes. However, I'd still like to
remove the sends, so I opt to just replace the ones in findLastElement-
LessThanMiddleElement and medianOfThreeQuickSort. I run my tests, and it
still works and isn't noticeably slower [manual].

When changing the findLastElementLessThanMiddleElement, I notice that it
is doing more than just finding the last element. I'd like to move this
extra behavior into its own methods. First, I look at the tt assignment
statement. This variable doesn't appear to be used until we get into the
label3 method, so I move it there and run the tests [manual]:

label3
"Perform L3."

Automated low-level refactoring makes these
types of manipulations very inexpensive an
allows speculation like this.

In Smalltalk, big method names
are encouraged and reduce the
need for comments

Long methods are a good indica-
tor of places that should be refac-
tored. The rule of thumb is that
every method should do 1 thing,
and the steps within a method
should all be at the same level of
abstraction.

337

self findFirstElementGreaterThanMiddleElement.
k <= l

ifTrue:
[tt := data at: l.
data at: l put: (data at: k).
data at: k put: tt.
^#findLastElementLessThanMiddleElement].

l - startIndex > (stopIndex - k)
ifTrue:

[il at: m put: startIndex.
iu at: m put: l.
startIndex := k]

ifFalse:
[il at: m put: k.
iu at: m put: stopIndex.
stopIndex := l].

m := m + 1.
^#label4

Now it appears that label3 is just swapping the elements in l & k when
k <= l, so I change label3 to use VW's swap:with: method [manual]:

label3
"Perform L3."

self findFirstElementGreaterThanMiddleElement.
k <= l

ifTrue:
[data swap: k with: l.
^#findLastElementLessThanMiddleElement].

l - startIndex > (stopIndex - k)
ifTrue:

[il at: m put: startIndex.
iu at: m put: l.
startIndex := k]

ifFalse:
[il at: m put: k.
iu at: m put: stopIndex.
stopIndex := l].

m := m + 1.
^#label4

This gets rid of all references to tt, so I remove the instance variable
[Refactoring Browser].

Once again, I move back to findLastElementLessThanMiddleElement and
see that it is still doing more than finding the last element. I'd like to

338 REFACTORING WITH TOOL SUPPORT

get rid of this, so the plan is to inline the label3 method, rename the
method, and extract the true findLastElementLessThanMiddleElement
method.

After inlining the label3 send and removing label3 method I get [Refac-
toring Browser]:

findLastElementLessThanMiddleElement
"Perform L2."

l := l - 1.
[(data at: l) > middleElement] whileTrue: [l := l - 1].
self findFirstElementGreaterThanMiddleElement.
k <= l

ifTrue:
[data swap: k with: l.
^#findLastElementLessThanMiddleElement].

l - startIndex > (stopIndex - k)
ifTrue:

[il at: m put: startIndex.
iu at: m put: l.
startIndex := k]

ifFalse:
[il at: m put: k.
iu at: m put: stopIndex.
stopIndex := l].

m := m + 1.
^#label4

Since I don't know what its purpose is yet, I rename it to be unknown
[Refactoring Browser]. Now, I can extract the first two lines as
findLastElementLessThanMiddleElement [Refactoring Browser]:

findLastElementLessThanMiddleElement
l := l - 1.
[(data at: l) > middleElement] whileTrue: [l := l - 1]

and:

unknown
"Perform L2."

self findLastElementLessThanMiddleElement.
self findFirstElementGreaterThanMiddleElement.
k <= l

339

ifTrue:
[data swap: k with: l.
^#unknown].

l - startIndex > (stopIndex - k)
ifTrue:

[il at: m put: startIndex.
iu at: m put: l.
startIndex := k]

ifFalse:
[il at: m put: k.
iu at: m put: stopIndex.
stopIndex := l].

m := m + 1.
^#label4

Now, I'd like to understand more about the unknown method, so first I
inline the whileTrue: dispatching loop from execute: into the unknown
method [manual]:

unknown
"Perform L2."

[self findLastElementLessThanMiddleElement.
self findFirstElementGreaterThanMiddleElement.
k <= l]

whileTrue: [data swap: k with: l].
l - startIndex > (stopIndex - k)

ifTrue:
[il at: m put: startIndex.
iu at: m put: l.
startIndex := k]

ifFalse:
[il at: m put: k.
iu at: m put: stopIndex.
stopIndex := l].

m := m + 1.
^#label4

Since this was a manual step, I run my tests and they worked.

Now remembering some about the quicksort algorithm, I remember
that there was a partitioning step, then we recursively sorted the parti-
tions (of course this assumes that my guess of this being a quicksort is
correct -- but so far it still matches). Looking at the unknown method,

340 REFACTORING WITH TOOL SUPPORT

it appears that the whileTrue: look is doing the partitioning so I extract
it to a partition method [Refactoring Browser]:

partition

[self findLastElementLessThanMiddleElement.
self findFirstElementGreaterThanMiddleElement.
k <= l]

whileTrue: [data swap: k with: l]

and:

unknown
"Perform L2."

self partition.
l - startIndex > (stopIndex - k)

ifTrue:
[il at: m put: startIndex.
iu at: m put: l.
startIndex := k]

ifFalse:
[il at: m put: k.
iu at: m put: stopIndex.
stopIndex := l].

m := m + 1.
^#label4

Having had as much fun as I can stand with the methods, I move onto
trying to eliminate/rename some of the instance variables. I look at k &
l in the medianOfThreeQuickSort method. These variables aren't used by
this method, and I'd like to move them where they're used. After fur-
ther investigation, it appears that I can move them to the unknown
method [manual]:

unknown
"Perform L2."

k := startIndex.
l := stopIndex.
self partition.
l - startIndex > (stopIndex - k)

ifTrue:
[il at: m put: startIndex.
iu at: m put: l.
startIndex := k]

ifFalse:

341

[il at: m put: k.
iu at: m put: stopIndex.
stopIndex := l].

m := m + 1.
^#label4

and:

medianOfThreeQuickSort
"Perform L1."

middleIndex := (startIndex + stopIndex) // 2.
middleElement := data at: middleIndex.
(data at: startIndex) > middleElement ifTrue: [self swap: startIndex].
(data at: stopIndex) < middleElement

ifTrue:
[self swap: stopIndex.
(data at: startIndex) > middleElement ifTrue: [self swap: startIndex]].

^self unknown

I re-run the tests and everything still works, so I'm happy. While I
wasn't able to remove them, at least they are closer to where they're
being used.

I now move onto the label4 method. I'd like to remove the indirect
message send of #label4 at the end of the method. I use the same inlin-
ing whileTrue: from the execute: as I did before [manual]:

label4
"Perform L4."

[stopIndex - startIndex > 10 ifTrue: [^#medianOfThreeQuickSort].
startIndex = 1

ifTrue: [startIndex < stopIndex ifTrue: [^#medianOfThreeQuickSort]].
startIndex + 1 to: stopIndex

do:
[:n |
startIndex := n.
middleElement := data at: startIndex.
k := startIndex - 1.
(data at: k) > middleElement ifTrue: [self label5]].

m := m - 1.
m > 0]

whileTrue:
[startIndex := il at: m.
stopIndex := iu at: m].

^nil

342 REFACTORING WITH TOOL SUPPORT

Now looking at m, il, and iu, I notice that they are always used
together. m is the index into the array and il is used to assign the
startIndex and iu is used for the stopIndex. Remembering back in my
algorithms book, I remember a variant of the quicksort that wasn't
directly recursive and used a stack of start and stop indices, so I
assume that these variables are for that. I rename il to startIndexStack
and iu to stopIndexStack. Now since these represent stacks, I'd prefer to
use an OrderedCollection to represent them instead of arrays that we
must precompute the size of. I then change the sort: and label4 meth-
ods [manual]:

sort: array
"Answer sorted data in ascending order
using ACM #347 by Singleton."

| limit stream |
data := array.
startIndex := 1.
(stopIndex := array size) > 131071

ifTrue:
[stream := WriteStream on: ''.
stopIndex printOn: stream.
limit := stream contents size * 4]

ifFalse: [limit := 16].
startIndexStack := OrderedCollection new.
stopIndexStack := OrderedCollection new.
self execute: #label4.
^data

and:

label4
"Perform L4."

[stopIndex - startIndex > 10 ifTrue: [^#medianOfThreeQuickSort].
startIndex = 1

ifTrue: [startIndex < stopIndex ifTrue: [^#medianOfThreeQuickSort]].
startIndex + 1 to: stopIndex

do:
[:n |
startIndex := n.
middleElement := data at: startIndex.
k := startIndex - 1.
(data at: k) > middleElement ifTrue: [self label5]].

startIndexStack isEmpty not]

343

whileTrue:
[startIndex := startIndexStack removeLast.
stopIndex := stopIndexStack removeLast].

^nil

I then run the tests, and they fail. Looking at the failure, I notice that I
forgot to change unknown method for our new representation.

Changing unknown and rerunning the tests work:

unknown
"Perform L2."

k := startIndex.
l := stopIndex.
self partition.
l - startIndex > (stopIndex - k)

ifTrue:
[startIndexStack add: startIndex.
stopIndexStack add: l.
startIndex := k]

ifFalse:
[startIndexStack add: k.
stopIndexStack add: stopIndex.
stopIndex := l].

^#label4

Now I remove m since it isn't used anymore [Refactoring Browser].

I also notice that the special case code for size > 131071 isn't really nec-
essary anymore since we have changed to OrderedCollections, so I
remove the check [manual]:

sort: array
"Answer sorted data in ascending order
using ACM #347 by Singleton."

data := array.
startIndex := 1.
stopIndex := array size.
startIndexStack := OrderedCollection new.
stopIndexStack := OrderedCollection new.
self execute: #label4.
^data

344 REFACTORING WITH TOOL SUPPORT

Once again I start looking at the variables. Every variable except k & l
has a decent name. I'd like to give them good names also. l appears to
be associated with findLastElementLessThanMiddleElement and k with
findFirstElementGreaterThanMiddleElement. I rename l to be lastIndex-
LessThanMiddleElement and k to firstIndexGreaterThanMiddleElement [Refac-
toring Browser].

Growing tired of that work, I move to something new, the swap:
method. There's not much there, but I decide to use VW's swap:with:
method instead [manual]:

swap: element
"Swap data elements."

data swap: middleIndex with: element.
middleElement := data at: middleIndex

Since there isn't a whole lot more I can do here, I move back to the
label4 method. For many sorts, it appears that it does a median of
three quicksort, but there is a special case where it does looping. Look-
ing more closely at the loop, it appears that it compares the current ele-
ment with the previous element, and whenever it finds one that is less
than the previous then it calls label5 method. This appears to be an
insertion sort, so I extract the code into an insertionSort method [Refac-
toring Browser]:

insertionSort
startIndex + 1 to: stopIndex

do:
[:n |
startIndex := n.
middleElement := data at: startIndex.
firstIndexGreaterThanMiddleElement := startIndex - 1.
(data at: firstIndexGreaterThanMiddleElement) > middleElement

ifTrue: [self label5]]

and:

label4
"Perform L4."

345

[stopIndex - startIndex > 10 ifTrue: [^#medianOfThreeQuickSort].
startIndex = 1

ifTrue: [startIndex < stopIndex ifTrue: [^#medianOfThreeQuickSort]].
self insertionSort.
startIndexStack isEmpty not]

whileTrue:
[startIndex := startIndexStack removeLast.
stopIndex := stopIndexStack removeLast].

^nil

Looking at label4, there appears to be a special case when startIndex =
1. I'd prefer to get rid of this special case and just use the insertion sort.
I comment out the code, and run the tests, but they fail in label5. After
closer inspection of the failure, it appears that the insertion sort routine
will walk off the beginning of the array. I change the insertion sort to
check for this condition and rerun the tests (they worked) [manual]:

label5
"Perform L5."

[data at: firstIndexGreaterThanMiddleElement + 1
put: (data at: firstIndexGreaterThanMiddleElement).

firstIndexGreaterThanMiddleElement := firstIndexGreaterThanMiddleElement
- 1.

firstIndexGreaterThanMiddleElement > 0
and: [(data at: firstIndexGreaterThanMiddleElement) > middleElement]]

whileTrue: [].
data at: firstIndexGreaterThanMiddleElement + 1 put: middleElement

and:

label4
"Perform L4."

[stopIndex - startIndex > 10 ifTrue: [^#medianOfThreeQuickSort].
self insertionSort.
startIndexStack isEmpty not]

whileTrue:
[startIndex := startIndexStack removeLast.
stopIndex := stopIndexStack removeLast].

^nil

I change label4 to send the medianOfThreeQuickSort message directly and
change the test to be ifTrue:ifFalse: [manual]:

346 REFACTORING WITH TOOL SUPPORT

label4
"Perform L4."

[stopIndex - startIndex > 10
ifTrue: [^self medianOfThreeQuickSort]
ifFalse: [self insertionSort].

startIndexStack isEmpty not]
whileTrue:

[startIndex := startIndexStack removeLast.
stopIndex := stopIndexStack removeLast].

^nil

I decide that I've had enough of the bad label4 name, and rename it to
be sort since it is the top level method that does the sorting [Refactoring
Browser].

Now I'd like to get rid of the return of "self medianOfThreeQuickSort"
in the sort method and just let the processing fall on through. Since
medianOfThreeQuickSort always returns #sort, we could just let sort han-
dling the processing. My first attempt just removed the return, how-
ever, this caused my test cases to fail. After a couple minutes thinking
about the problem, I remembered that we need to sort both halves of
the partition for quick sort, and the stack was only holding one half. I
changed the unknown method to add both partitions to the stacks [man-
ual]:

unknown
"Perform L2."

firstIndexGreaterThanMiddleElement := startIndex.
lastIndexLessThanMiddleElement := stopIndex.
self partition.
lastIndexLessThanMiddleElement - startIndex

> (stopIndex - firstIndexGreaterThanMiddleElement)
ifTrue:

[startIndexStack
add: startIndex;
add: firstIndexGreaterThanMiddleElement.

stopIndexStack
add: lastIndexLessThanMiddleElement;
add: stopIndex]

ifFalse:
[startIndexStack

add: firstIndexGreaterThanMiddleElement;

347

add: startIndex.
stopIndexStack

add: stopIndex;
add: lastIndexLessThanMiddleElement].

^#sort

I rerun the test cases, and everything works so I'm happy...

Now we're ready to remove the execute: method that has been causing
us so much headache. I change the sort: method to send the message
directly and test [manual]:

sort: array
"Answer sorted data in ascending order
using ACM #347 by Singleton."

data := array.
startIndex := 1.
stopIndex := array size.
startIndexStack := OrderedCollection new.
stopIndexStack := OrderedCollection new.
self sort.
^data

Since the execute: method is no longer used, I remove it [Refactoring
Browser]. Also, since the return values of sort and unknown aren't used
I remove them also [manual]. My tests still run...

I still need to name unknown and label5 methods, so I look at the unknown
method. First, I notice that the first two assignment statements can be
moved into the partition method, so I do that [manual]:

partition
firstIndexGreaterThanMiddleElement := startIndex.
lastIndexLessThanMiddleElement := stopIndex.

[self findLastElementLessThanMiddleElement.
self findFirstElementGreaterThanMiddleElement.
firstIndexGreaterThanMiddleElement <= lastIndexLessThanMiddleElement]

whileTrue:
[data swap: firstIndexGreaterThanMiddleElement

with: lastIndexLessThanMiddleElement]

348 REFACTORING WITH TOOL SUPPORT

and:

unknown
"Perform L2."

self partition.
lastIndexLessThanMiddleElement - startIndex

> (stopIndex - firstIndexGreaterThanMiddleElement)
ifTrue:

[startIndexStack
add: startIndex;
add: firstIndexGreaterThanMiddleElement.

stopIndexStack
add: lastIndexLessThanMiddleElement;
add: stopIndex]

ifFalse:
[startIndexStack

add: firstIndexGreaterThanMiddleElement;
add: startIndex.

stopIndexStack
add: stopIndex;
add: lastIndexLessThanMiddleElement]

It looks like the last ifTrue:ifFalse: statement is setting up the recur-
sion, so I extract it into a recursivelySortPartitions method [Refactoring
Browser].

recursivelySortPartitions
lastIndexLessThanMiddleElement - startIndex

> (stopIndex - firstIndexGreaterThanMiddleElement)
ifTrue:

[startIndexStack
add: startIndex;
add: firstIndexGreaterThanMiddleElement.

stopIndexStack
add: lastIndexLessThanMiddleElement;
add: stopIndex]

ifFalse:
[startIndexStack

add: firstIndexGreaterThanMiddleElement;
add: startIndex.

stopIndexStack
add: stopIndex;
add: lastIndexLessThanMiddleElement]

and:

unknown

349

"Perform L2."

self partition.
self recursivelySortPartitions

The unknown method is rather short, so I'll inline it into its sender and
remove it [Refactoring Browser]:

medianOfThreeQuickSort
"Perform L1."

middleIndex := (startIndex + stopIndex) // 2.
middleElement := data at: middleIndex.
(data at: startIndex) > middleElement ifTrue: [self swap: startIndex].
(data at: stopIndex) < middleElement

ifTrue:
[self swap: stopIndex.
(data at: startIndex) > middleElement ifTrue: [self swap: startIndex]].

self partition.
self recursivelySortPartitions

However, the first part of the method isn't at the same abstraction level
as the last two statements, so I'll extract the first part into its own
method [Refactoring Browser]:

pickMedianElement
middleIndex := (startIndex + stopIndex) // 2.
middleElement := data at: middleIndex.
(data at: startIndex) > middleElement ifTrue: [self swap: startIndex].
(data at: stopIndex) < middleElement

ifTrue:
[self swap: stopIndex.
(data at: startIndex) > middleElement ifTrue: [self swap: startIndex]]

and:

medianOfThreeQuickSort
"Perform L1."

self pickMedianElement.
self partition.
self recursivelySortPartitions

Going back to the recursivelySortPartitions method we can see that
one case sorts the first partition then the last and the other case sorts

350 REFACTORING WITH TOOL SUPPORT

the last then the first. I extract these into their own methods [Refactor-
ing Browser]:

recursivelySortLastThenFirstPartition
startIndexStack

add: startIndex;
add: firstIndexGreaterThanMiddleElement.

stopIndexStack
add: lastIndexLessThanMiddleElement;
add: stopIndex

recursivelySortFirstThenLastPartition
startIndexStack

add: firstIndexGreaterThanMiddleElement;
add: startIndex.

stopIndexStack
add: stopIndex;
add: lastIndexLessThanMiddleElement

recursivelySortPartitions
lastIndexLessThanMiddleElement - startIndex

> (stopIndex - firstIndexGreaterThanMiddleElement)
ifTrue: [self recursivelySortLastThenFirstPartition]
ifFalse: [self recursivelySorFirstThenLastPartition]

Now we only have the label5 method left. It is used by the insertion
sort, and I rename it to be insertSortedElement [Refactoring Browser].

Looking more at the insertion sort, I'd like to split the variables so that
we don't use middleElement (which doesn't make sense for an insertion
sort). First I try:

insertionSort
startIndex to: stopIndex - 1

do: [:n | (data at: n - 1) > (data at: n) ifTrue: [self insertSortedElementAt: n]]

and

insertSortedElementAt: anIndex
| index element |
element := data at: anIndex + 1.
index := anIndex.

[data at: index + 1 put: (data at: index).
index := index - 1.
index > 0 and: [(data at: index) > element]]

whileTrue: [].

351

data at: index + 1 put: element

but this failed. I had changed the start and stop, but forgot to change
the comparison indices [manual]:

insertionSort
startIndex to: stopIndex - 1

do: [:n | (data at: n) > (data at: n + 1) ifTrue: [self insertSortedElementAt: n]]

This works, however I'd still like to get rid of the condition in the
insertionSort method. The conditional is also present in the insertSort-
edElementAt: method. I reorder the whileTrue: stuff to get rid of the con-
dition in the insertionSort method [manual]:

insertionSort
startIndex to: stopIndex - 1 do: [:n | self insertSortedElementAt: n]

insertSortedElementAt: anIndex
| index element |
element := data at: anIndex + 1.
index := anIndex.
[index > 0 and: [(data at: index) > element]] whileTrue:

[data at: index + 1 put: (data at: index).
index := index - 1].

data at: index + 1 put: element

Finally, I notice that the 0 could be changed to be the start index of the
sort in the insertSortedElementAt: method. I make the change and retest
[manual]

insertSortedElementAt: anIndex
| index element |
element := data at: anIndex + 1.
index := anIndex.
[index >= startIndex and: [(data at: index) > element]] whileTrue:

[data at: index + 1 put: (data at: index).
index := index - 1].

data at: index + 1 put: element

After all these changes were made, I started to think about improving
it further. I was thinking of using object recursion with a quick sort

352 REFACTORING WITH TOOL SUPPORT

and insertion sort objects. However, I thought I'd see how my changes
had affected performance. I ran my test and it took ~560 ms, and then I
tested the standard SortedCollection from VisualWorks, and it only
took ~525 ms. Since I had heard about how much faster this version
was than VisualWorks' SortedCollection, I decided to load the original
version and see how it compared. The original version wasn't any
faster, and in fact it was even somewhat slower than my refactored
version! Its times were around 570 ms. I then realized that the real
refactoring for this problem is to replace all code such as Sort array:
aCollection with aCollection asSortedCollection and remove the Sort
class. After this refactoring every line of code left doesn't need com-
menting -- there are no lines left...

Anyway, if you'd like to see my refactored version of the Sort class
before the final remove refactoring, I've attached it below. A little over
half of the refactoring steps performed were done by the Refactoring
Browser.

Object subclass: #Sort
instanceVariableNames: 'data startIndex stopIndex middleIndex middleElement startIndexStack

stopIndexStack lastIndexLessThanMiddleElement firstIndexGreaterThanMiddleElement '
classVariableNames: ''
poolDictionaries: ''
category: 'Junk'!

!Sort methodsFor: 'sorting'!

findFirstElementGreaterThanMiddleElement
firstIndexGreaterThanMiddleElement := firstIndexGreaterThanMiddleElement

+ 1.
[(data at: firstIndexGreaterThanMiddleElement) < middleElement]

whileTrue:
[firstIndexGreaterThanMiddleElement := firstIndexGreaterThanMiddleElement

+ 1]!

findLastElementLessThanMiddleElement
lastIndexLessThanMiddleElement := lastIndexLessThanMiddleElement - 1.
[(data at: lastIndexLessThanMiddleElement) > middleElement] whileTrue:

[lastIndexLessThanMiddleElement := lastIndexLessThanMiddleElement - 1]!

insertionSort
startIndex to: stopIndex - 1 do: [:n | self insertSortedElementAt: n]!

insertSortedElementAt: anIndex

353

| index element |
element := data at: anIndex + 1.
index := anIndex.
[index >= startIndex and: [(data at: index) > element]] whileTrue:

[data at: index + 1 put: (data at: index).
index := index - 1].

data at: index + 1 put: element!

medianOfThreeQuickSort
self pickMedianElement.
self partition.
self recursivelySortPartitions!

partition
firstIndexGreaterThanMiddleElement := startIndex.
lastIndexLessThanMiddleElement := stopIndex.

[self findLastElementLessThanMiddleElement.
self findFirstElementGreaterThanMiddleElement.
firstIndexGreaterThanMiddleElement <= lastIndexLessThanMiddleElement]

whileTrue:
[data swap: firstIndexGreaterThanMiddleElement

with: lastIndexLessThanMiddleElement]!

pickMedianElement
middleIndex := (startIndex + stopIndex) // 2.
middleElement := data at: middleIndex.
(data at: startIndex) > middleElement ifTrue: [self swap: startIndex].
(data at: stopIndex) < middleElement

ifTrue:
[self swap: stopIndex.
(data at: startIndex) > middleElement ifTrue: [self swap: startIndex]]!

recursivelySortFirstThenLastPartition
startIndexStack

add: firstIndexGreaterThanMiddleElement;
add: startIndex.

stopIndexStack
add: stopIndex;
add: lastIndexLessThanMiddleElement!

recursivelySortLastThenFirstPartition
startIndexStack

add: startIndex;
add: firstIndexGreaterThanMiddleElement.

stopIndexStack
add: lastIndexLessThanMiddleElement;
add: stopIndex!

recursivelySortPartitions
lastIndexLessThanMiddleElement - startIndex

354 REFACTORING WITH TOOL SUPPORT

> (stopIndex - firstIndexGreaterThanMiddleElement)
ifTrue: [self recursivelySortLastThenFirstPartition]
ifFalse: [self recursivelySortFirstThenLastPartition]!

sort

[stopIndex - startIndex > 10
ifTrue: [self medianOfThreeQuickSort]
ifFalse: [self insertionSort].

startIndexStack isEmpty not]
whileTrue:

[startIndex := startIndexStack removeLast.
stopIndex := stopIndexStack removeLast]!

sort: array
"Answer sorted data in ascending order

 using ACM #347 by Singleton."

data := array.
startIndex := 1.
stopIndex := array size.
startIndexStack := OrderedCollection new.
stopIndexStack := OrderedCollection new.
self sort.
^data!

swap: element
"Swap data elements."

data swap: middleIndex with: element.
middleElement := data at: middleIndex! !

"-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- "!

Sort class
instanceVariableNames: ''!

!Sort class methodsFor: 'instance creation'!

array: anArray
"Answer a sorted array."

^self new sort: anArray! !

