
1

Preface

Once upon a time a consultant made a visit to a development project.
The consultant looked at some of the code that had been written, it
was a class hierarchy at the center of the system. As he wandered
through the hierarchy he saw that it was rather messy. The higher
level classes made certain assumptions about how the classes would
work, assumptions that were embodied in inherited code. That code
didn’t suit all the subclasses, however, and were overridden quite
heavily. If the superclass had been modified a little, then much less
overriding would have been necessary. In other places some of the
intention of the superclass had not been properly understood, and
behavior that was there in the superclass was duplicated. In yet other
places several subclasses did the same thing with code that could
clearly be moved up the hierarchy.

The consultant recommended to the project management that the code
be looked at and cleaned up, but the project management didn’t seem
too enthusiastic. The code seemed to work and there were consider-
able schedule pressures. They said they would get around to it at some
later point.

The consultant had also shown the programmers who had worked on
the hierarchy what was going on. The programmers were keen and
saw the problem. They knew that it wasn’t really their fault, some-
times these things need a new pair of eyes to spot the problem. So they
spent a day or two cleaning up the hierarchy. When they had finished
they had removed half the code in the hierarchy, without reducing its
functionality. They were pleased with this, and found that now it was
quicker and easier both to add new classes to the hierarchy and to use
the classes in the rest of the system.

The project management was not so pleased. Schedules were tight and
there was a lot of work to do. These two programmers had spent two
days doing work that had done nothing to add the many features that



2

the system needed to deliver in a few months time. The old code had
worked just fine. So the design was a bit more ‘pure’ a bit more ‘clean’.
The project needed to ship code that worked, not code that would
please an academic. The consultant suggested that this cleaning up be
done with the rest of the system. Such an activity would halt the
project for a week or two. All to make the code look better, not to make
it do anything that it didn’t already do. 

How do you feel about this story? Do you think the consultant was
right to suggest further cleaning up? Or do you follow that old engi-
neering adage “if it works, don’t fix it”?

If you thought the consultant was right then you will enjoy this book. It will tell you
how to clean up code, to keep it clean, and to treat the cleaning process as an essen-
tial part of software development. If you thought the manager was right then you
desperately need this book. The book will show you that cleaning up code can have
surprisingly deep effects in a programming project, and will actually improve produc-
tivity. It is not a technique used by lazy programmers to avoid adding features to a
system (though it can be), but a technique used by master programmers to build
flexible, highly productive systems. 

- - Ralph Johnson

I must admit to some bias here. I was that consultant. Six months later
the project had failed due in large part to code that was too complex to
debug or to tune to an acceptable performance.

Kent Beck was brought in to restart the project, an exercise that
involved rewriting almost the whole system from scratch. He did sev-
eral things differently, but one of the most important was to insist on
continuous cleaning up of the code using refactoring. The success of
this project, and role refactoring played in this success, is what
inspired me to write this, so that I could pass on the knowledge that
Kent and others have learned in using refactoring to improve the qual-
ity of software.

What Is Refactoring?

Refactoring is the process of changing a software system in such a way
that it does not alter the external behavior of the code, yet improves its
internal structure. It is a disciplined way to clean up code that mini-



3

mizes the chances of introducing bugs. In essence when you refactor
you are improving the design of the code after it has been written. 

“Improving the design after it has been written”, that’s an odd turn of
phrase. In our current understanding of software development we
believe that we do design, and then we code. A good design comes
first, and the coding comes second. Over time the code will get modi-
fied and the integrity of the system, its structure according to that
design gradually fades. The code slowly sinks from engineering to
hacking.

Refactoring is the opposite to this. With refactoring you can even take
a bad design, chaos even, and rework it into well-designed code. Each
step is simple, even simplistic. You move a field from one class to
another, pull some code out of a method to make into its own method,
push some code up or down a hierarchy. Yet the cumulative effect of
these small changes can radically improve the design. It is the exact
reverse of the normal notion of software decaying.

With refactoring you find the balance of work changes. Instead of
design occurring all up front, you find that design occurs continuously
during development. The design learns from the implementation and
the resulting interaction leads to a program whose design stays good
as the development continues.

What’s in this Book

This book is a guide to refactoring, written for a professional program-
mer. My aim is to show you how to do refactoring in a controlled and
efficient manner. In such a way that you don’t introduce bugs into the
code, but instead methodically improve the structure. I use three kinds
of discussion to show you that.

• Principles: in a few chapters I’ll talk about basic principles of refac-
toring, why you should do it, limitations, the importance of unit
tests, tools, and the like. 

• “Over the shoulder” examples: here I’ll walk you step by step
through a bout of refactoring. We’ll start with some poorly fac-
tored code, and I’ll show you how I go about refactoring it. This



4

should give you a sense of the process of refactoring. How often
you proceed without a clear goal, until you clean up the code
enough to see where you need to go. How you combine different
kinds of refactoring in different places.

• Catalog of refactorings: the heart of this book is a catalog of refac-
torings. This is by no means a comprehensive catalog. It is the
beginning of such a catalog. It includes the refactorings that I have
used in this book and come across in other places. It acts as a refer-
ence for me. When I want to do something, like Replace Switch with
Polymorphism (147), it reminds how to do it in a safe, step-by-step
manner. I hope this is the section of the book you’ll often come
back to.

Structure of the Book

It’s traditional to start books with an introduction. While I agree with
that principle, I don’t find it’s easy to introduce Refactoring with a
generalized discussion or definitions. So I start with an example.
Chapter 1 takes a small program with some common design flaws,
and refactors into a more acceptable object-oriented program. Along
the way we’ll see both the process of refactoring and the application of
several useful refactorings.

In Chapter 2 I’ll cover more of the general principles of refactoring,
some definitions, the role of testing and performance tuning, and I’ll
outline some of the problems with refactoring. For Chapter 3 I have
Kent Beck to help me describe how to find bad smells in your code,
and how to deodorize them with refactorings. Testing plays a very
important role in refactoring, so Chapter 4 looks at how to build tests
into the code using a simple open source Java testing framework.

Now we come to the catalog of refactorings, which stretches from
Chapter 6 to Chapter 12. As I’ve said this is not a comprehensive cata-
log, but it will give you a good start by describing a core set of refactor-
ings. With each refactoring I discuss why it is a good idea to do it, give
a step by step description of how to do it, and add an example to help
make it clearer.

In writing this book I’m describing the fruit of a lot of research done by
others. Chapter 13 and Chapter 14 are guest chapters by the original



5

researchers which describe the issues in adopting refactoring and taste
of what refactoring tools will look like. 

Chapter 15 is a final, longer example of how you can bring several sim-
ilar classes together into an inheritance hierarchy. Some readers find
the length of the example is too much to wade through. Others feel
that an example of this length is essential to understand how refactor-
ing works in a more real world problem. So I leave it up to you, try it
and see how you go. 

Who Should Read this Book?

This book is aimed at a professional programmer, someone who writes
software for a living. The examples and discussion include a lot of
code to read and understand. The examples are all in Java. I chose Java
because it is increasingly a well-known language that can be easily
understood by anyone with a C background. It is also an object-ori-
ented language, and object-oriented mechanisms are a great help in
refactoring.

I should stress that while refactoring is focused on the code, it has a
large impact on the design of system. So I believe it is vital for senior
designers and architects to understand the principles of refactoring
and to use them in their projects. Refactoring is best introduced by a
respected and experienced developer who can best understand the
principles behind it and adapt those principles to the specific work-
place. This is particularly true when you are using a language other
than Java, as you have to adapt the examples I’ve given to other lan-
guages.

Building on the Foundations Laid by Others

I need to say right now, at the beginning, that I owe a big debt with
this book. A debt to those whose work over the last decade has devel-
oped the field of refactoring. Ideally one of them should have written
this book, but I ended up being the one with the time and energy.



6

Two of the biggest proponents of refactoring are Ward Cunningham
and Kent Beck. They used it as a central part of their development
process in the early days, and have adapted their development pro-
cesses to take advantage of it. In particular it was my collaboration
with Kent that really showed me the importance of refactoring, an
inspiration that led directly to this book.

Ralph Johnson leads a department at the University of Illinois at
Urbana-Champaign that is notable for it’s practical contributions to
object technology. Ralph has long been a champion of refactoring, and
several of his students have worked on the topic. Bill Opdyke devel-
oped the first detailed written work on refactoring in his Ph.D. thesis.
John Brant and Don Roberts have gone beyond writing words, into
writing a tool, Refactory, for refactoring Smalltalk programs. 

I also want to thank the team who developed the Chrysler Compre-
hensive Compensation system (C3). Working with them and Kent
cemented the principles and benefits of refactoring into me on a first
hand basis. 

tbd: Finish acknowledgment list.

Martin Fowler
Melrose, Massachusetts
mailto:fowler@acm.org

http://ourworld.compuserve.com/homepages/martin_fowler


