
Strongtalk: Typechecking Smalltalk in a Production Environment

Gilad Bracha

gilad@longview.com

David Griswold

david@longview.com

Horizon Technologies of New York, Inc.

38 W. 32nd St., Suite 402,
New York, NY 10001

Abstract

StrongtalkTM is a typechecker for a downward-
compatible Smalltalk dialect. It is designed for
large-scale production software development, and

incorporates a strong, modern structural type sys-
tem. It not only separates the notions of type and

class, but also deals with the more di�cult issue
of separating inheritance and subtyping using the

notion of inherited types [CHC90, Bru93a] to pre-
serve encapsulation. Strongtalk integrates inherited

types, metaclasses, blocks and polymorphic methods
into a highly usable, full-scale language.

1 Introduction

It is widely accepted that a strong, static type sys-

tem for a programming language has important

bene�ts, including increased reliability, readability,

and (potentially) performance. However, an inad-

equate type system can constrain the exibility of

a language, and thus its expressiveness.

Static typing allows the type safety of source

code to be completely determined before execu-

0TM Strongtalk is a trademark of Horizon Technologies
of New York, Inc.

Appeared in proceedings of the ACM Conference on
Object-Oriented Programming: Systems, Languages,
and Applications (OOPSLA) 1993.
c1993 ACM. Copied by permission.

tion. Understanding of e�ective ways to adapt such

typing techniques to polymorphic languages with

subtyping has matured only slowly over the last

decade, beginning with [Car84]. For this reason

(among others), languages such as LISP, Smalltalk,

and Self that strive for extreme code reusability

through various forms of polymorphism have tra-

ditionally foregone the bene�ts of static typing in

favor of the more arbitrary exibility of dynamic

typing (where all types are veri�ed on-the-y dur-

ing execution).

A number of attempts [Suz81, BI82, GJ90] have

been made to retro�t a static type system to

Smalltalk. Most of these e�orts have been signif-

icantly complicated by the extraordinary require-

ment that they typecheck large bodies of existing

Smalltalk code that were written without any no-

tion of static type safety in mind.

This paper describes a new typechecker for

Smalltalk, called Strongtalk, that has been designed

with a quite di�erent set of goals in mind. It is the

belief of the authors that the challenge of the next

decade will be to adapt the high-productivity pro-

gramming styles of languages like Smalltalk to the

very di�erent rigors of very-large-scale software de-

velopment, where issues such as encapsulation be-

come more critical.

Accordingly, Strongtalk is an attempt to take ad-

vantage of recent typing advances by de�ning a

new highly-encapsulated, production-oriented di-

alect within the Smalltalk language framework.

Smalltalk has been chosen as the base language

not only because of its widespread acceptance and

the availability of mature incremental develop-

ment environments, but because it possesses sev-

eral crucial features: extreme simplicity, garbage-

collection, and literal �rst-class functions, in the

form of blocks.

The following sections include a discussion of some

of the important issues addressed by the Strongtalk

design, followed by an exploration of the type sys-

tem itself. After the type system has been in-

troduced, our experiences with it are presented,

followed by a section relating Strongtalk to other

work. Finally, we present our conclusions.

2 Type System Overview

Before beginning our discussion of the design is-

sues that have shaped Strongtalk, we present a brief

list of its major attributes for those who wish an

overview. The Strongtalk type system

� has a purely structural (rather than name-

based) form, which provides for exible and

complete separation of the subtype and sub-

class lattices, while using the concept of

brands [Nel91] to provide a notion of type

identity.

� includes parameterized types and classes

(bounded and unbounded quanti�cation).

� supports polymorphic messages (messages

whose type signatures are parameterized by a

type argument), with a exible programmer-

controlled mechanism for automatically infer-

ring values for the type parameter.

� distinguishes inheritance from subtyping,

which is important for a number of forms

of code sharing, by incorporating a tractable

form of the recent notion of inherited types

[Bru93a, CHC90, CCHO89], which are espe-

cially useful for describing abstract data type

(ADT) hierarchies.

� preserves the subtype relationships between

classes de�ned by the Smalltalk metaclass hi-

erarchy, and relates them to the types of their

instances.

� provides facilities for dynamic typing.

3 Design Issues

The language designer should be familiar

with many alternative features designed by

others, and should have excellent judge-

ment in choosing the best and rejecting

any that are mutually inconsistent.... One

thing he should not do is to include un-

tried ideas of his own. His task is consol-

idation, not innovation.

C.A.R. Hoare

Type systems have a deserved reputation for be-

ing notoriously di�cult things to design and reason

about. One of the motivations for the development

of Strongtalk was a feeling of dissatisfaction with

the usability of widely available statically-typed

object-oriented languages. When coming from a

dynamically-typed background, one can easily end

up feeling that the \devil is in the details."

Although \checking" types may sound to the unini-

tiated like a straightforward task, a straightforward

type system can enormously complicate such seem-

ingly mundane tasks as passing an array of strings

to a method that needs a read-only array of any

type of object. Whenever you place strict limits

on programmers who are accustomed to none at

all, you must be very careful indeed that you have

anticipated and provided for e�ective ways of ex-

pressing solutions to a great and subtle variety of

common programming problems.

In this section we will lay the groundwork for a

presentation of the Strongtalk type system by dis-

cussing our major design goals, and by drawing

attention to a number of the not-so-obvious issues

that can profoundly a�ect the expressiveness of an

object-oriented type system.

3.1 Compatibility

Although Strongtalk is not designed to typecheck

existing Smalltalk code without modi�cation, nei-

ther is it intended as an incompatible language

extension. Our goal has been to eliminate the

risk that developers have traditionally had to as-

sume when switching to a new, untried language.

We achieve this through `downward compatibility',

which means that Strongtalk code can always be

trivially converted to Smalltalk, but not necessarily

vice-versa. Using downward compatibility as our

benchmark has the bene�ts of giving us some lee-

way to de�ne a very clean type system, while guar-

anteeing adopters of Strongtalk that at any point

they can switch back to Smalltalk if they so desire,

without recoding. Other than three trivial transla-

tions (for manipulating uninitialized variables and

dynamic typechecking), no code transformation is

performed.

The Strongtalk preprocessor produces typesafe

Smalltalk-80 code that preserves indentation, com-

ments, and type annotations.

3.2 Expressiveness

Smalltalk is an unusually exible and expressive

language. Any type system for Smalltalk should

place a high priority on preserving its essential a-

vor.

Several of our design goals for Strongtalk involve

providing better typing solutions for situations we

have found awkward in other languages. One of

these situations has to do with the fact that stati-

cally typed languages often have di�culty express-

ing useful return types for methods that may re-

turn values of variable type, or when several re-

turn values are necessary. A second such situation

stems from the fact that often one needs to design

classes that support the protocol of another class,

without inheriting from it, and this can be di�cult

or impossible to do in name-based type systems if

you do not control the source code for that class,

or if you are working in a single-inheritance lan-

guage. A third shortcoming of all widely available

statically-typed OO languages is extremely awk-

ward support for higher-order messages such as it-

erators and other user-de�ned control structures.

Strongtalk is designed to circumvent these sorts of

awkward situations. In the �rst and third situa-

tions described above, we take advantage of the

simple but powerful combination of strongly-typed

blocks, and polymorphic signatures for the higher-

order methods that take them as arguments. Ex-

amples of this technique will be presented in the

experience section.

To deal with the second problem described above,

Strongtalk has a structural type system. In

Strongtalk, an object can be passed anywhere as

long as its static type is known to support the nec-

essary protocol, regardless of its class. A way of ex-

plicitly de�ning protocols, and enforcing class sup-

port of them, is also provided.

3.3 Type Inference

Some recent languages, such as TS [GJ90], and

ML [MTH90] include features to automatically in-

fer variable and return types. Such features would

be convenient in a type system for a language like

Smalltalk, which lacks any sort of type annotations.

However, Strongtalk does not perform general type

inference.

There are number of reasons for this. In a lan-

guage like ML, which has no concept of subtyp-

ing, type inference can be well-de�ned for any ex-

pression. However, for object-oriented languages

type inference is considerably more complicated.

A well-de�ned language speci�cation that includes

type inference should be able to either guaran-

tee that all types can be correctly inferred, or

provide a clear statement of what expressions

can have their types inferred, and which cannot.

State-of-the-art object-oriented type inference al-

gorithms that meet these criteria either require

non-local code analysis to do complete type infer-

ence [PS91a, PS91b], or are not capable of dealing

with realistic programs [Hen91].

Another consideration a�ecting our decision to

avoid type inference is that at best type inference

is little more than a convenience when writing a

program, and at worst a program for which many

types are inferred can be harder to read, since type

annotations clarify the source text. Programs are

more often read than written.

A browser that can infer types and then insert them

into the source text would solve this problem, but

in general for structurally-typed languages the in-

ferred types can be complex, anonymous interface

signatures that are not suitable for human con-

sumption [Cur90].

3.4 Encapsulation

One of the major reasons we have adopted a

requirement of `downward' rather than `upward'

compatibility is that it allows us to enforce a much

stronger notion of encapsulation in our type sys-

tem. As mentioned in the introduction, it is likely

that encapsulation issues will become much more

important as Smalltalk continues its move from the

research to the production world.

By encapsulation we mean that modi�cations to

the implementation of a class that do not a�ect its

public or subclass-visible behavior should not cause

code elsewhere to break (where behavior includes

both the typed message interface and external se-

mantics of the class). When di�erent organizations

depend heavily on one another's class libraries,

this is obviously a desirable property. While se-

mantic speci�cation techniques are not nearly ma-

ture enough to enforce full semantic encapsulation,

an appropriate type system can prevent important

kinds of encapsulation violation, at the cost of im-

posing a more disciplined structure on inheritance

hierarchies.

Although from an encapsulation perspective this is

obviously desirable, all dynamically-typed object-

oriented languages, and many statically-typed

ones, either cannot detect such encapsulation vi-

olations, or intentionally allow them.

The reason why such code is allowed in some

statically-typed languages is that there is an impor-

tant and fundamental tradeo� between encapsula-

tion and certain forms of code reuse via inheritance.

Non-local code analysis can determine that some

kinds of dangerous interface changes during inher-

itance (such as removing support for a message,

or arbitrarily changing the type of a message ar-

gument) are valid as long as the current pattern of

instance usage indicates that such interface changes

will not create type-safety loopholes.

There are a number of problems with such non-

local type analysis from an encapsulation perspec-

tive. First of all, it means that changes in the bodies

of methods outside of a class de�nition can cause

it to become invalid. It also means that in general

the source code for the entire system must be avail-

able. This can be a major problem in commercial

environments, where it is important to be able to

determine the typesafety of changes to a class that

is used across many organizations, before release.

In addition, non-local type analysis introduces sig-

ni�cant engineering di�culties into the typechecker

design. For example, changing the body of a

method in a superclass requires re-typechecking the

method in the context of every subclass that in-

herits the method. Such requirements complicate

the task of producing an implementation respon-

sive enough for interactive, incremental develop-

ment.

From the time the encapsulation/unrestricted-

inheritance tradeo� was �rst recognized until fairly

recently it has been considered an unavoidable re-

sult of the subtle distinction between subclass and

subtype relationships, because it seems to occur in

situations where it is handy to de�ne a subclass

whose instances are not `substitutable' for super-

class instances.

However, recent work beginning with [CCH+89]

has shown that there are forms of non-subtype-

compatible inheritance that do not violate encap-

sulation. Strongtalk supports a form of such in-

heritance, F-bounded quanti�cation, through the

mechanism of inherited types. Future work in spec-

i�cations may produce other such forms of inher-

itance. The architecture of the Strongtalk type-

checker, because it does not assume subtype com-

patibility between a class and its superclass, should

be well-positioned to support such extensions.

To put this into perspective, Figure 1 shows where

various object-oriented languages fall on the spec-

trum of inheritance exibility (by inheritance ex-

ibility we are referring speci�cally to the kinds of

changes allowed to message signatures during in-

heritance). At the top of the table are languages

that allow methods to be added and overridden in

subclasses, but which allow no changes of any sort

to a method interface in a subclass. At the bottom

of the table are dynamically-typed OO languages,

which allow any sort of interface change, including

removal of messages. Languages in all categories

except for the bottom one are typesafe languages.

The boundary above the second category from the

bottom represents a conceptual divide below which

a typesafe language cannot go without violating en-

capsulation. Our goal has been to place Strongtalk

at a point as low in this table as possible, without

crossing that divide.

Although the above design issues must inevitably

be assessed di�erently for di�erent development

needs, we feel that a type system with Strongtalk's

characteristics will be well-suited to a very large

class of production applications.

Message signature changes allowed during Inheritance Language

No changes are allowed C++, Modula-3

Changes that are subtype compatible are allowed Trellis

Changes that are inherited type compatible are allowed Strongtalk

Future type systems ?

Changes that can be shown to be typesafe with non-local type analysis are allowed TS, Ei�el

All changes are allowed Smalltalk, Lisp

Figure 1: Languages categorized by inheritance exibility

4 The Type System

4.1 Protocols

In Strongtalk, the type of an object is known as a

protocol. This term is often used informally, within

the Smalltalk community, to denote the set of mes-

sages to which an object responds.

A Strongtalk protocol re�nes this traditional no-

tion in several ways. In addition to the names

of the messages, the types of their arguments and

the types of the objects they return are included,

by means of type annotations, given between an-

gle brackets. We shall use the term interface to

describe this collection of messages and type infor-

mation. A protocol has additional structure, which

we discuss in section 4.3. However, the interface

of an object is always determined by its protocol.

When the distinction between interface and proto-

col is not essential to the exposition, we will use

the general term type.

Figure 2 shows PlanarPoint, a protocol for points

in the plane. To simplify exposition, we use a

form of pseudo-code, not the concrete syntax of

Strongtalk. The protocol supports �ve messages;

four for instance variable access, and one to take

the sum of two PlanarPoints. The caret (^) is used

to distinguish the declaration of the message return

type. The special type identi�er Self is interpreted

as meaning the protocol of the receiver.

Figure 2 also shows a class, BasicPlanarPoint, that

implements the PlanarPoint protocol. In fact, we

did not have to de�ne the PlanarPoint protocol ex-

plicitly. For every class, Strongtalk also implicitly

de�nes a protocol which describes the instances of

the class. The full name (which may be shortened)

of this implicit protocol is the name of the class,

followed by the word protocol; in this case Basic-

PlanarPoint protocol.

4.2 Subtyping and Type Inheritance

protocol PlanarPoint
x ^<Integer>.
x: <Integer> ^<Integer>.
y ^<Integer>.
y: <Integer> ^<Integer>.
+ <Self> ^<Self>.

class BasicPlanarPoint
instance var x <Integer>.
instance var y <Integer>.
class methods

new ^<Instance>
^super new init.

instance methods

init
x := y:= 0.

x ^<Integer>
^x.

x: xval <Integer>
x := xval.

y ^<Integer>
^y.

y: yval <Integer>
y := yval.

+ p <Self> ^<Self>
^(self class new x: self x + p x)

y:self y + p y.

Figure 2: Points in the plane

class SpatialPoint
subclassOf:BasicPlanarPoint
instance var z <Integer>.
instance methods

z ^<Integer>
^z.

z: zval <Integer>
z := zval.

+ p <Self> ^<Self>
^ super + p z:self z + p z.

Figure 3: Points in space

Having introduced some basic terminology and

conventions, we now move on to a short review of

the notions of subtyping and type inheritance. An

example will help make this clear.

Figure 3 shows SpatialPoint, a subclass of Basic-

PlanarPoint. SpatialPoint adds a z coordinate, and

modi�es its methods to reect the semantics of ad-

dition for spatial points.

The type SpatialPoint protocol is not a subtype of

BasicPlanarPoint protocol. Subtyping means that

members of a subtype can always be substituted

where members of a supertype are expected. If

one invokes + on a BasicPlanarPoint, one can pass

in another BasicPlanarPoint as the argument. By

contrast, + on a SpatialPoint demands a Spatial-

Point, so that the method can access the z coor-

dinate of the incoming parameter. Therefore, one

cannot use a SpatialPoint where a BasicPlanarPoint

is expected. Nevertheless, the two protocols share

a similar recursive structure. This relationship is

known as type inheritance, and we say that Spatial-

Point protocol is an inherited type of BasicPlanar-

Point protocol. We refer the reader to the literature

[Bru92, Bru93a, CHC90, CCH+89, CCHO89] for a

deeper discussion of the meaning of type inheri-

tance.

4.3 Instance, Self class and the Nature of
Protocols

Smalltalk is a reective system. One consequence

of this is that classes are themselves objects, which

can send and receive messages. Furthermore, users

can de�ne methods not only for the instances of

classes, but for classes themselves.

The de�nitions of instances and their classes are

always mutually recursive in Smalltalk. A class

always supports at least one method for creating

new instances. Conversely, all instances support

the method class which returns their class1. Hence,

1We will ignore the possibility of overriding this method
to do something completely di�erent.

the interfaces of instances and their classes must

also be mutually recursive.

The method new in �gure 2 illustrates the treat-

ment of class methods in Strongtalk. The method's

return type is the special type identi�er Instance.

Within a class method or message, Instance refers

to the interface of instances of the receiver. This is

distinct from Self, which always refers to the inter-

face of the receiver itself; in a class method, Self is

the interface of the class, not of its instances. Sim-

ilarly, in the context of instance methods, the type

Self refers to the interface of the receiver, while the

type Self class refers to the interface of the receiver's

class.

The body of the method invokes the new method

inherited from the superclass, using the standard

Smalltalk super construct. Since this method also

returns Instance, we know that in fact, the returned

object is an instance of the receiver. Instances of

the receiver are always inherited types of BasicPla-

narPoint. It is therefore safe to send the init mes-

sage, which is supported by BasicPlanarPoint. The

init method returns an object of type Self. Since

this is an instance method, Self is the interface of

the instance, which is an instance of the receiver,

and therefore has type Instance. As a result, the

entire method is well-typed.

During inheritance, the interface of both instance

and class may change. Notice that changing the

interface of one automatically induces a change in

the interface of the other. This means that for pur-

poses of inheritance, the interfaces of instance and

class cannot be separated, but must be packaged

together.

A protocol is in fact such a package. It represents

a pair of (mutually recursive) interfaces, one for

instances, and one for the class. One of these in-

terfaces is distinguished as the primary interface.

An object whose type is a protocol, responds to the

messages given by the protocol's primary interface.

In the protocol of a class' instances, the interface

of instances is considered primary. In the protocol

of the class itself, the class interface is primary.

Mathematically, a protocol is a generator for a pair

of interfaces. This generator is then used for type

inheritance, in a manner analogous to the use of

generators for value inheritance [CHC90]. When

used as the type of an instance, we interpret the

reference to the protocol to mean selecting the �rst

(primary) interface from the �xpoint of the proto-

col. The fact that types are interpreted as both

generators and interfaces, according to context, has

been noted in [BH91].

4.3.1 The Metaclass Hierarchy and its

Typing

In this section, we briey review the notion of

metaclasses in Smalltalk, and present our treat-

ment of the typing of metaclasses. Before delv-

ing into the Smalltalk metaclass hierarchy, readers

should be aware of two facts. First, this section

can be ignored without loss of continuity. Second,

the topic is recognized as being di�cult for those

new to Smalltalk [BO87].

In Smalltalk every object is an instance of some

class. Since classes are objects, it follows that each

class must itself be an instance of a class. Indeed,

each class is an instance of its own metaclass. For

example, Object is an instance of the metaclass

Object class. Object class is then an instance of

Metaclass, which is an instance of Metaclass class,

which is an instance of Metaclass. This circularity

prevents an in�nite regress of meta-meta-... meta-

classes.

The type structure of an instance, its class and

metaclass is as follows. Instances of a class X have

type X protocol. The object representing the class

at run time has a distinct type, since it may sup-

port speci�c methods de�ned by the user as class

methods in the de�nition of class X. This type is X

class protocol. Sending the class message to an in-

stance of X yields an object of type X class protocol.

Sending this object the message class, yields the

metaclass (class of a class) X class. All metaclasses

are considered to have the same type, Metaclass

protocol.

4.4 The Status of nil

In Smalltalk, nil denotes a reference to an unde�ned

object. The value of an uninitialized instance vari-

able is always nil. Sending a message to nil typically

results in a run-time error, and this is a common

cause of program failure. Unfortunately, determin-

ing that all instance variables are properly initial-

ized requires expensive, non-local dataow analy-

sis.

We consider statically detecting invalid access to

nil in a language with pervasive aliasing such as

Smalltalk as beyond the purview of the type sys-

tem. If desired, a separate dataow analysis tool

(e.g., [PS91b]) may be used for such purposes.

4.5 Brands

A disadvantage of structural typing is the risk of se-

mantically incompatible objects sharing a syntactic

type, and not being distinguished by the type sys-

tem. To rectify this situation, we wish to support

a notion of type identity, within the framework of

structural typing. This can be accommodated us-

ing the concept of brands, as introduced in Modula-

3 [Nel91].

Brands are merely tags added to types to distin-

guish them from one another. To prevent acciden-

tal matching, brands are supplied only by the sys-

tem (unlike Modula-3).

To create multiple implementations of a branded

protocol users may declare that a class supports

that particular protocol. This has the e�ect of in-

troducing the protocol's brand into the type of the

class' instances. In addition, the system will ver-

ify that the class does indeed provide methods that

implement the messages speci�ed by the protocol,

with the correct type signatures.

generic protocol List[T]
add:<T>.
head ^<T j Nil>.
tail ^<Self j Nil>.
map:<Block[T,^S]> ^<List[S]>

where S :: (actual arg:1) returnType

Figure 4: A generic class.

4.6 Blocks

Blocks are objects, like everything else in Smalltalk.

They respond to messages such as value, which

causes a block with no arguments to be evalu-

ated. The precise protocol for a block depends

upon the number of arguments it takes, their

types A1; : : : ; An, and the return type, R. In

Strongtalk the type of such a block is written

Block[A1; : : : ; An ;̂ R].

Blocks are used as the basis of all control struc-

tures in Smalltalk. One peculiarity of blocks is

that blocks that take no arguments and return a

boolean support a special protocol. This allows

their use as a basis for control structures like while

loops. TS [GJ90] uses a special mechanism, spe-

ci�c receivers, to handle such cases. We prefer to

provide a special type rule for such blocks. This

solution is possible, because, unlike TS, we do not

need to typecheck the class that de�nes blocks in

the Smalltalk library (see section 5.4).

4.7 Generics

A generic is an abstraction over types, such as the

generic protocol shown in �gure 4. List is a generic

protocol. It describes the type of linked lists with

elements of any type T. The head message is in-

tended to return the �rst element of a list. If the

list is empty, its �rst element is unde�ned, and so

the type returned is a union of the element type T

and Nil, the type of the unde�ned object. This will

force users to test for an unde�ned object dynami-

cally, as described below. Similar comments apply

to tail.

Strongtalk provides a typecase construct for dy-

namic typechecking. As noted in [ACPP89], the

ability to dynamically determine the type of an

object is essential in many circumstances, but in

a structural type system this can be expensive. In

practice, most protocols are branded, and the han-

dling of these can be speeded up signi�cantly.

The message map: utilizes parametric polymor-

phism, and is described in section 4.8.

A generic may be invoked by passing it actual type

parameters, e.g., List[Integer]. The actual parame-

ters replace the formal ones (T in the example) in

the body of the generic. An invocation of a generic

protocol yields a protocol equivalent to the de�ni-

tion of the generic, substituting the actual parame-

ters for the formal ones. Special care must be taken

to prevent recursive generics from leading to in�-

nite expansion. The algorithm used is essentially

the one developed for POOL [Ame90].

Strongtalk also supports the de�nition of generic

classes. Many of the key classes in the Smalltalk

library, such as Array, are generic. As noted in

section 4.3 above, classes are objects in Smalltalk.

Every object has a type, which raises the question

`what is the type of a generic class, such as Array?'.

Formally, the type of Array is a universally quan-

ti�ed protocol. We do not presently have type ex-

pressions for such a type in the language. We feel

our users may have di�culty grasping such types.

Instead, we require that all references to a generic

class be invocations (e.g., Array[String]). Such an

invocation yields a class. In fact, all invocations

of Array yield the very same object. However, the

type of a generic class invocation is an ordinary

protocol. Cases where this rule is too restrictive

almost never arise in application programming.

4.8 Parametric Polymorphism

Object-oriented programming typically relies on

inclusion polymorphism. In addition to inclusion

polymorphism, Strongtalk supports a form of para-

metric polymorphism similar to that of [CW85].

Parametric polymorphism is useful in cases where

the type returned by a message send is dependent

on the type of the actual arguments, a common oc-

currence in Smalltalk. Themap: message in �gure 4

demonstrates the use of parametric polymorphism.

The map: message takes an argument which is a

block. The block is to be invoked successively on

each element of the list, and a list of the results is

to be returned. The block must take as input an

element of same type as the elements of the list.

The type of the elements of the list being returned

depends upon the return type of the block. The

type declaration formap: speci�es this dependency

in terms of a type variable, S. The ordinary mes-

sage declaration is su�xed by a where clause that

states that S is to be derived from the return type

of actual argument number 1. A special syntax is

used, allowing precise speci�cation of how to in-

fer the type arguments from the types of the value

arguments. Map: can be invoked as an ordinary

method, and there is no need to pass a type argu-

ment explicitly at call sites. This syntactic treat-

ment of explicitly polymorphic methods is some-

what novel. Its advantage is that it allows us to

infer actual type arguments without implementing

a sophisticated type inference mechanism. While

some may �nd the syntax awkward, it places the

syntactic burden on the (relatively infrequent) mes-

sage declaration, rather than the more commonly

used message send construct.

5 Experience

A Strongtalk implementation has been completed

that incorporates all the features mentioned in this

paper. A signi�cant body of code has been written

using it, including the Strongtalk implementation

itself, and several other sizeable libraries.

The usability of a language or type system is always

di�cult to assess before its implementation is com-

pleted. Following are some of the interesting issues

that have emerged from our use of Strongtalk.

5.1 The value of Blocks

Proponents of functional programming styles have

long argued that the combination of higher-order

functions and literal �rst-class functions is enor-

mously expressive. Block objects are Smalltalk's

equivalent construct. Blocks are used for many

things in Smalltalk: de�ning extensible control

structures, callbacks, simple exception handling

(e.g., Dictionary at:ifAbsent:), etc.

We have encountered a surprisingly handy in-

teraction between blocks and static typing that

mitigates much of the awkwardness we have en-

countered when using other statically-typed pure

object-oriented languages. Blocks, in conjunction

with Strongtalk's polymorphic messages, provide a

number of convenient idioms (shown in �gure 5)

that Strongtalk can easily type.

All of these things can be done easily in Smalltalk,

but can be di�cult to do cleanly or e�ciently in

statically-typed languages without blocks. The

�rst two examples are easy to type in Strongtalk;

the second two require polymorphic messages for

full type safety. Figure 6 shows the signature for

the at:ifAbsent: message from the Dictionary class.

The return type of the at:ifAbsent: message is a

union type <VALUE j X>, which means that the

method returns either a value from the dictionary,

or a value of type <X> which is the return type

of whatever block the caller passes in for blk. In

this example, the block never yields a value, since

it forces its containing method to return; so the

return type of the block is the invisible type Does-

ntMatter that Strongtalk gives to expressions that

can never yield a value, which allows our example

to type correctly.

* Alternative or multiple return types

dataset computeStats:
[:median <Double> :avg <Double>

:size <Int> j
Transcript

show: median printString;
show: avg printString;
show: size printString;
cr.

]

* Blocks instead of perform: for callbacks

button whenPressedDo:
[Transcript show: 'Yow!'; cr].

* Control structures as value-yielding expressions

sky := daytime
ifTrue: [#light]
ifFalse: [#dark].

* Simple exception handling

Transcript show: (myDictionary
at: key

ifAbsent: [^self]).

Figure 5: Block idioms

at: key <KEY>
ifAbsent: blk <Block[^X]>
^<VALUE j X>

where X :: (actual arg: 2) returnType

Figure 6: Dictionary[KEY,VALUE] at:ifAbsent: sig-
nature

It should be emphasized that we are not simply

saying that blocks are nice. The primary point is

that having well-typed blocks in a strongly-typed

language turns out to provide a very convenient

way of expressing solutions to problems that can

otherwise be complicated by a type system. For

example, without such a facility, a method that

wants to return either a number or an error symbol,

might otherwise require a clumsy and less reliable

dynamic type check.

5.2 Naming issues with separate types
and classes

One of the problems with separate type and class

hierarchies has to do with the potential for a sig-

ni�cantly larger resulting namespace, because of

separate names for classes and their protocols. In

practice, the namespace is indeed somewhat larger,

but we have found that not only is the increase eas-

ily manageable, it is very desirable, since the new

names tend to be for important interfaces that are

only implicit in dynamically typed hierarchies, and

which deserve far more explicit attention during

both the design and library browsing processes.

We have developed a few rules of thumb that seem

to work well as guidelines for assigning names for

those protocols that need to be distinct. First of

all, having a pithy name for the protocol is more

important, since it will be widely used in declara-

tions, whereas the class name is generally used only

at the instantiation point, which may well be hid-

den behind encapsulation barriers from the user of

the instance.

It is perfectly acceptable to simply use the protocol

automatically de�ned by a class if it seems unlikely

that the protocol will be supported by other (non

sub) classes. In Strongtalk, this does not prevent

other classes from supporting that protocol, be-

cause of structural typing. It can, however, cause

some confusion if the protocol will have many al-

ternative implementations, so if it appears at all

likely that other implementations will exist, pro-

vision for a separate name for the protocol is en-

couraged. This can be accomplished by declaring

a separate protocol, or simply by creating a type

alias for the automatic protocol.

5.3 Prototyping with types

A commonly heard objection to strongly-typed

object-oriented languages is that having to worry

about the types of things gets in the way during

the prototyping process. Most of these opinions

are based on little or no information, since very few

people have ever had a chance to use a statically-

typed language in an incremental programming en-

vironment. Although such matters are di�cult to

analyze precisely, in our experience the opposite

has appeared to be true.

Even a prototype must function in some fashion,

and this requires design and debugging work just

as with any program. Although some of the er-

rors a typechecker will �nd are ones that would

be encountered during testing, catching even these

types of errors at compile time can save quite a bit

of time. For example, if a method is called with

an argument of the wrong type, the object is of-

ten passed around to a remote part of the system

before a message that is inappropriate for its type

is actually sent to it. Fixing this during testing

requires a tedious backtracking e�ort to �nd out

where the original error occured. A typechecker

detects these errors at the place they occur.

At a higher level, focusing on typing issues even at

the earliest stages of development can help enor-

mously in clarifying the interfaces and responsibil-

ities which drive the design process. The larger the

project, the greater the bene�t.

We have also encountered a somewhat more subtle

bene�t of strong typing and stronger encapsulation

that may well in the long run turn out to have an

even greater impact. It has become well accepted

that one of the most di�cult parts of the object-

oriented learning curve to climb is understanding

large class libraries. Furthermore, this problem re-

occurs whenever a new library must be learned.

In the authors' personal experience with the stan-

dard Smalltalk class hierarchy, one of the largest

impediments to understanding is the di�culty in

�nding out exactly what argument values methods

allow, and what values they return. Comments are

not enough! Typing information provides an in-

valuable form of machine-veri�able documentation.

Browsers that understand the type system could

also include powerful features that would allow a

programmer to point at any variable or expression

and ask 'Show me what I can do with this object

at this point.'

An even more important point is that although the

inheritance discipline imposed by the Strongtalk

type system can be viewed as restrictive, it is re-

strictive in a way that contributes greatly to the

comprehensibility of a class hierarchy. Strict inter-

face inheritance relationships are a critical �rst step

towards the larger goal of strictly enforced seman-

tic relationships. Hierarchy designers who adhere

to these stronger disciplines will earn the heartfelt

thanks of those who must understand and reuse

their code.

5.4 Typing the standard Smalltalk li-
brary

Obviously, if Strongtalk is to be compatible with

standard Smalltalk environments, we must have a

way of dealing with the types of objects in the

existing libraries. Because of its strict encapsula-

tion, Strongtalk does not need access to the imple-

mentations of those libraries; we need only declare

their protocols. Cook has pointed out [Coo92] that

although there are a number of areas where the

Smalltalk class hierarchy does not have subtype re-

lationships, it in fact implicitly contains the incom-

plete skeleton of a clean subtype lattice. Our origi-

nal protocols for the Strongtalk libraries were some-

what similar. Subsequently, we have adopted the

protocols from Cook's corrected Collection hierar-

chy because of their stronger property of semantic

substitutibility.

An interesting bene�t of the fact that Strongtalk

can typecheck based on purely local information

is that it signi�cantly eases integration with exist-

ing Smalltalk classes. A class declaration is spec-

i�ed, and this supplies all the information needed

by Strongtalk. Typecheckers based on non-local

information are faced with a much more di�cult

task when trying to integrate with non-typechecked

classes (and this is necessary, since no typechecker

has ever succeeded in typechecking all the classes

in the existing Smalltalk hierarchy). Without the

ability to typecheck all superclass source code, non-

local typecheckers cannot safely allow the very ex-

ibility they were designed to preserve.

6 Related Work

6.1 Typechecking Smalltalk

There have been several e�orts to introduce static

typechecking (or type inference) to Smalltalk.

These e�orts have had di�ering objectives, result-

ing in di�erent approaches to the problem.

Early e�orts met with limited success [Suz81,

BI82]. TS [JGZ88, Gra89, GJ90] is geared toward

typechecking Smalltalk in its entirety, and toward

optimization. The scope of Strongtalk is less ambi-

tious in this respect. Certain Smalltalk programs

that are accepted by TS will not be accepted by

Strongtalk. The advantage of our approach is the

preservation of encapsulation. In TS, inherited

code is retypechecked in the context of the inher-

iting class, with all the concommitant advantages

and disadvantages outlined in section 3.4.

Palsberg and Schwartzbach [PS90, PS91c, PS91a,

PS91b] developed a system that infers types for

Smalltalk without relying on type annotations at

all. The system is useful for analyzing a com-

pleted application prior to �nal release, to shake

out remaining type errors, and can provide useful

information for optimization. The system relies on

global analysis, however, and is not well suited to

incremental development.

6.2 Inherited Types

The notion of inherited types has appeared in var-

ious related forms in several object-oriented lan-

guages. Emerald [BH91] incorporates a similar no-

tion called type matching. Emerald does not sup-

port class inheritance however. POOL [Ame90] is

the imperative language most similar to Strongtalk

in its type system.

The theoretical foundations for inherited types

were �rst given in [CCH+89] and [CHC90]. The

language ABEL [CCHO89] incorporated these

ideas in a functional framework. Our type system

is mainly based on the type rules given by Bruce

for the language TOOPL [Bru93a]. The di�erences

between the two systems reect their di�erent pur-

poses. TOOPL is a theoretical language designed

to facilitate fundamental understanding of object-

oriented languages and their typing. Its type sys-

tem has been proven sound (and for TOOPLE

[Bru93b], a close relative, typechecking has been

proven decidable). We have not formally proven

such properties for our system. In contrast, we

have integrated the rules into a realistic, impera-

tive language (TOOPL models instance variables

functionally). We have added support for abstract

classes, generics, dynamic typechecking, multiple

levels of visibility, and explicit polymorphism.

7 Conclusions

We have described Strongtalk, a strongly-typed di-

alect of Smalltalk. This dialect is essentially com-

patible with the standard Smalltalk-80 language.

The type system di�ers from other e�orts to type-

check Smalltalk in that it preserves encapsulation.

Encapsulation is crucial in large scale applications,

and also helps the system perform incremental

typechecking quickly. As a result, the advantages

of the incremental programming environment may

be more easily combined with those of static type-

checking.

The type system demonstrates the practical util-

ity of recent advances in the type theory of object-

oriented programming languages. The notion of in-

herited types has been integrated into a full-edged

imperative language, including generics, polymor-

phic methods, a practical approach to typing meta-

classes, and dynamic typechecking. This spectrum

of language features has not been combined before.

There is a tradeo� between encapsulation and the

exibility of the type system. Strongtalk imposes

a stronger discipline than other Smalltalk type sys-

tems. Nevertheless, Strongtalk supports a rich style

of programming di�cult to obtain in other lan-

guages with signi�cant static typechecking. The

tradeo� is valuable because it allows, for the �rst

time, practical, production use of a strongly-typed

Smalltalk system.

Acknowledgements

We would like to thank Pierre America for sharing

his experience with generic types in POOL. Peter

Deutsch o�ered valuable comments and encourage-

ment. Finally, we wish to thank Ralph Johnson for

his valuable comments on this work. Of course, the

authors are solely responsible for the shortcomings

of Strongtalk.

References

[ACPP89] Martin Abadi, Luca Cardelli, Benjamin

Pierce, and Gordon Plotkin. Dynamic

typing in a statically-typed language.

In Proc. of the ACM Symp. on Princi-

ples of Programming Languages, pages

213{227, January 1989.

[Ame90] Pierre America. A parallel object-

oriented language with inheritance and

subtyping. In Proc. of the Joint

ACM Conf. on Object-Oriented Pro-

gramming, Systems, Languages and

Applications and the European Confer-

ence on Object-Oriented Programming,

pages 161{168, October 1990.

[BH91] Andrew P. Black and Norman Hutchin-

son. Typechecking polymorphism in

Emerald. Technical Report CRL91/1

(Revised), DEC Cambridge Research

Lab, July 1991.

[BI82] Alan H. Borning and D. H. Ingalls. A

type declaration and inference system

for Smalltalk. In Proc. of the ACM

Symp. on Principles of Programming

Languages, pages 133{141. Association

for Computing Machinery, 1982.

[BO87] Alan H. Borning and Tim O'Shea.

Deltatalk: An empirically and aes-

thetically motivated simpli�cation of

the Smalltalk-80 language. In Eu-

ropean Conference on Object-Oriented

Programming, pages 1{10, 1987.

[Bru92] Kim Bruce. A paradigmatic object-

oriented programming language: De-

sign, static typing and semantics. Tech-

nical Report CS-92-01, Williams Col-

lege, January 1992.

[Bru93a] Kim Bruce. Safe type checking in a

statically typed object oriented pro-

gramming language. In Proc. of the

ACM Symp. on Principles of Program-

ming Languages, January 1993.

[Bru93b] Kim Bruce. Typechecking in TOOPLE

is decidable. In Proc. of the ACM

Conf. on Object-Oriented Program-

ming, Systems, Languages and Appli-

cations, September 1993.

[Car84] Luca Cardelli. A semantics of mul-

tiple inheritance. In Semantics of

Data Types, volume 173 of Lecture

Notes in Computer Science, pages 51{

68. Springer-Verlag, 1984.

[CCH+89] Peter Canning, William Cook, Walt

Hill, John Mitchell, and Walter Oltho�.

F-bounded polymorphism for object-

oriented programming. In Proc. of

Conf. on Functional Programming Lan-

guages and Computer Architecture,

pages 273{280, 1989.

[CCHO89] Peter Canning, William Cook, Walt

Hill, and Walter Oltho�. Interfaces

for strongly-typed object-oriented pro-

gramming. In Proc. of the ACM

Conf. on Object-Oriented Program-

ming, Systems, Languages and Appli-

cations, pages 457{467, 1989.

[CHC90] William Cook, Walt Hill, and Peter

Canning. Inheritance is not subtyping.

In Proc. of the ACM Symp. on Princi-

ples of Programming Languages, pages

125{135, 1990.

[Coo92] William R. Cook. Interfaces and spec-

i�cations for the Smalltalk-80 collec-

tion classes. In Proc. of the ACM

Conf. on Object-Oriented Program-

ming, Systems, Languages and Appli-

cations, pages 1{15, October 1992.

[Cur90] Pavel Curtis. Constraint Quanti�cation

in Polymorphic Type Analysis. PhD

thesis, Cornell University, Department

of Computer Science, 1990. Also avail-

able as Xerox PARC Technical Report

CSL-90-1.

[CW85] Luca Cardelli and Peter Wegner. On

understanding types, data abstraction,

and polymorphism. Computing Sur-

veys, 17(4):471{522, 1985.

[GJ90] Justin O. Graver and Ralph E. John-

son. A type system for Smalltalk. In

Proc. of the ACM Symp. on Principles

of Programming Languages, pages 136{

150, January 1990.

[Gra89] Justin Owen Graver. Type-Checking

and Type-Inference for Object-Oriented

Programming Languages. PhD the-

sis, University of Illinois at Urbana-

Champaign, 1989.

[Hen91] Andreas V. Hense. Type inference for

O'Small. Technical Report A 06/91,

Fachbereich Informatik, Universitaet

des Saarlandes, October 1991.

[JGZ88] Ralph E. Johnson, Justin O. Graver,

and Laurance W. Zurawski. TS: An

optimizing compiler for Smalltalk. In

Proc. of the ACM Conf. on Object-

Oriented Programming, Systems, Lan-

guages and Applications, pages 18{25,

November 1988.

[MTH90] Robin Milner, Mads Tofte, and Robert

Harper. The De�nition of Standard

ML. MIT Press, 1990.

[Nel91] Greg Nelson, editor. Systems Program-

ming with Modula-3. Prentice-Hall,

1991.

[PS90] Jens Palsberg and Michael I.

Schwartzbach. Type substitution for

object-oriented programming. In Proc.

of the Joint ACM Conf. on Object-

Oriented Programming, Systems, Lan-

guages and Applications and the Eu-

ropean Conference on Object-Oriented

Programming, October 1990.

[PS91a] Jens Palsberg and Michael I.

Schwartzbach. Object-oriented type in-

ference. In Proc. of the ACM Conf.

on Object-Oriented Programming, Sys-

tems, Languages and Applications, Oc-

tober 1991.

[PS91b] Jens Palsberg and

Michael I. Schwartzbach. Static typing

for object-oriented programming. Tech-

nical Report DAIMI PB-355, Aarhus

University, Computer Science Depart-

ment, June 1991.

[PS91c] Jens

Palsberg and Michael I. Schwartzbach.

What is type-safe code reuse ? In Eu-

ropean Conference on Object-Oriented

Programming, July 1991.

[Suz81] Norihisa Suzuki. Inferring types in

Smalltalk. In Proc. of the ACM Symp.

on Principles of Programming Lan-

guages, pages 187{199. Association for

Computing Machinery, 1981.

