84 Smalitalk-80 Virtual Image Version 2

Muitiple Inheritance in Smalitalk-80

Alan H. Borning
Computer Science Department, FR-3S
University of Washington
Seattie, WA 98195

Daniel K. H. Ingalls
Xerox Paio Alto Ressarch Center
3333 Cayote Hill Road
Pslo Alta, CA 94304

Abstract

Smalitaik ciasses may be arranged in hierarchies, so that a
class can inherit the propgerties of another class. in the standard
Smalitalk language, a class may inherit from only one othier Class.

In this paper we describe an implementation of multiple
inheritance in Smalltalic.

v

1. Introduction

Smaiitakk is a powerhl interactive language based on the idea
of objects that communicats by sending and receiving messages
(Ingails 78, LRG 81, Goidberg 82]. Every Smalitalk object is an
instance of some class. Classes are organized hierarchically, so
that a new class is narmally defined as a subclass of an existing
class. The subciass inherits the ingtance storage requirements
and message protocol of its superciass. It may add new
information of its own, and may override inherited responses to
messages.

In standard Smalitalkk, a class can be a subclass of only a
single superciass. On occasion, this restriction is undesirabls and
leads to unnatural coding styles. For example, the Smalitalk
system includes & class Transcript that displays and records
natification messages and the like. It is deciared to be a subclass
ot Window, but aiso has the message protocol of a WriteStream to
which one can append characters. Since it cannot be a subclass
of both Window and WriteSiream, the necessary methods for
stream behavior must al be duplicated in Transcript. Such
duplication is unmodular. If some method for streams is added or
modified, the class Transcript does not automatically feel tnis
change (as it would if it were a subclasy of WriteStream).

The natural solution is to allow classes to be subclassis of more

than one superclass. In this paper we describe an implementation '

of multiple superciasses, which is now available in the Smallitalk-
80 system used within Xerox PARC.

2. Semantics of Muitiple Superclasses
A class may have any number of superciasses; however, an
instance is always an instancs of precisely one class.

2.1. Message Handling

When an instance receives a message, it first checks the
method dictionary of its own class for & method for receiving that
message. If none is found, it ssarches the method dictionaries of
its immediate superciasses, then their superciasses, and so on. It
a single method is found, then it is run. If no method or more than
one methiod is found, an error message is issued. The overriding
of inherited methods is still allowed: it is an error only if a class
with no method of its own inherits different mathods from two of
more of its superciasses. Further, it is not an error if the same
maethod is inherited via several paths. (This is a simplified
explanation; Section 4 describes our actual impiementation.)

2.2. Access tc‘ Overridden Inherited Methods

In single-superciass Smalitalk, the programmer can access an
inherited ovesridden method using the reserved word super. For
exampie. in code defined in a given class C, the inherited method
for copy may be invoked using the expression super copy, even it
C itssif has a method for copy.

This mechanism may be insufficient in the presence of multiple
superciasses -- for example, if C inherits two different methods for

copy, the user needs a way ta indicate which is wanted. To allow

for this, we extend the syntax of Smalitalk by adding compound
seilectors consisting of a class name. followed by a period.

foliowed by the actual selector, e.g. Object.copy. When one of

these compound selectors is used in a2 message. the lookup for
the method starts with the class named in the compound selector.

When there is no ambiguity, it is stil convenient to be able to
say “use the method inherited from my superclass® without
naming that superciass. In analogy with the above form of
compound selector. this can be accomplished by writing e.g.
seif super.copy.

Finally, there are times when one would like to invoke aff the
inherited methods for a given selector, rather than just one of
them: the principal exampie of this is for the initfalize method. To
accomplish this, the programmer would write se¥ afl.initiglize. It
would be straightforward to add other sorts of method
combination schemes using this basic mechanism.

3.Examples of Using Multiple Inheritance
In this section we present a number of exampies that Mustrate
the usefuiness of muitiple inheritance.

3.1. Simula-style Linked Lists

Simula, which has a single-superciass inheritance hierarchy,
defines a fist-processing package that supports doubly-linked
lists (Birtwistle 73]. The ciass Unk specifies that each of its
instances contain a reference t0 a successor and o a
predscessor object. Subciasses of Link may then be defined that
inherit this abifity to be included in finked lists. An analogous class
may be essily defined in Smalitai. (An advantage of

implementing linked lists in this way, rather than having a separate”’
link object.ihat simply points to an object X in the list, is that X can

know about the list in which it resides.)

However, there is a problem with the clags Link in both Simula
and single-superciass Smalital. Given an arbitrary existing class
. -C. uniess C already has Link in its superciass hierarchy, a
programmer cannot use C in defining a new subclass that also has
the properties of a Link.

Multiple superciasses provide a natural solution. For example,
it the programmer wants to make objects that are like windows
and can aiso be included in doubly-finked lists, he or she can
simply define a new ciass QuevesdleWindow that is a subclass of

both Window and Link. The new class will inherit the instance
state requirements and message protocol of both Window and
Link, yielding the desired behavior.

3.2. Other Examples

As mentioned in the introduction., another situation in which
muitiple inheritance is useful is in defining the class T'ranscript as
a subclass of Window and of WriteStream.

To take another example from the standard Smalltak-80
System, a number of kinds of streams are defined, inciuding
ReadStream, WriteStream, and ReadWriteStream.
ReadWriteStream is rather arbitrarily declared to be a subclass of
WriteStreamn, with the extra methods needed for ResdStream
behavior copied by the programmer. Using our new system,
ReadWriteStreamn is naturally defined as a subclass of both
ReadStream and WritaStream.

Multiple Inheritance Description . 85

3.3. Poal Variables

This last example is of a somewhat different nature. In addition
to instance variables, the Smaiitak-80 language allows the
programmer to define class variables that are shared by all
instances of a given class and its subclasses. However, an
occasion, the programmer wants variables that are to be shared
by a number of nan-hierarchical classes, but which aren't properly
deciared t0 be global variables. A mechanism for handling this
exists aiready: one may declare a dictionary of poo/ variables that
may be shared among several classes. (An example of this is the
FilePool of constants and variables that are shared by all the
classes used in file 170.)

Multiple superciasses provide a more elegant solution. Rather
than using pool variables, one can for example define a class
FileObject that has class varisbles corresponding to all the
variables that used to be in FilePool. Each of the file classes can
now be made a subclass of FileObject as well as of its old
superciass, 0 that it has access to these shared variables. In this
way, the pool mechanism becomes unnecessary and could be
eliminated from the language.

4. Implementation

4.1. Finding the Right Method to Receive a Message

Our implementation of multiple inheritance is a compromiss
between the extremes of strict runtime method lookup and
copying down inherited methods from all superciasses.

in the standard Smalitaik-80 system, methods inherited from
superciasses are locked up dynamically. This has the advantage
that the system is not cluttered with copied methods, and that
there are no copies t0 update when a method is edited. An
sltermnative would be to copy the inherited methods down into each
subciass. This would make finding the methods easier at runtime,
at the expense of greater code size and updating complexity.

In our implementation of multiple inheritance, the standard
dynamic lookup scheme is used for methods on the chain
consisting of the first superciass of each class. If a class C has
more than one superciass, at the time C is created it checks each
message to which it can respond. If the appropriate method
wouid be found by the dynamic lookup, nothing is done. Howaever,
it the appropriate method is in some other superciass, then the
code for that methe=! is recompiled in C's method dictionary, so
that it will be found at run time.

Finally, if there are conflicting inherited methods for a given
salector, an error method is compiled in C for that selector and the
user is notified. Thess error methods are put into a special
category. making it easy for the user to browse to them and to
resolve the conflicts as necessary.

86 Smalltalk-80 Virtual Image Version 2

4.2. Implementation of Compound Selectors

Aadmﬂbodm&cﬁonzz.m.wogmcanm
inherited methods using constructs such as se¥ QOobject.copy,
seif supercopy, and self ail.initiaiize. To implement these
cxmmnchmgnmmemmmpound
ahcmamhsmob.ummommuiscompihdmc
for e.g. seif B.copy actually sends the selector 8.copy. The first
muiaiamt-d.uom«hodhracapywilbolm When
this occurs, the interpreter invokes Object
messageNotUnderstood. The usual behavior at this point is to
bring up an error window. However, we modified Object
mmagtNotUndwoodtoMMhrcompmm I
omislomd.mm:ymmmtomﬁbmamm
M\odlormcmmuyﬁnvcmmaha
superciass of C, and then looking for a copy method in 8 or its
superciasses. thmmmwbmuhc
under the seiector 8.copy. mmmmmmm
whereupon it will find the newly inserted method. Tha next time
Acamhmmmmummmmom
efficiant. sa.mmawmcowwmuw.m
handied by the same mechanism.

4.3. hstance State
Aummmummmwam
Superciasses, and can specify additional fieids of its gwn. There is
ocwmeopy-ocﬂcmmciulromnmvhm
inheritance paths. In our current implementation, it is an ervor if
m«mnmwmhmmummomnm.
(One of our previous experimental implementations (Borning 80]
included a mechanism similar to the compound selector construct
Maﬂommommlodmconﬂkﬁngm
names. memhmmmifhmt
restriction proves too burdensome.)

romammmmmmmamm
wmowmmimmmm:'bu
instance fieid 1. It is of course essential that code inherited from
sSuperciasses use the correct fieid positions for the subclass. Our
scheme takes care of thig in the foliowing manner. The instance
lieldsmarnnqodsomumoﬂcldsinhoﬁbd!mmﬂn
Superciasses on the dynamic lockup chain have the same
positiomasuwydoinmosum (This is the same
situation as in single-superciass Smalitaik.) In general, Fieids
inherited from other superciasses won't be in the same pasitions,
but when the code for methods from these other superciasses is
recompiled into the new subclass, the fieid pasitions are adjusted
2ppropriately. As an optimization, before recompiling a method
from a superciass the System chechs if the offsets of all the fields it
references are the same in the subclass. If this is the case, then

the system simply copies a pointer to the original method, rather
than recompiling it.

4.4. Dynamic Updating

In the Smalitalk enviranment, the user can add, delete, and edit
Mmmwy.wMimwmyquadthe
changed code. In our multiple-inheritance implementation, some
updaﬁnqmaybomtywhonmchmmmmado. Ita
method is edited which has been recompiled of copied into some
mmmewdimmhmompihd or copied
into subciasses as necessary. Similarty, if a method is added or
mummmmmmumm
may require changes in the-copied inherited methods. Again, the
System takes care of this updating automatically.

methods with compound selectors (8.g. super.printOn:) have
been automatically compiled into some subclasses, then these
methods may be invalid as well. Eachaodlmcmodmumayno
lan«bovuidisaimplyddmadaaibodabm.nwiubo
ncunpﬂwwmmmwwmﬁmsmamehmtma
. | k, ‘

4.5. A Note on the Implementation Process
mmmmmmmupummmm-
80 are only & few pages of Smalitalk code. For example, changing
mmmmmauwmmmmothfm
Point.copy or Point. + required a change to only one method.
me.ned\angummmmvimumactﬁnom
required. There are few other programming environments in
Mm:fummmonsioncouldeMsouauy.

S. Relation to ather Work

A’ number of other systems have used multiple inheritance.
Among the systems implemented in Smalitaik, the constraint
laboratory ThingLab (Borning 81] and the PIE knowledge
representation language [Goldstsin and Bobrow 80] both
supported muitiple inheritanice. The authors have also
implemented some experimental predecessars of the present
system [Borning 80).

Some extensions to Lisp allow the use of similar object-oriented
programming tschniques. The "fHavors system” in MIT Lisp
Machine Lisp {Cannon 80) aliows an object ta be defined using
several flavors (analogous to muitiple superciassas); this system

also contains an extensive repertoire of method combination
techniques for combining inherited information. Another abject-
oriented Lisp extension with multiple inheritance is the LOOPS
system [Bobrow and Stefik 82], implemented in Interlisp.

The Traits systam [Curry 82), imbedded in the Mesa system, is
yet another multiple inheritance implementation. It has received
extensive use in the coding of the Xerox Star office information
system.

[Birtwistle 73]

References

Birtwistle, G.M., Dahl, O.-J., Myhrhaug, 8., and
Nygaard, K. '

SIMULA Begin.

Auerbach Press, 1973.

[Bobrow and Stefik 82]

[Boming 80]

[Boming 81]

[Cannon 80]

[Curry 82]

[Goidberg 82]

Bobrow, 0.G., and Stefik, M.L.

LOOPS: An Object Oriented Programming
System for interiisp.

1982,

Bomning, AH.

Muitipie Inheritance in Smaiitalk.

1980.

Unpublished report, Learning Ressarch Group,
Xerax PARC.

Borning, A.H.

The Programming Language Aspects of
ThinglLab, A Constraint-Oriented Simulation
Laboratory.

ACM Transactions on-Programming Languages
and Systems 3(4):353-387, October, lsi.

Cannon, H.L
Flavors.

Technical Report, MIT Artificial Intefligence
Lab, 1980.

Curry, G., Baaer, L, Lipkie, D, and Lee. B.
Traits: An Approach to Multipie inheritance

Subciassing.
n ACM-SIGOA Conterence on Office
Automation Systems. ACM, June, 1982,

Goldberg, A.J., Robson, D., and Ingalts, O.H.H.

Smalitaik-80: The Language and its
Implementation.

1982,

Forthcoming book.

[Goldstein and Bobrow 80]

[ingalls 78]

[LRG 81]

Goldstein, |.P., and Bobrow, D.G.
Extending Object Orientad Programming in
Smallitak,

In Proceedings of the Lisp Confarence.
Stantord University, 1980.

Ingafls, D.HH.

The Smulitalk-78 Programming System: Design
and Implementation.

In Proceedings of the Filth Annual Principles of
Programming Languages Symposium,
pages 9-168. ACM, January, 1978.

The Xerox Learning Research Group.
The Smalitalk-80 System.

Byte 6(8):36-48, Auguft, 1981.

Muitiple [nheritance Description

87

