Reusability in the Smalitalk-80 Programming System

L. Peter Deutsch

Xerox PARC, Software Concepts Group

The Smalltalk-80 interactive programming system supports three
different kinds of re-use. Smalltalk-80 is designed to be portable to
a variety of machines with modest effort. allowing re-use of the
complete system across hardware environments; the Smalltalk-80
language includes a powerful form of data abstraction allowing
re-use of algorithms across a variety of data structures. built-in
facilities of the Smalltalk-80 system include many building blocks
and conventions for implementing interactive applications (re-use
of a_framework across applications).

INTRODUCTION

In everyday problem-solving, we can re-use tools. procedures. or
approaches that have worked in the past. adapting them to the
situation at hand. Solving problems in the computer setting is often
a much more frustrating process, (0 a large extent because adaptive
re-use is often difficult or impossible.

The phrase “tools. procedures. or approaches” alerts us to the fact
that there are several qualitatively different ways to re-use past
experience. A physical tool designed for one purpose may be
usable for another (e.g. a hammer to drive nails or to flatten out a
dent in a sheet of metal.) A procedure designed to solve one
particular problem may be adaptable to another (e.g. a recipe for
broccoli used to cook cauliflower with small changes in the spices
and cooking time.) An approach may be applicable across a wide
range of problems (e.g. the "divide and conquer"” paradigm used to
organize a group of people addressing envelopes. or a program
processing a graphical image.) What is being re-used may be a
physical object, a mental or physical process. or a combinaton..

The Smalltalk-80 system is designed to facilitate re-use of both code
and design, at scale levels ranging trom enure systems (o individual
algorithms and data structures, and across a range 9t both hardware
(which supports the system from “below") and applications (which

emplpy the system from "above™). The following sections spell out
those aspects of the Smalltalk-80 design and implementation which

particularly support reus‘?bili[y.

S

eacced Iy G ¢ /

Worn 8n0f Ow 'a'.-uJﬂb"""t‘J !
" Program™min Y

~-9 Gestemoe Y 198
N;wvb"t’ ax

e .,ﬁ‘_‘/

72

ALGORITHM REUSABILITY ACR AT

STRUCTURES

The greatest obstacle to the re-use of algorithms is their
dependence on the detailed (concrete) implementation of the data
they manipulate, rather than only on its necessary logical (abstract)
properties. The traditional way around this problem is to pass to
the algorithm parameters that describe the data. either data
parameters (e.g. the offset and size of a key within a record) or
procedural parameters (e.g. an ordering function for sorting). This
parametrization can occur either at run time or at compile time (the
latter through the use of in-line procedures or macros. or simply
through constant folding optimizations.) A more recent extension
of this idea is the use of data abstraction, in which some or all of
these parameters are packaged up with a data type. and the
application of a procedure to objects of a particular type
automatically substitutes into the procedure the correct (data or
procedure) parameters for that type.

Smalltalk-80 strongly encourages use of abstraction in two ways: by
restricting the ability to refer to the implementation of a data type
to a set of procedures associated with it by its implementor, and by
providing abstract as well as concrete data types arranged in a
hierarchy which can be used for specialization or extension. Both
of these ideas originated in the Simula language: in Smalltalk-80,
however, they are applied to every object in the system, rather than
being an addition to the Algol world.

[n Smalltalk-80, the fundamental unit of organization is the class.
which consists of a description of a data object plus a set of named
procedures that have access to this description. Every object in the
system is described by (is an instance of) some class. (This includes
"primitive"” objects such as integers and strings, and "internal”
objects such as compiled procedures, processes. and classes
themselves.) The description of a data object consists of a set of
names for its parts, e.g. a class representing a lookup table might
have two parts named keys and values: Smalltalk-80 does not
currently use type declarations. so the description of a part just
consists of the name. Only the procedures associated with a class
can refer to the parts directly: any iccess t an vbject from outside
its class must invoke a procedure defined in the class. In fact. the
fundamental (and only) procedure call operation in Smalltalk-80
treats all objects as abstract: invoking the procedure named op with
operands obj1 ... objN means looking up the name op in the
procedure dictionary associated with the class ot obj1. and then
executing the procedure body with the parts ot obj1 directly

accessible by name and the formal parameters bound to obj2 ...
objN. The distinguished operand obij1 is called the receiver of the
invocation, since it has the responsibility for deciding which
implementation of op to use. Thus every operation is potentially
generic -- implemented by more than one kind of object; also, since
there are no language constructs for directly accessing the internal
implementation of an object from outside, one class of objects can
masquerade as another.

Classes are arranged in a hierarchy (formerly a tree. now a lattice)
with the property that if class A is a subclass of class B. then all
operations implemented in B are recognized by instances of A and
have the same meaning (unless reimplemented in A. or in some
class between B and A in the hierarchy). As a consequence,
algorithms can be implemented once at higher or more abstract
levels of the hierarchy. and are automatically available at lower
levels. For example, some common searching algorithms are
implemented in an abstract class called Collection that is a common
superclass of Set, Array. and Dictionary; some mathematical
notions like absolute value are implemented in the abstract class
Number and available automatically to Integer and Float. Thus
when one builds a new class for some application two important
benefits arise:

- new classes that are similar to old classes can be built
with an effort that is proportional to the degree of
dissimilarity;

- default implementations of common operations are
available with no effort. and can be tuned later without
changing any client programs (since the implementation
in the subclass will take precedence over the
implementation in the superclass).

An important programming technique in Smalltalk-80, similar o
the inner mechanism in Simula. is to create abstract algorithms that
rely on concrete subclasses to provide some missing parts. For
example, here is the procedure that implements lincar searching in
the abstract Collection class (refer to the Appendix for a summary
of Smalltalk-80 syntax):

includes: anElement
self do:
[:eachElement |
eachElement = anElement
ifTrue: [ttrue]].

tfalse

The basic iteration message do:, which generates each elements of
the collection in turn. cannot be implemented at the abstract level.
Its definition in class Collection is

do: aBlock
"Invoke aBlock with each element of this
collection."
self subclassResponsibility

73

which generates a run-time error if invoked without an overriding
definition in the concrete subclass, and which serves as
documentation to subclass implementors. In this way, abstract
classes can include not only re-usable algorithms but a rudimentary
specification of what is required of their concrete subclasses.

The class hierarchy tends to soften the distinction between design
and implementation at the algorithm level. Algorithms which
depend on very few properties of their operands can be written as
executable code in hlighly abstract classes. However, a strong
separate design element remains in the assignment of functional
roles to classes. the definition of the protocols (operations and their
meanings) for different classes, and the construction of the class
hierarchy itself,

FRAMEWORK REUSABILITY ACROSS
APPLICATIONS

In the previous section. we concentrated on the fact that an
algorithm could be implemented in an abstract class and re-used
with more than one concrete subclass. A different way of looking at
this arrangement is that a collection of abstract classes. and their
associated algorithms. constitute a kind of framework into which
particular applications can insert their own specialized code by
constructing concrete subclasses that work together. The
framework consists of the abstract classes. the operations they
implement. and the expectations placed on the concrete subclasses
as described in the previous scction.

The Smalltalk-80 user interface is the most outstanding example of
this framework viewpoint. [t is based on a uniform model of
“viewing" objects. To interact with an object (called a model). three
components are required:

- a view object must exist that knows how to convert some
interesting aspect(s) of the model to visible form.

* a controller object must exist that knows how to
interpret user-initiated events (button clicks, keystrokes.
movement of the pointing device) as selection and
editing commands in the functional space provided by
the view,

- the model itself must provide interfaces that allow the
view to access and update the aspects being viewed.
Since Smalltalk does not allow the internal structure of
an object to be accessed directly from the outside, these
"aspects” may be as simple as individual state variables,
or arbitrarily complex characteristics mediated by
accessing and updating procedures.

For example. there is an abstract class View that provides much of
the mechanism for handling screen clipping. coordinate conversion,
automatic updating of the screen when the model’s state changes,
and so on. Concrete subclasses are expected to provide an
implementation for the operation displayView, which redisplays
the representation of the selected information from the model
within the appropriate area on the display screen. For simple
concrete views. implementing this single operation is sufficient.

The same view object, if properly designed, can be used with many
different kinds of model objects, and the same model can be
viewed in many different ways. Smalltalk-80 provides several kinds
of views and associated controllers that have been successfully
re-used across many different applications, and that in fact form a
kind of standard "user interface builder’s kit" that writers of new
applications naturally employ rather than building their own from
scratch. Here are some examples of such view/controller
structures:

- Pop-up menu: a list of alternatives that appears on the
screen when appropriate (a button being depressed, or a
query command being issued that returns its result in this
form), allowing the user to select one or none of the
alternatives.

- List view: a list that remains on the screen. can be
scrolled within a clipping region. and whose selected
element is displayed in some other view on the screen.

- Text view: a region that contains editable text, with a
standard command repertoire (copy, cut. paste. search,
undo, etc.) that can be extended by an individual
application (e.g. "accept’ for compiling code, 'put’ for
storing a document).

- Switch/button: a region that initiates some action when
a button is depressed while the cursor is within it, or that
simply retains its on/off state.

- Inspector: a combination of a list view and a text view
which views a list of state variables of a model. The
variables can be viewed one at a time in the text view,
and altered by typing in a new value.

The subclassing mechanism described in the previous major section
plays a crucial role in making views re-usable. For example, the
code view used by the source code browser is a subclass of the
standard system text view, adding only procedures for three
commands: ‘accept’ which invokes the compiler, ‘explain’ which
provides an explanation of source code constructs or names, and

"format’ which reformats the source code with standard indentation
and spacing.

ABILITY ACR RDWARE

Smalltalk-80 adopts the usual approach to software reusability
across variant hardware: it is based on an idea} virtual machine
(VM) into whose instruction set the system is compiled. VM
instruction sets can be mapped onto real hardware in two ways:

- A retargetable compiler can translate the VM
instruction set into the hardware instruction set. In this
case the VM instruction set is just one of several
intermediate representations used by the compiler, and
may well not be visible to programmers. This is the
approach taken in the Unix system.

74

- An interpreter, written in the hardware instruction set.
can interpret the VM code at run time. This is the
approach taken in the Pascal P-system. and also by
Smalltalk-80.

The Smalltalk-80 VM is a simple stack-oriented machine similar in
structure to the Pascal P-system machine, but different in several
vital respects:

- There are no compile-time type declarations: all objects
are tagged at run time with their type. All objects (except
small integers) are represented by pointers.

- Storage reclamation is automatic. [mplementors may
choose to use reference counting, garbage collection, or
any other suitable technique. (Since Smalltalk-80 is
designed as a highly interactive system, most
implementors have chosen reference counting, since it
produces the shortest unexpected delays in interactive
response.)

- All data structures used by the system in its operation
are covered by the type system, and are visible to the
programmer. This includes procedure activation records.
processes, the process scheduler itself. the objects that
represent types, etc. As a result, programmers writing
entirely in the Smalltalk-80 language can implement
(indeed. have implemented) debuggers, new control
structures, scheduling policies, substantially different
source languages, elc.

- The VM includes a complete [/0 system. based on
virtual [/0 devices that correspond directly to customary
hardware. This is discussed in more detail below.

- The VM also includes a process scheduler, based on
semaphores and very cheap processes. The [/0 system
uses semaphores and processes exclusively: there is no
notion of an "interrupt” other than signalling a
semaphore which enables a high-priority process to run.

[n addition to the VM instruction set. the Smalltalk-80 VM includes

about 100 “primitive procedures”. In many systems, a facility may
appear (o the programmer either as a special language construct or
as a procedure, and may be implemented either as a VM instruction
or as a library procedure. with no correlation between the two. In
Smalltalk-80. language constructs (of which there are very few) are
implemented with VM instructions, and all other capabilities are
implemented as primitive procedures. invoked with exactly the
same syntax as user-defined procedures. This even includes such
things as arithmetic. storage allocation. access to parts of objects
(such as ftields of a record). and many control structures.

Starting with this modest VM. the Smalltalk-80 system provides a

. complete interactive programming system. including a compiler,

decompiler, code editor. display-oriented debugger. and structured
code browser and query facility: application building-blocks

_including graphics, arbitrary precision integer. and Ethernet

communication packages; and finished applications such as a

|
k
|

graphics editor and a version manager. The total size of the
Smalltalk-80 system is about 900K bytes of object code and data.
and about 1.3M bytes of source code. All of the source code and
internal documentation for the system is available on-line.

Implementing the VM typically takes about 40K bytes of object
code regardless of the level at which it is done (this figure is
constant. to within a factor of 2. across implementations in
microcode, assembly language, and C.) A good implementor can
create a straightforward VM implementation in a couple of months,
since an executable version of the VM specification has been
published and need only be transcribed from "machine-oriented
Smalltalk” into some low-level language. On the other hand. a
sophisticated implementor has a good deal of leeway in how to
implement certain critical parts of the system. such as storage
reclamation or message sending (described earlier):
implementations on the same hardware have differed by as much as
a factor of 5 in performance.

The VM I/0 system
The Smalltalk-80 I/0 system incorporates the following devices:

- An "undecoded” keyboard. in which every transition of
a key up or down produces an event.

- A pointing device which can be sampled to produce an
X/Y position.

- Three buttons, whose transitions produce events.

- A black-and-white bitmap display of reasonable size
(512 x 512 pixels is the bare minimum. and at least 600 x
800 is recommended.)

-A timer, which can be set to cause an event after a
specified number of milliseconds.

- A calendar clock. which gives the date and time.

An [/70 "event” means that the VM implementation produces a
signal on a Smalltalk-80 semaphore object. and. if relevant. saves
any associated input data in an fixed-size intcrnal buffer. which a
Smalltalk-80 program reads with a primitive procedure.

[n addition to these standard devices. Smalltalk-80 includes a file
system which can be interfaced either to a disk at the physical
record level, or to an underlying operating system such as Unix.
The file system exploits the class hierarchy by providing abstract
File and FilePage classes which knows how to manage files
implemented by fixed-size physical records (including buffering,
allocating and deallocating pages, etc.): a Smalltalk-80 system
running on top of Unix would discard most of this logic. while a
system managing a physical disk would only need to provide a
subclass that transferred individual records and kept track of free
records. Some Smalltalk-80 systems also include support for the
Ethernet communication network. again providing all the software
(customarily found in an operating system) to implement
higher-level protocols starting from the physical packet level:
remote files are supported in exactly the same way as local disk files.

75

UNSOLVED PROBLEMS

Even though the Smalltalk-80 approach to rcusability has
succeeded substantially in all three of the areas mentioned above,
there are substantial unsolved problems in each of them.

The class approach to abstraction. the subclass mechanism for
extension and specialization. and the use of a single structuring
mechanism for all data and procedures in the system have worked
extremely well. However, problems arisc in a number of areas. As
a number of other researchers have observed. a tree structure for
class inheritance imposes severe restrictions. Smalltalk-80 recently
adopted a limited form of lattice inheritance (multiple
superclasses), but we have insufficient experience to evaluate its
worth. More complex inheritance mechanisms. such as the Flavors
system from MIT Lisp. seem to destroy some of the explanatory
simplicity which we consider among Smalltalk-80’s greatest virtues.
Another problem is that determining the actual procedure on the
basis of the class of only one operand leads to awkward
mechanisms for handling a few naturally operand-symmetric
functions like arithmetic type-coercion. Type declarations, which
we believe are a net hindrance in the exploratory environment in
which Smalltalk-80 has grown up. may be important for both
cfficiency and documentation in other contexts.

Designing good frameworks is even trickicr than designing good
procedural interfaces in general. We are not entirely satisfied even
in the area of the user interface. which is where we have devoted
the greatest attention to the subject.

The effort required to produce a reasonably efficient
implementation of the VM is substantial -- on the order of a
man-year for an experienced designer. We are attacking this
problem primarily by publishing as much of our (and others’)
implementation experience as possible. initially as a collection of
papers by recent implementors of the system (Krasner. 1983). Even
the best implementations to date are much less efficient than
machine-oriented language systems such as Unix/C. Much of the
inefficiency is due to the "late binding" or "total abstraction”
philosophy of the Smalltalk-80 language. Patterson (1983) reports
on some interesting work that shifts the balance between
abstraction and efficiency for Smalltalk-80.

APPENDIX: Smalltalk-80 Language Syntax

At the level of individual procedures, Smalltalk-80 has a fairly
conventional statement and expression syntax. We will summarize
some parts of the syntax informally rather than giving actual syntax
equations: “railroad diagrams" for the complete syntax appear in
the back endpaper of (Goldberg & Robson, 1983).

Variables in Smalltalk-80 have the usual identifier syntax:

alpha endOfFile OrderedCollection
applePieNumber3d

By convention, embedded capitalization separates words. The
names of global (statically allocated. shared) variables begin with a
capital letter; names of local (instance. procedure argument, or

procedure temporary) variables begin with a small letter. There are
a few pseudo-variables that refer to aspects of the current execution
context: the most important one is self, which refers to the receiver
of the currently executing invocation.

Smalltalk provides syntax for literal constant numbers. symbols,
characters, strings, and arrays, as shown in these examples:

13 -5000000079 16rFFFF 3.14159
aSymbol $t 'Thisis a 'quoted" string
(1 2 3 (hello there) 'yes')

Expression syntax is somewhat less conventional. so we present it
more formally. We assume the obvious definitions of the
constructs empty, identifier, and literal-constant (defined above).
We omit a few language constructs not used in the main body of
the paper and not essential to understanding the language.

special-character ::= + |/ |\ [*|~|<|>| = |
@|%Ill&?]!

variable-name :: = identifier

unary-operation :: = identifier

binary-operation :: = - | special-character-operation

special-character-operation :: =
special-character |
special-character-operation special-character

keyword :: = identifier :

primary :: = variable-name | literal | block |
(expression)

unary-object :: = pn‘mary | unary-expression

unary-expression :: = unary-object unary-operation
binary-object :: = unary-object | binary-expression
binary-expression :: =
binary-object binary-operation unary-object
keyword-expression :: = binary-object |
binary-object keyword-part
keyword-part :: = keyword binary-object |
keyword-part keyword binary-object
compound-expression :: = unary-expression |
binary-expression |
keyword-expression
expression :: = variable-name « expression |
primary | compound-expression

As the above equations show, Smalltalk-80 admits three different
kinds of operation names: unary postfix (named by identifiers).
binary infix (named by sequences of special characters), and
keyword (named by a sequence of keywords alternating with
operands, where a keyword is an identifier followed by a colon). In
each case, the interpretation is exactly the same: the operation is
interpreted relative to the class of the receiver (the object preceding
the operation name, or the first keyword,) Here are some examples
of compound-expressions:

someCollection first
aPoint x + aPointy
target at: j put: (source at: | + delta)

76

Statement and procedure body syntax are more conventional:

statements :: = t expression | expression |
expression . statements
formal-name :: = variable-name

block :: = [block-formais block-budy |
block-formals :: = block-formal-names | | empty
block-formal-names :: = : formal-name |
block-formal-names : formal-name
block-body :: = statements | empty
temporaries :: = | temporary-variable-names |
temporary-variable-names :: = empty |
temporary-variable-names variable-name
formal-pattern :: = unary-operation |
binary-operation formal-name |
keyword-pattern
keyword-pattern :: = keyword formal-name |
keyword-pattern keyword formal-name
procedure :: = formal-pattern |
formal-pattern statements |
formal-pattern temporaries statements

The 1 notation means return a value from the current procedure.

Blocks are the Smalltalk-80 equivalent of the Lisp FUNARG or
Algol 60 call by name. A block is a piece of code. possibly with
formal parameters, which will be executed at a later time by
invoking the operation value (if parameterless) or value: param1
... value: paramN if it takes parameters. Like a FUNARG or
by-name parameter. a block shares (by reference) the dynamic
environment that existed at the time the block was created: like a
full FUNARG, but unlike a by-name parameter. a block can be
passed "upward” as well as "downward". This often allows
Smalltalk-80 programmers to create non-hierarchical control
structures without diréctly accessing the objects that implement
control in the system (although the latter approach is also
available.)

Note that the formal-pattern of a procedure looks exactly like a
unary, binary, or keyword expression without a receiver.

REFERENCES

Goldberg, A.. etal. 12 articles on the Smalltalk-30 language and
system. Byte magazine, August 1981.

Goldberg, A. & Robson. D. Smalltalk-80: The l.anguage and its
Implementation. Reading, MA: Addison-Wesley. 1983.

Krasner. G. (Ed.) Smalltalk-80: Bits of History. Words of Advice.
Reading, MA: Addison-Wesley, 1983 (forthcoming).

Patterson, David A. (Ed.) Proceedings of CS 292R: Smalltalk ona
RISC, Architectural [nvestigations. Berkeley, CA: Computer
Science Division, University of California, April 1983.

