
Life Cycle and Refactoring Patterns

that Support Evolution and Reuse

Brian Foote
Department of Computer Science

University of Illinois at Urbana-Champaign

Urbana, Illinois 61801
foote@cs.uiuc.edu

William F. Opdyke
AT&T Bell Laboratories
Naperville, Illinois 60566

opdyke@iexist.att.com

Software development can be characterized in terms of prototype (or initial design)
phases, expansion phases and consolidation phases. During a consolidation phase, some
relationships, initially modeled using inheritance, may be evolved to aggregations. Also,
during consolidation, abstrasct classes are sometimes de�ned to capture behavior com-
mon to two or more existing classes. In this paper, we de�ne high-level patterns for the
prototype, expansion and consolidating programs. We also de�ne supporting patterns
for evolving aggregations from inheritance hierarchies and for creating abstract classes.

1 INTRODUCTION

Each pattern in the larger language, can, because it is connected to the larger language,
help all other patterns to emerge.[1]

Patterns can exist at all scales [1].

The patterns are not just patterns of relationships, but patterns of relationships among
other smaller patterns, which themselves have still other patterns hooking them together
{ and we see �nally, that the world is entirely made of all these interhooking, interlocking
non material patterns.[1]

You see then that patterns are very much alive and evolving. No matter what the
asterisks say, the patterns are still hypotheses, all 253 of them { and are therefore all still
tentative, all free to evolve under the impact of new experiences and observations [2].

But what guarantee is there that this 
ux, with all its individual acts, will not create
chaos?

It hinges on the close relationship between the process of creation and the process of
repair [1].

And, more subtly, we also �nd that di�erent patterns in di�erent languages, have un-
derlying similarities, which suggest that they can be reformulated to make them more
general, and usable in a greater variety of cases [1].

So the real work of any process of design lies in the task of making up the language, from
which you can later generate one particular design [1].

The language will evolve, because it can evolve piecemeal, one pattern at a time.[1]

1



Most of the work to-date on patterns has concentrated on characterizing the recurring functional,
structural, and behavioral relationships among objects. Less attention has been paid to how classes
and frameworks emerge and evolve. However, truly reusable objects are the result of an iterative,
evolutionary process. We believe that it is possible to characterize aspects of this process itself using
patterns. We agree with Kent Beck [10] that an emphasis on the transformations that designers can
make to existing objects to improve them can be as helpful to designers as depictions of the resulting
artifacts.

During a discussion on the patterns mailing list, Booch and Cunningham [11] claimed that many
of the objects in a system may be found via a simple examination of the grammatical relationships
in the system's speci�cation. Many of the remaining objects, they claim, are uncovered during using
analysis tools such as CRC cards. Only a few are found late in the life cycle; however (they concede)
these are often of exceptional value, since they embody insights that emerge only from experience,
and can \make complexity melt away" [11].

We feel that it is important to add that while the basic identities of many objects may be
discovered early, these objects will change and improve as the system evolves. Truly reusable objects
emerge as the result of this evolutionary process. As Dennis DeBruler has noted [9], it is important
to allow for down stream changes, to avoid design paralysis during the early phases.

We think it may be possible to characterize this process using a four-layer set of patterns. These
patterns would be far from a full-
edged pattern language for object-oriented software development.
They should instead be thought of as a rough, preliminary sketch of where some of the major
landmarks in such a language might be located. A full exposition of these potential patterns is
beyond the scope of this paper. We have elected instead to focus upon �ve of them in detail.
Nonetheless, we hope that through our discussion of the contexts these patterns complete, and the
patterns they give rise to, the reader may begin to discern the outlines of this nascent pattern
language.

A top-layer pattern Develop software that is usable today and reusable tomorrow has forces that
are resolved by the second-layer patterns Prototype a �rst pass design, Expand the initial prototype

and Consolidate the program to support evolution and reuse.

In this paper, we de�ne each of these second layer patterns, in sections three through �ve. Then,
we de�ne (in sections six and seven) two patterns that apply during the consolidation phase. The
consolidation aspects of program evolution have been a focus of our research on object evolution
[13], life cycles [14], reuse [16] and refactoring [17, 21, 22].1 Design guidelines for the consolidation
phase have also been documented by others in, for example, [3, 7, 18, 23].

Evolve Aggregations From Inheritance Hierarchies, also examined in this paper, is one of the
third-layer patterns that resolves the forces associated with the consolidation process. Inheritance
models the is-a relation, while aggregation models the has-a relation. However, these relations are
less distinct than might be thought at �rst. Is a pixel a point, or does a pixel have a location, which is
a point [24]? Is a matrix an array with extra behavior, or does a matrix have a representation, which
is an array [12, 21]? Di�erent people give di�erent answers to these questions, and it is common for
a person's answer to change over time. On the one hand, both points of view can lead to working
programs. On the other hand, they di�er in how the resulting designs will be reused and the kinds of
changes than can easily be made to them. It is important to be able to change software so it re
ects
the current point of view. Although it is possible to convert aggregation to inheritance, converting
inheritance to aggregation (the focus of this paper) seems to be more common, for several reasons
[17].

Create Abstract Superclass is another third-later pattern de�ned in this paper. During consoli-
dation abstractions common to two of more classes can be moved to a common abstract superclass.
This pattern describes that can be done, and what forces must be resolved.

Finally, there is the fourth layer of refactoring (ie behavior preserving program transformation)
patterns [21] that resolve the forces of this (and similar) patterns.

We have found this layered approach helpful in characterizing the program consolidation phase, in

1While the refactoring examples described herein apply most clearly to C++ programs, we have also researched

how these patterns apply to programs written in Smalltalk and CLOS.

2



understanding how refactorings can be interleaved with additions, and in ensuring that refactorings
can be safely applied to object-oriented programs [21].

2 BACKGROUND: OBJECT EVOLUTION

There are three distinct phases in the evolution of object-oriented abstract classes, frameworks and
components: a prototype phase, an expansionary phase and a consolidation phase. Associated with
each of these phases is a series of high-level patterns that address the forces that must be resolved
during the phase. These high-level patterns, in turn, are realized by applying lower-level patterns
that resolve these forces. In the process of software development, we have seen these phases iterated
and replicated in and among classes, frameworks and applications. This pattern of self-similarity
at di�erent levels is typical of fractal curves; hence we refer to our characterization as the Fractal

Model [14].
The Fractal Model can be thought of as an object-oriented specialization of Boehm's Spiral Model

[4]. The Spiral Model is cast broadly, in such a way so as to accomodate reuse, iteration, and the
independent evolution of subsystems. The Fractal Model emphasizes those characteristics of objects
that allow them to evolve in ways that traditional software cannot. It is also unique in its emphasis
on consolidation and refactoring as essential stages in the evolution of truly reusable components.

In the sections that follow, we will describe our patterns in a format similar to that of Alexander
[2]. The subsections below present the context, problem, solution and discussion of related patterns.

3 PATTERN: PROTOTYPE A FIRST-PASS DESIGN

3.1 Context

In order to Develop software that is usable today and reusable tomorrow, one must �rst address the
problem at hand. Initial (albeit sketchy) user requirments should be available. There is pressure to
produce tangible results relatively quickly.

3.2 Problem

Building systems from the ground up is expensive and time consuming. Moreover, it is

di�cult to tell if they really solve the problems they were intended to solve until they

are complete.

It is rare to see systems built completely from scratch these days. Modern software systems
rely on a variety of domain independent components and tools. However, reusable domain-speci�c
objects and frameworks are still relatively rare, particularly outside of the realm of graphical user
interfaces.

It should come as no surprise that that is so. Simply designing a system at all is hard. Designing
a general, reusable system from �rst principles is much harder. Designing a system that addresses
both the requirements at hand, as well as a broader range of potential future problems pose nearly
insurmountable challenges.

3.3 Solution

The initial design of a system should focus on the requirements at hand, with broader

applicabilty as a secondary concern. It is important instead to get something running

relatively quickly, so that feedback regarding the design can be gotten. This initial

prototype can borrow expediently from existing code.

As Brooks notes [6], software should be grown not built. Successful large systems begin as
successful small systems. A good way to get started is to build a prototype.

For object-oriented programs, early prototypes allow designers to get feedback from customers,
and enable designers to understand the architectural issues they need to confront. Often, the pro-

3



totype is a quick, �rst-pass design, where the emphasis is on �nding a set of objects that embody
the surface structure of the problem at hand.

The prototype phase may involve the application of analysis and design methods (such as [5], [8]
and [26]) as well as the development of initial prototype implementation.

During the construction of a prototype, it is common to expediently make use of existing code
in order to get something working quickly. Such a strategy depends on not only on the availablility
of pre-existing domain independent reusable components like collections, but on an infrastructure of
domain-speci�c artifacts as well. Even in those domains where such code does not exist, code from
a related domain might be \borrowed".

Leveraging existing code to create a new application based on an existing one is sometimes
called "programming-by-di�erence". It is fair to ask where such reusable code (which serves as the
foundation for an initial design) comes from for domains where none previously exists. The next
two patterns address this issue.

3.4 Related Patterns

While this phase can realize a reasonable �rst-pass set of objects, the designs of these objects still
need to be re�ned and later may need to be redesigned. Examples of patterns that apply in this
phase are: Nouns in the speci�cation imply objects, verbs operations (P1), Build on existing objects

using inheritance (P2), Get it running now, polish it later (P3), and Avoid premature generality

(P4). (Note that these patterns are not further developed here.) This phase also sets the stage for
exploration and consolidation. These are discussed in the following sections.

4 PATTERN: EXPAND THE INITIAL PROTOTYPE

4.1 Context

Successful systems are seldom static. Instead, success sets the stage for evolution.

4.2 Problem

When software addresses an important need, both users and designers may recognize

opportunities to apply the software in new ways. Often, addressing these new applica-

tions would require some changes to the program { changes that were not envisioned

when the software was initially designed. Such software evolution and reuse can under-

mine a program's structure, and over time, make it more di�cult to understand and

maintain the software.

During the expansion phase, designers often try to reuse parts of a program for purposes that
di�er from the program's original purpose to varying degrees. In traditional languages, such reuse
might be undertaken by making copies of the original code, or by introducing 
ags and conditionals
into the original code. Such activity tends to compromise a program's structure, and make it di�cult
to understand and change the program later.

4.3 Solution

In object-orientedprograms, inheritance is a powerful and useful mechanism for sharing

functionality among objects. Placing new code in subclasses can help maintain design

integrity, because changes are isolated in these subclass, and the original code in the

superclasses remains intact.

Objects can evolve more gracefully than can traditional functions or procedures because ex-
ploratory changes can be con�ned to subclasses. Such changes are less potentially disruptive to
existing code that depends on a component.

What often results from the expansion phase is a class hierarchy that models a history of changes.
The resulting subclasses are not yet truly general. More desirable, from a software maintenance

4



standpoint, would be an inheritance hierarchy that models a type hierarchy [19].

4.4 Related Patterns

During expansion, patterns such as these come into play: Subclass existing code instead of modifying

it (E1), Build on existing objects using inheritance (E2; like P2), Defer encapsulation for shared

resources (E3), Avoid premature generality (E4; like P4) and Get it running now, polish it later

(E5; like P3). Note that some of the same patterns that appeared during the prototype phase
appear here as well. This re
ects genuine underlying similarities between these two phases.

5 PATTERN: CONSOLIDATE THE PROGRAMTO SUP-

PORT EVOLUTION AND REUSE

5.1 Context

Initial designs are often loosly structured. As objects evolve, insights as to how they might have
been designed better emerge.

5.2 Problem

As objects evolve, they are subjected to forces that can undermine their structure if

they are left unchecked. Prototypes are often �rst-pass designs that are expediently

structured. During expansion, the introduction of new, sometimes con
icting require-

ments can muddle the clarity of parts of the original design. The insight necessary to

improve objects is often not available until later in the life cycle. Traditional life cycle

notions do not address the need to exploit this insight.

Truely reusable objects seldom emerge fully formed from an initial analysis of a given problem
domain. More commonly, they are discovered later in the life cycle, or are polished and generalized
as a system evolves. As a result, the objects in the system must be changed to embody this structural
insight.

Traditional waterfall life cycle models do not accommodate redesign late in the life cycle. Later
life cycle models, such as the Spiral Model, embrace iteration, but do not address the unique prop-
erties of evolving objects.

Objects evolve di�erently than traditional programs. This is because they can, and do, change
within and beyond the applications that spawn them. Some of these changes add breadth or func-
tionality to the system, others improve its structure or future reusability. It is easy to understand
why the latter are often deferred inde�nitely. This is unfortunate, because it is these changes that
can be of the most enduring value.

Prototypes are loosely structured for a variety of reasons. One is that prototypes often are built
to allow the designer to gain an initial sense of the layout of the design space. By de�nition, the
designers understanding of the problem will be immature at this time. Objects found during this
phase may re
ect the surface structure of the problem adequately, but will need to be re�ned to do
so elegantly. Furthermore, they will need to be reused in order to become reusable.

A second reason for the structural informality of prototypes is that they often are constructed in
an expedient fashion out of existing reusable parts. This should not be seen as a bad thing. \Get it
running now, polish it later (P3)." can be an e�ective strategy for learning how to employ existing
components to address new requirements.

In both cases, the insight necessary to get the objects right is not available up-front. If the
process does not accommodate it when it does become available, these rough drafts can become the
�nal ones.

During expansion, objects that have proven useful are redeployed in contexts that di�er from
their original ones. Since the requirements raised in these contexts were not part of the speci�cation
for the original objects, they could not, in general, have been anticipated when these objects were

5



designed. In object-oriented systems, these tend to accumulate around the leaves of the inheritance
graph. Over time, the hierarchy can become overgrown with redundant, haphazardly organized
code.

5.3 Solution

Exploit opportunities to consolidate the system (by refactoring objects) to embody

insights that become evident as the system evolves.

Objects can provide opportunities for reuse that are not available to conventional software.
Object-oriented encapsulation encourages more modular initial designs. Inheritance allows changes
made to accommodate new requirements to be made in subclasses, where they do not undermine
the structural integrity of existing objects.

There comes a time when insight gained during the prototype and consolidation phases can be
employed to refactor the system. Refactorings typically do not change the the way the system works,
but rather improve its structure and organization.

Experience accrued during successive reapplications of an object (during the prototype and
expansion phases) should be applied during a consolidation phase to increase its generality and
structural integrity. A program's design should be improved; abstract classes and frameworks should
emerge or be made more explicit. During the expansionary phase, the size of a system typically
increases. During consolidation, it can shrink.

For example, a designer might notice that two methods added during expansion contain dupli-
cated code or data. The designer might factor this common code into a common superclass. Or, a
method may have grown larger as the code evolved. A designer might break this code into several
methods to increase its level of abstraction, and to provide new places to override behavior. As
an object evolves, it is common for new objects to emerge. The next section describes a refactor-
ing that addresses this. Each refactoring can be seen as addressing and correcting forces that, if
left unchecked, would undermine the structural integrity of the objects that comprise the system.
As a system evolves, disorder and entropy can increase. Consolidation can be seen as an entropy
reduction phase.

5.4 Related Patterns

Table 1 lists 13 design rules that are characteristically employed during consolidation. Table 2 lists
refactorings that can be employed during consolidation. The next two section presents two of the
most common and important refactorings as patterns.

6



Table 1: Design Rules [16]

DR1. use consistent names
DR2. eliminate case analysis
DR3. reduce the number of arguments
DR4. reduce the size of methods
DR5. class hierarchies should be deep and narrow
DR6. the top of the class hierarchy should be abstract
DR7. minimize access to variables
DR8. subclasses should be specializations
DR9. split large classes
DR10. factor implementation di�erences into subcomponents
DR11. separate methods that do not communicate
DR12. send messages to components instead of to self
DR13. reduce implicit parameter passing.

Table 2: Refactoring Patterns [21]

Category Refactoring(s)

High Level Refactoring HR1. create abstract superclass
HR2. subclass and simplify conditionals
HR3. capture aggregations and components

Supporting Refactorings:
Create program entity SR1. create empty class

SR2. create member variable
SR3. create member function

Delete program entity SR4. delete unreferenced class
SR5. delete unreferenced variable
SR6. delete a set of member functions

Change program entity SR7. change class name
SR8. change variable name
SR9. change member function name
SR10. change type of a set of variables and functions

SR11. change access control mode
SR12. add function argument
SR13. delete function argument
SR14. reorder function arguments
SR15. add function body
SR16. delete function body
SR17. convert instance variable to pointer
SR18. convert variable references to function calls
SR19. replace statement list with function call
SR20. in-line function call
SR21. change superclass

Move member variable SR22. move member variable to superclass
SR23. move member variable to subclass

Composite refactorings SR24. abstract access to member variable
SR25. convert code segment to function
SR26. move a class

7



6 PATTERN: EVOLVE AGGREGATIONS FROM INHER-

ITANCE HIERARCHIES

6.1 Context

The class hierarchies that emerge during the prototype and expansion phases are often functional,
but neither elegant nor reusable. During the consolidation phase, designers take time to exploit
opportunities to clean up the system, improve its structure and comprehensibility, and increase
its reuse potential. Evolving aggregations from inheritance hierarchies can play a major role in
system consolidation. This pattern can be employed to Factor implementation di�erences into

subcomponents (DR10), Separate methods that do not communicate (DR11) and Send messages to

components instead of to self (DR12).

6.2 Problem

Inheritance sometimes is overused during the early phases of an object's evolution.

Changing informal, white-box-based inheritance to black-box style aggregate-component

relationships can result in better encapsulated, better structured, more resuable, more

understandable code.

During the prototype and expansionary phases of an objects evolution, designers tend to depend
heavily on inheritance. Inheritance is often used where aggregation would be better because:

� inheritance is supported at the language level, so using it is easier than constructing aggregates
by hand. Since it is a feature of object-oriented languages, programmers are trained to use it
when they learn the language. They do not become familiar with design idioms and patterns
such as aggregation until they become more experienced.

� it is not obvious that an is-a relationship should become a has-a relationship until the subclass
becomes more mature.

� inheritance creates a white-box relationship that makes sharing resources such as operations
and variables easy. It does not become clear how best to untangle intra-object coupling that
may exist until the object has been used and reused for a while, and the �ssures along which
new object may be cleaved become more evident.

There comes a time (i.e. the consolidation phase) when designers may notice that parts of an
object exhibit a degree of cohesion that suggests that a distinct objects can be factored from the
existing hierarchy. The following bene�ts might be realized if some inheritance relationships were
able to be changed into aggregations:

1. cohesion and encapsulation could be improved by changing one large class to two smaller
classes

2. aggregates could change their components at runtime, while inherited subparts are static. That
is, components can exploit dynamic polymorphism. A component might become a member of
a di�erent aggregate as well.

3. separate classes could be reused independently, and may independently evolve. Each may
spawn subclasses that can be interchangeable used by the other, since they will communicate
only via a public interface.

4. an aggregate might have more than one instance of a given component class.

An example of an inheritance-based relationship that could be cast as an aggregate might be a
Matrix class. The initial design of such a class might be based on the observation that a Matrix

is a TwoDimensionalArray to which a repertoire of arithmetic operations are added. Hence,
Matrix might be de�ned as a subclass of TwoDimensionalArray that adds operations like +,

8



*, and transpose to the inherited methods for accessing and changing array elements. Changing
the relationship from an inheritance based relationship to aggregation can take advantage of the
fact that the TwoDimensionalArray subpart is being used essentially intact as a state repository
for the Matrix abstraction. Making this part of the Matrix a component can permit alternate
representations for this repository, such as SparseArrays or even stateless identity objects, to be
used in place of TwoDimensionalArrays.

6.3 Solution

Change inheritance-based relationships into aggregate-component relationships by fac-

toring parts of an existing class into a new, component class. Perform these changes

in such a way as to ensure that the program will still work as it did before.

Suppose that A is a subclass of C. A can reuse behavior of C by:

1. adding an instance of C as a component variable of A.

2. replacing references to variables and functions inherited from C with references to the compo-
nent

3. removing the inheritance link between A and C.

For example, theMatrix class is a subclass of TwoDimensionalArray, with an inherited vari-
able arrayRepr and inherited functions get and put. An instance of class TwoDimensionalArray

is added as a component variable ofMatrix. References to the inherited members of class TwoDi-
mensionalArray are replaced by references to members of its new component variable. Then, the
superclass of Matrix is changed (eg, to another class, or to null if Matrix is now a top-level class).

Ensuring that the program will still work after the changes are performed is easy for steps 1
and 3, but more di�cult for step 2. where references to inherited variables and functions must be
replaced not only in A (or Matrix) but also in its clients. One way to make step 2 easier is to
abstract access to the variables inherited by A (or Matrix), and change the accessing functions to
point to the members of the component variable.

6.4 Related Patterns

Changing inheritance-based relationships to aggregate/component relationships can require that a
number of supporting refactorings be applied to a program. Creating an instance of the compo-
nent class and populating it employs the pattern create member variable (SR2). Changing the
superclass of the aggregate class employs the pattern move class (SR25). Other related patterns
include create member variable (SR2), create member function (SR3), delete unreferenced variable

(SR5), delete a set of member functions (SR6), add function body (SR15), move member variable to

superclass (SR22), move member variable to subclass (SR23) and move class (SR25). Changes to
argument lists and member names may also be necessary, employing the patterns change variable

name (SR8), change function name (SR9), add function argument (SR12), delete function argument

(SR13) and/or reorder function arguments (SR14). Abstracting access to variables employs the
pattern abstract access to member variable (SR23).

7 PATTERN: CREATE ABSTRACT SUPERCLASS

7.1 Context

As noted for the prior pattern, the class hierarchies that emerge during the prototype and expansion
phases are often functional, but neither elegant nor reusable. One way to clean up inheritance
hierarchies during the consolidation phase is to de�ne abstract classes that capture behavior common
to one or more existing classes. This pattern can be employed to satisfy the following design rules:
Class hierarchies should be deep and narrow (DR5), The top of the class hierarchy should be abstract

(DR6) and Subclasses should be specializations (DR8).

9



7.2 Problem

As programs evolve, abstractions emerge. Abstractions are appear in two or more

classes are often implemented di�erently, and are often intertwined with code that is

speci�c to a class. Unless abstractions are consolidated in one place, code duplication

persists and it hard to reuse the abstaction.

Systems grow with age. As they grow, the same abstraction may appear in more than one place
in a program. This may happen because:

� one common programming practice is to entend a program by copying existing code and
modifying it. As this happens, code gets duplicated.

� on multi-person projects, di�erent project members may implement the same functionality
independently in the parts of a program for which they are responsible.

During the consolidation phase, these common abstractions are sometimes discovered. If the
abstractions were consolidated in one place, several bene�ts might be realized:

� De�ning the abstraction in one place reduces the program's size and possibly its execution
time

� Separating out the abstraction makes it easier to understand and reuse.

� If the abstraction (or its implementation) is 
awed, it need only be �xed in one place. One
problem with the copy-and-modify approach to software development is that errors in the
original code get copied along with the code. If the error is subsequently discovered and �xed
in one place, it may still persist somewhere else.

� If throughout a program abstractions are separated out and made explicit, it can make the
entire program easier to understand and evolve.

An example of where this pattern might be applied is where two classes DenseMatrix and
SparseMatrix are de�ned. Suppose thatDenseMatrix was de�ne �rst, then later SparseMatrix

was de�ned by copyingDenseMatrix and modifying it. These two classes contain commonbehavior
and duplicated code. An abstract superclass Matrix could be de�ned that captures the behavior
common to these two classes [22].

7.3 Solution

Factor abstractions common to two or more classes into a common abstract superclass.

Perform these changes in such a way as to ensure that the program will still work as it

did before.

Suppose that classes C1 and C2 share a common abstraction. An abstract superclass can be
de�ned by:

1. adding a new class A1, which initially contains no locally de�ned members;

2. making A1 the new superclass of both C1 and C2;

3. determined the common behavior (functions, or parts of functions) in C1 and C2;

4. changing (as needed) function names, argument lists, function bodies and the attributes of
reference variables so that functions that implement common behavior (in C1 and C2) are
implemented identically.

5. moving the common functions to A1 and deleting them from the subclasses.

For example, during the evolution of the Choices �le system framework [20] two classes BSDInode
and SystemVInode were de�ned to support two di�erent �le formats. This pattern was applied
to move common behavior into a common superclass Inode. While some of the steps in applying

10



this pattern were trivial, changing the function bodies was not. The mapUnit function was de�ned
in both classes, included much common code but also a few di�erences. The di�ering code was split
o� into new functions, and (in mapUnit) the di�ering code segments were replaced by calls to these
functions, in order to make the function de�nitions in the two classes conform [22].

7.4 Related Patterns

Creating the abstract superclass may employ the patterns create empty class (SR1), create member

variable (SR2), create member function (SR3), delete unreferenced variable (SR5), delete a set of

member functions (SR6), change variable name (SR8), change member function name (SR9), change
type of a set of variables and functions (SR10), change access control mode (SR11), add function

argument (SR12), delete function argument (SR13), reorder function arguments (SR14), replace
statement list with function call (SR19), and move member variable to superclass.

8 DISCUSSION

To reiterate, our emphasis on consolidation does not mean that one should abandon the use \up
front" of disciplined design and analysis techniques. On the contrary, one should apply discipline
in the up front stages, while realizing that the design won't remain �xed throughout a program's
evolution. Over time, insights are gained and programs are evolved to address new problems that
were not understood when the programs were initially designed. The focus on consolidations is not
so much to \�x mistakes" as it is to improve a program's structure to accommodate change.

In our aggregation pattern we discuss how inheritance is overused and sometimes is incorrectly
used. Our pattern addresses how to �x one common misuse of inheritance - but in proposing this
pattern, are we (improperly) encouraging an undisciplined use of inheritance, with the idea that one
can \�x things later"? We think not. As noted earlier, \is-a" relationships are not always clearly
distinct from \has-a" relationships. Points of view change over time, which does not imply that the
original use on inheritance was incorrect.

C++ implements subtyping using subclassing. However, inheritance in C++ can also be (and
sometimes is) used to implement programming-by-di�erence - a variant on the copy and modify
approach to program development. We agree with Liskov [19] and others that inheritance should
primarily be used to represent subtyping relationships - however, in practice inheritance is not always
used this way. Our patterns allow one to more clearly re
ect typing relationships in programs.

In summary, in this paper we have characterized the evolution of object-oriented programs in
terms of three distinct phases (prototype, expansion and consolidation). We de�ned a high-level
pattern for program consolidation, and also de�ned a consolidation pattern for evolving aggregations
from inheritance hierarchies.

It has been widely recognized that aggregates are superior to inheritance for expressing some
structural relationships [25]. Black box components can better support encapsulation than the
white-box nature of inheritance. Also, the ability to replace old components with new ones helps in
realizing the bene�ts of polymorphism at run time.

Gamma et. al. [15] have compiled a catalog of two dozen structural design patterns. The
emergence of aggregate/components relationships, together with forwarding methods is a promi-
nent, recurring theme in a sizable number of their patterns. Given the ubiquitous nature of this
relationship, we hope to see better linguistic support for aggregation.

9 ACKNOWLEDGEMENTS

Ralph Johnson supervised both of our research projects, and provided review comments on sev-
eral drafts. John Brant, Gabrielli Elia, Brian Marick, Don Roberts and other members of Ralph
Johnson's patterns seminar provided insightful review comments on a later draft, as did Ken Auer
and the PLOP '94 reviewers. AT&T Bell Laboratories supported William F. Opdyke's refactoring
research at the University of Illinois under the full-time doctoral support program.

11



References

[1] C. Alexander. The Timeless Way of Building. Oxford University Press, 1979.

[2] C. Alexander, S. Ishikawa, and M. Silverstein. A Pattern Language. Oxford University Press,
1977.

[3] Paul L. Bergstein. Object-preserving class transformations. In Proceedings of OOPSLA `91,
1991.

[4] Barry W. Boehm. A spiral model of software development and enhancement. IEEE Computer,
21(5), May 1988.

[5] Grady Booch. Object-Oriented Design. Benjamin/Cummings, 1990.

[6] Frederick P. Brooks. No silver bullet - essence and accidents of software engineering. IEEE

Computer, pages 10{19, April 1987.

[7] Eduardo Casais. Managing Evolution in Object Oriented Environments: An Algorithmic Ap-

proach. PhD thesis, University of Geneva, 1991.

[8] Peter Coad and Ed Yourdon. OOA - Object-Oriented Analysis. Prentice-Hall, 1990.

[9] Dennis Debruler. Review comments on this paper. PLOP '94.

[10] Kent Beck et al. Patterns postings related to aggregations. email exchange on pat-
terns@cs.uiuc.edu.

[11] Ward Cunningham et al. When Are Objects Found? email exchange on patterns@cs.uiuc.edu.

[12] Brian Foote. An Object-Oriented Framework for Re
ective Meta-Level Architectures. Ph.D.
thesis in preparation, University of Illinois at Urbana-Champaign.

[13] Brian Foote. Designing to facilitate change with object-oriented frameworks. Master's thesis,
University of Illinois at Urbana-Champaign, 1988.

[14] Brian Foote. A fractal model of the lifecycle of reusable objects. In OOPSLA '93 Workshop on

Process Standards and Iteration (J. Coplien, R. Winder and S. Hutz, organizers), Washington,
D.C., 1993.

[15] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements

of Reusable Object-Oriented Software. Addison-Wesley, 1994.

[16] Ralph E. Johnson and Brian Foote. Designing reusable classes. Journal of Object-Oriented

Programming, 1(2):22{35, 1988.

[17] Ralph E. Johnson and WilliamF. Opdyke. Refactoring and aggregation. In Proceedings of ISO-

TAS `93: International Symposium on Object Technologies for Advanced Software, November
1993.

[18] Karl J. Lieberherr and Ian M. Holland. Assuring good style for object-oriented programs. IEEE
Software, pages 38{48, September 1989.

[19] Barbara Liskov. Data abstraction and hierarchy. In Addendum to the Proceedings of OOPSLA

`87, 1987.

[20] Peter W. Madany. An Object-Oriented Framework for Filesystems. PhD thesis, University
of Illinois at Urbana-Champaign, 1992. Also Technical Report No. UIUCDCS{R{92{1751,
Department of Computer Science, University of Illinois at Urbana-Champaign.

12



[21] WilliamF. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis, University of Illinois
at Urbana-Champaign, 1992. Also Technical Report No. UIUCDCS{R{92{1759, Department
of Computer Science, University of Illinois at Urbana-Champaign.

[22] William F. Opdyke and Ralph E. Johnson. Creating abstract superclasses by refactoring. In
Proceedings of CSC '93: The ACM 1993 Computer Science Conference, February 1993.

[23] Roxanna Rochat. In search of good Smalltalk programming style. Technical Report CR-86-19,
Tektronix, 1986.

[24] J. P. Rosen. What orientation should ada objects take? Communications of the ACM,
35(11):71{76, November 1992.

[25] Alan Snyder. Encapsulation and inheritance in object-oriented programming languages. In
Proceedings of OOPSLA `86, pages 38{45, November 1986. printed as SIGPLAN Notices,
21(11).

[26] Rebecca Wirfs-Brock, Brian Wilkerson, and Lauren Wiener. Designing Object-Oriented Soft-

ware. Prentice-Hall, 1990.

13


