The User-Defined Product Framework
by Ralph Johnson and Jeff Oakes
johnson@cs.uiuc.edu, joakes@itthartford.com

Introduction

This paper describes a generic framework for "attributed composite objects” that is called
the User-Defined Product (UDP) framework. This framework makes it easy to specify,
represent, and manipulate complex objects with attributes that are a function of their
components. For example, an insurance policy has a price, which depends on whether it
is home insurance or car insurance, the value of the home or car, the location of the home
or car, the size of deductibles, and various options such as flood insurance. A bicycle
manufacturer needs to describe all the models it sells, and each model has a price that is a
function of the parts and options that are on it, which state the bicycle was purchased in
and whether the customer is buying at retail or wholesale. Either of these systems could
be built using the framework.

The purpose of the UDP framework is to let users construct a complex business object
(like a new policy or a new model of bicycle) from existing components and to let users
define a new kind of component without programming. Thus, insurance managers can
invent a new policy rider and an engineer at a bicycle manufacturer can invent a new
add-on like a cellular phone for a bike, and neither one of them needs a programmer.
Salespeople can then use these new components to specify a policy or bicycle for an
order. The framework automates the computation of attributes such as price. Moreover,
it keeps track of how an object changes over time, so that you know how deductions
were changed on an insurance policy, and how the price of a bike changed.

The UDP framework does not solve all the problems of business object. For example, it
does not automate workflow or accounting, though it must cooperate with them. Typical
workflow problems are that a policy might have to be approved before it becomes
official, and a new bicycle model might have the lifecycle "proposed", "accepted",
"active", and "obsolete". Once a model becomes obsolete, you can't accept any
backorders, but can only sell the inventory. Typical accounting problems are that some
transactions involving a policy (like selling it, getting payments on, or paying off on the
insurance) also involve either financial obligations or the transfer of money, and must be
accounted for. The framework does not handle either of these problems, though you can
write code that handles them. Thus, it only solves some of the problems of business
objects.

The UDP framework was developed at The Hartford, where it was used to represent
insurance policies. We believe it is much more general than insurance, so we also use
bicycle examples, but only the insurance examples come from experience.

This paper describes the UDP framework as a sequence of patterns. Each pattern will
progressively reveal the framework, making it more flexible and also more complicated.
Sometimes the features added by one pattern are removed by another, so the framework

does not grow steadily, but sometimes seems to regress. The only complete view of the
framework is the one at the end of the paper, when all the patterns have been revealed.

Pattern 1 - Composite/Interpreter

One way to define a complex composite object such as an insurance policy would be to
multiply inherit from classes that make up its behavior, such as PropertyPolicy,
AutoPolicy, and FloodRider. Unfortunately, this leads to a complex class hierarchy that
is always changing. ITT Hartford estimated that it would take 10,000 classes to represent
all the combinations that they used. Moreover, covering two cars might require

inheriting twice from AutoPolicy, which few languages support.

Which is the best way to combine features, multiple inheritance or composition?

The answer is easy for Java and Smalltalk programmers, since their language doesn’t
support multiple inheritance. But even if a language does support it, multiple inheritance
works best in simple cases. If there are a hundred possible components and tens of
thousands of likely combinations, it is too complicated to specify the combinations in
advance using multiple inheritance. Moreover, many combinations will need a special
way to combine the features of the components. This is why CLOS has method
combination rules. Unlike CLOS, C++ does not have method combination rules nor
dynamic creation of classes. Thus, multiple inheritance should be used in C++ only for
fairly simple cases.

Use object composition to combine features instead of multiple inheritance

A policy should contain a set of components, some of which are PropertyComponents
and some of which are AutoComponents. If there is flood insurance on a house then the
PropertyComponent representing the house will contain a FloodComponent. This makes
it easier to add a new kind of policy and to mix and match policies.

There will be a class hierarchy of PolicyComponents, and for each new policy feature
there will be a subclass of PolicyComponent. A PolicyComponent like AutoComponent
that contains other PolicyComponents will be a CompositePolicyComponent, following
the Composite pattern. So, we will just call the classes Component and Composite.

Policy
Auto
Flood Collision Conmposite Collision
deductible deductible Auto
maximum maximum | | | Home
- Flood

Policy | |Home | [Auto

owner | |value value

addresy |type make

addresyg |year
Figure 1. Component Class Hierarchy Figure 2: A Composite

Object

Figure 1 shows a small part of a typical Component class hierarchy. Flood and Collision
are leaf classes, while Policy, Home, and Auto are composites. An insurance policy
would be represented by a composite object as shown in Figure 2, where the root is the
composite Policy object and the interior nodes are the composites Auto and Home. This
policy insures one house and two cars. The first car has collision insurance, but the
second does not.

Each Component has attributes. The Policy component knows the owner of the policy
and his address, while the Home component knows the value of the home and its address.

All Components must have the same interface. For an insurance system, this implies
being able to compute the value of the policy, to print it, and to display fields for data
entry. For a bicycle system, it implies being able to compute its cost and its weight for
shipping. In general, a component implements part of this interface by using that same
operation on its components. So, the value of an insurance component is some function
of the values of its components, as is the value of a bicycle.

This can be looked at as an example of the Interpreter pattern. The Interpreter pattern
has a class hierarchy (the Component hierarchy) that models a language, trees made from
these classes that model programs in that language (the tree of Figure 2), and an
interpreter implemented by distributing a method across the class hierarchy (evaluate the
policy, or print it), and executed by traversing the tree of instances. It is not an ideal
example, because most people do not naturally think of a description of an insurance
policy or a bicycle as a program (though Lieberherr would think it quite natural
[Lieberherr96]). Moreover, part of the Interpreter pattern is a “context”, which is an

object that is an argument to the “interpret” method that is created at the start of
interpretation and that participates in every aspect of it. The current design does not have
a context. Nevertheless, we will see that the Interpreter pattern is a powerful metaphor
that will be important later, and that the context will also turn out to be important.

The design is still complex and hard to use, because there will be a huge number of
Component classes, and adding a feature means making a new one. But the next patterns
will take care of that.

Pattern 2 - Variable State

Component has too many subclasses. How can we keep from having to subclass
Component?

One reason to make a subclass of Component is to define instance variables to represent
attributes. A Component's attributes are strings, numbers, dates, and other simple values.
In contrast, its components will be other objects like itself. A program that edits a
Component will do little more than display and modify its attributes.

The Variable State pattern[Beck97] represents the attributes of an object as a collection,
rather than as its instance variables. Component will have a dictionary called "attributes”
that maps the name of the attribute to its value. In this case, it is best to have a special
Attribute class that not only holds the value of the attribute, but also its type. This way a
Component editor can tell whether an attribute is supposed to be a number or a date, and
can produce the appropriate user interface. This is similar to Fowler's Measurement
pattern [Fowler97].

Attribute
name
value ®——Compone
type
Flood Colision Composite

A
| | |

Polcy | |Home | |Auto

Figure 3: Design with Variable State

Eliminate the need to subclass to add instance variables by storing attributes in a
dictionary instead of directly in an instance variable.

Unfortunately, the Variable State pattern alone won't eliminate many subclasses, because
different Components have different behaviors.

Pattern 3 - Strategy

Component has too many subclasses. How can we keep from having to subclass
Component?

A PropertyPolicynot only has different attributes than an AutoPolicy, it has a different
algorithm to compute its value. The most obvious way to describe this difference is by
making a subclass. However, another way to give different objects different algorithms
is to use the Strategy pattern[Gamma95]. The Strategy pattern turns algorithms into
objects and lets the algorithm used by an object be independent of the object’s class. If
we model the different algorithms with the Strategy pattern then there is no reason to
make subclasses of Component. Instead, different behaviors would be different
subclasses of Strategy.

The Strategy pattern requires certain conditions. First, a set of algorithms can be turned
into a Strategy only if they have the same interface. An object can have more than one
Strategy, but all the objects using a Strategy must support its interface. If all the
subclasses of Component are going to be eliminated, then they all must have the same
interface. Moreover, it would be best if the Component interface were small, because the
Strategy pattern will replace each algorithm in Component with an instance variable, and
make a new class hierarchy for each algorithm.

Fortunately, insurance components have a fixed (and small) interface. An insurance
component has four responsibilities; to compute its value (rating), to edit itself, to print
itself out in a format that the consumer can read (issue), and to print itself out in a format
for government regulators (coding). We can make a separate Strategy for each
responsibility. Unfortunately, the behaviors of a bicycle component are different from
the behaviors of an insurance component. However, a bicycle component will also have
a fixed and fairly small interface, and we can apply the same patterns to it.

Make a Strategy for each method of Component that varies in its subclasses.

One of the results of using Strategy is that it is no longer necessary to have a separate
Component and Composite class. Composite is the only subclass of Component.
Moreover, applications will use Composite, not Component, because even if a particular
component is a leaf, it is possible that it will be given components of its own some day,
since business rules are constantly changing. The following figure shows how
Composite and Component have been merged, and shows two of the four strategies.
Each Strategy hierarchy will be much larger than what is shown. Some of the strategies
will be specific to a particular kind of component, while others (like the VSum and
ESum) will be generic strategies. For example, these two strategies are parameterized
with a set of attribute names, and they compute the sum of the values of the attributes.

componentE container

Attribute

name Composite |EditStratgy |
o '

value —{ValueStratgy | A

vpe PN [1 |

| | | ESum| |EHome| [EAuto
VSum| [VHome| [VAuto

Figure 4: Design with Strategy

The Strategy pattern does not solve all our problems. In fact, it might not even reduce
the number of classes. It replaces a constantly growing hierarchy of Components with a
constantly growing hierarchy of strategies. Although the strategies are small and some of
them are reusable, there will be a lot of them. We need a way to specify strategies with a
fixed, and fairly small, set of classes.

Pattern 4 - Interpreter

Instead of making each strategy a monolithic class, we should compose them from
smaller components. The way to learn what those components should be is to look
carefully at the strategies.

The simplest strategies are those that compute the value of a policy. Each one returns a
number that is a function of the values of the attributes of the Component and the values
of its components. The function is sometimes an arithmetic expression, sometimes
requires a table lookup (insurance rules vary by state, for example), and sometimes
requires simple “if” statements. However, except for summing up the values of
components, the functions never have to deal with iteration or recursion. Thus, they can
be described by a fairly simple language, more at the level of spreadsheet rules than a
real programming language.

How can we represent rules and functions in an object-oriented system?

The most obvious way to represent rules and functions is with a language, either the
language used to build the framework or with a more specialized language. Using the
language used to build the framework leads to a continuation of the Strategy pattern.
Using a more specialized language makes it easier for non-programmers to customize the
system, but requires implementing the language. There are lots of ways to implement a
language; compile it to the underlying maching, define a simple virtual machine and
compile to that, develop an interpreter. These implementation techniques trade off ease
of implementation with speed of the final program.

In this case, speed of the final program is not that important. In general, interpreters are
easier to implement than compilers. Moreover, object-oriented languages make one way
of implementing an interpreter particularly easy. This is the Interpreter pattern, which

lets us represent a language as a class hierarchy, and a statement in that language as a tree
of objects.

Implement rules and functions using the Interpreter pattern.

The Interpreter pattern has several partsfGamma95]. First, there is a class hierarchy. In
this case, it is the Rule hierarchy. This class hierarchy is used to provide components for
atree. Second, it supports an operation that evaluates the tree. In this case, the operation
is valueUsing:. The argument to the operation is a context. In this case, the context
contains all the attributes of the current component and its parents. This lets a collision
component depend on the zip code of the driver of its car. <picture> Third, there is a way
to build up "program” trees so that they can be interpreted later. This is done with a
special purpose GUI.

Attribute
name r
value Rule
P—Com osite

type P j\/alueW'rth:

| /I\ |
AttributeRef | |Constant | |BinaryOp
TableLookup | [name value operation

Figure 5:Using the Interpreter Pattern
The class hierarchy:

According to the Interpreter pattern, the Rule hierarchy corresponds to the grammar that
is being interpreted. It has subclasses that look values up in tables, fetch the value of an
attribute, represent constants, and perform arithmetic.

In theory, the Expression hierarchy does not change. Its classes are enough to describe
any computation. In practice, a new application might need to make a new subclass
because of a specialized need. For example, table lookup is not always needed, but is
very common in insurance applications. If table lookup were not present, you could
build an inefficient and awkward version from the arithmetic functions, but table lookup
is important enough for insurance that it is worthwhile having a component that
specialized for it.

<picture of "program">
Figure 6:

Figure 6 shows an example of how a set of objects can represent a Strategy. What we've
done is to replace each Strategy object with a composite object that describes the same
algorithm as the Strategy did, but does it with a fixed number of classes.

Contexts:

Each use of the Interpreter pattern has its own way of defining contexts. Sometimes the
context is trivial, sometimes it is complex. One of the most common kinds of contexts is
a name space, which is usually represented as a dictionary that maps names to objects,
and that is what the UDP framework uses. In this case, the context maps names to
attributes. If a rule needs to know the value of an attribute, it just looks it up in the
context. Whenever a component is asked to evaluate one of its rules, it is given an
initial context that contains all of the attributes of its ancestors. It will add its own
attributes to that context before it uses it. But the original context shouldn't be changed,
so it should be copied before attributes are added to it.

The standard Smalltalk dictionary is implemented as a hash table. If there are a lot of
attributes then copying the context can take a lot of time. In that case, it is better to make
a new context by building an object that points to both the old context and the new
attributes. This context would have the interface of a dictionary, but be implemented
differently. A context has as many segments as its component has ancestors, and if the
tree of components were deep then it would be slow to access an attribute defined in the
root of the tree. If the tree is deep, the roots attributes are accessed frequently, and each
component has few attributes, then it is faster to represent contexts as standard Smalltalk
dictionaries. But the odds are that contexts would be more efficient if they were
represented as a sequence of dictionaries.

Evaluating the tree:

Rules can not only read attributes, they can write to attributes as well. Each rule consists
of a set of formulas and tables whose values are computed and stored in the attributes. A
rule can be divided into “pre-formulas” and “post-formulas”. A pre-formula is evaluated
before a component’s children are evaluated, while the post-formula is evaluated
afterwards. It is common for a pre-formula to initialize a total, for the children to
accumulate a value in that total, and then for the post-formula to use the total.

This leads to very powerful rules. It is common for the root component (a Policy or a
Bicycle) to initialize a lot of attributes, but for the non-root components to just update
them. However, any component can compute a function of its descendents and use that
as its own value. For example, a commercial policy may cover several buildings at a
single location. However, there may be discounts and surcharges depending on the gross
costs for each building. There are initial formulas which are evaluated for each building

at a location. These values are inputs to the formula for the entire policy.

Building the tree:

The class definitions define a language and an interpreter for the language, but the actual
programs are trees composed of instances of the Rule classes. So far we have not
described how to build these trees.

Trees can be built either under direct program control or with a parser. Trees of Rule
objects are really abstract syntax trees, so it is common to write a parser that constructs
them, but it is not an essential part of the Interpreter pattern. The Interpreter pattern
describes the classes of the nodes of the trees and how to interpret them, it doesn't
prescribe how those trees were created.[Ralph, I'm unsure of your point here. And, with
tables (trees) as well as formulas (Reverse Polish stacks) implementing rules, the
direction is possibly confusing?]

The UDP framework uses a combination of techniques to build trees. There is a parser
for arithmetic expressions, but special objects like tables have a special GUI for
constructing them.

<Jeff, can you put a picture here showing one of the editors in action? Yes, but under
separate cover to reduce size>

Rules are used for other purposes than just computing the values of attributes of a
component. For example, they can be associated with an attribute and evaluated when it
changes.

Pattern 5 - Type Object

The object model of Figure 1 had a subclass of Component for each kind of Component,
but now all kinds of Components are implemented by a single, highly reusable, class.
The differences between a collision rider on an automobile insurance policy and a
derailure on a bicycle are expressed in the attributes and the strategies of a Component.

Although this design is flexible and reusable, it also can be inefficient and hard to
understand. Part of the inefficiency comes from duplication. Most Components have the
same set of strategies as some other Component. They should be sharing this set, not
duplicating it.

Duplication also makes the design hard to understand. It is easier to understand a
component as a "derailure” first, and then to look at its weight and price than it is to look
at its attributes and strategies and figure out that it is a derailure. Humans naturally
categorize objects, and class hierarchies are a natural way to categorize them.
Eliminating subclasses might make our software more flexible, but it also makes it hard
to understand.

How can you eliminate duplication in a component system and represent categories of
similar components when all components have the same class?

Both problems can be solved with the Type Object pattern, which means creating objects
to represent the types of Components[Johnson97]. Each Component knows its

ComponentType, and each ComponentType holds the strategies that all Components of
that type have in common.

Use the Type Object pattern; i.e. make objects that represent the common features of a
category of components, and let each component know its type and access those features
by delegating to the type.

As is common with this pattern, a ComponentType will be responsible for creating new
Components and initializing them. In addition to setting the type of the Component, the
ComponentType will initialize its attributes. This means that ComponentType must know
the attributes of a Component of that type. In fact, all Components with the same
ComponentType will have attributes with the same name, though the values of the
attributes differ. Each ComponentType will have a set of AttributeTypes, and it will
create a component with one attribute for each AttributeType. An AttributeType will
know the name of its attribute and can also be responsible for knowing whether the
attribute is a number, a string, etc. Thus, we'll use the Type Object pattern twice.

children children

r type r rules

Component ComponentType'—m

attributes l attributes
type
Attribute r Attribute Type

valueWith;

value name

type

Figure 7: Using the Type Object pattern

The Type Object pattern divides the design into two sides, the instance side and the type
side. ComponentType, AttributeType, and Rule (and its subclasses) are on the type side,
while Component and Attribute are in the instance side. Although ComponentType and
AttributeType both play the Type role in the Type Object pattern, Rule does not. Itis

just a composite strategy, the Element of the Interpreter pattern. Nevertheless, it is a type
side class. This is typical of the Type Object pattern; not all classes on the type side are
Types.

An important consequence of the Type Object pattern is that it makes building a generic
editor easy. A single editor can edit any kind of composite object and will automatically
work with a new kind of component whenever a new ComponentType is defined.
Because insurance workers have different conventions than bicycle designers, they will
probably need different editors. But a single editor can work for any insurance policy, or
for any bicycle design.

10

A salesperson taking an order for an insurance policy or a bicycle will use the editor to

fill out the order. The editor will present attributes whose values must be specified, and
will provide a list of components that can be added. When a new component is added,
such as adding an automobile to an insurance policy, then the set of possible components
is changed so that the salesperson can add components to that new component.

To support this feature, each ComponentType must know the possible ComponentTypes
of its own Components. This not only makes it possible for the editors to ensure that
only correct composite objects are generated, but permits Components to check that their
Components are of the right type. So, the Component editor can start at the root and
build up a complex object.

The Type Object pattern usually has a database of types. This forms a new kind of reuse;
people can build up a set of ComponentTypes for a particular domain and can reuse them
to make new composite objects. In the UDP framework, the database of
ComponentTypes is arranged in a tree, with the root of the tree being the type of the root
of the product, and its children being the ComponentTypes of the components of its
instance.

Pattern 6 — History (also “Historic Mapping”[Fowler97])

Many business applications have to deal with history. In a bicycle management system
built from the UDP framework, part definitions change over time, and users need to look
at old part definitions. The parts inventory changes over time, and we have to keep track
of what was in the warehouse at a particular point in time so we can retroactively adjust
individual retailers' pricing deals. So, we need to keep a history of both the part
definitions and the parts. In fact, we might need to keep alternative histories, since parts
designers might need to have provisional specs for what-if purposes.

This means that each attribute object has to keep a historical record of its values. An
attribute must not only know its value, it must know its value at any point in time. It also
means that there must be a historical record of the state of the part definitions. They do
not use attribute object, so a slightly different solution is needed, though the same
pattern.

How does an object keep track of how its value has changed over time?

There are lots of possible ways to keep track of old values. An object could convert
every operation into a transaction, keeps its original value around, and replay those
transactions whenever it needed the old value. This can be slow and might require
finding the original values of other objects, as well. Alternatively, it can keep track of
how each value changes at each point in time. This might take more space if each
transaction can change several values.

There are also several ways to specify the version of an object that you want to read.
One way is to use a global variable (or a Singleton[Gamma95]) to store the time. This

11

avoids changing the interface of the object. However, this makes multithreaded system
difficult. The other way is to make the date an explicit argument.

Change the interface of methods to take a date. Instead of "children” it should be
"childrenAt:", instead of "value" it should be "valueAt:[valueUsing:]". Change all
variables to be a history, where a history is a sequence of associations whose key is a
time and whose value is the value of the attribute at that time. An object can find the
value at a particular point in time by scanning the history sequence

The history mechanism can be used for any kind of value. Histories are used to model
component definitions and attribute definitions, as well as the value of attributes. When
they are used to model component definitions, the values are collections of types and
components. So, the history object also needs an interface for accessing collections.

One of the problems of using the History pattern is that programs must keep track of
time. The easy way to do this in the UDP framework is to include it as part of the

context. Thus, instead of using a date as an argument, the UDP framework uses a
Context. The operations on History objects are thus valueUsing: aContext to read a
value, value: aValue using: aContext to change it, and add:using: and remove:using: to
change collections. Note that the design doesn’'t change much, except that the signatures
of a few of the operations change. This is typical of the History pattern.

children children

Rule
type rules

Component ComponentType @

valueUsing:

attributes l attributes
type
Attribute r Attribute Type

valueUsing: name

type

Figure 8: The Effect of History

Pattern 7 - Transactions

The simple version of History is not enough for the UDP framework. Not only does it
need to keep track of when a legal value changes, it must keep track of the time that it
changed in the computer. Suppose that we changed the price of a policy rider effective
June 1, but we didn't enter that price until May 20. A price quote on May 15 for a July
policy will be different from a price quote on June 5 for the same policy.

12

The UDP framework keeps track of both the effective time of a transaction and the time

it was actually processed by representing transactions as objects. A transaction includes
its effective date, the date it was processed, and its termination date. Transactions are
important to the UDP framework because they are a link to other systems such as a
workflow system and to an accounting system. In a workflow system, they signal a
change of state. In an accounting system, they represent a transfer of funds between
accounts.

The UDP framework uses transactions, not time, as the key to history. One particular
transaction is always specified to be the "viewpoint”. It is part of the context and is used
whenever the system reads or changes an attribute, parent-child relationship, or rule.

A transaction can specify the new value for a set of attributes. Some transactions are
temporary and have a termination date. In those cases, the attribute reverts back to its
old value after the transaction.

The value of an attribute is given by the transaction with largest effective date, but whose
effective date and process date are less than that of the viewpoint, and whose termination
date is less than the effective date of the viewpoint. In general, all the transactions that
change a value must be examined to compute the value. Usually there are no more than a
few transactions that affect any particular value, so this is fairly fast.

Pattern 8 - Strategy

A component presents a different set of attributes in different contexts. Some attributes
are optional and don’t need to be displayed when the component is being edited, but
might still be involved in rules when the component is being evaluated. For example,
some of the attributes are only used to compute functions on parts of the tree, and are
initialized only when the component is evaluated. So, the component needs to be able to
provide different views of its attributes. Unfortunately, every type of component might
need a different algorithm for filtering its attributes.

How can a component be parameterized with the different views of its attributes?

Make a Strategy for each view. Each component needs a set of strategies, one for editing
the component, one for evaluating the component, and so on. These strategies are stored
in the ComponentType, along with the rules for evaluating components. In fact, the
strategies are built from the same sort of Rules as those rules.

Implement the view of the attributes as a Strategy.

Pattern 9 - Decorator

Sometimes attributes need to have rules. For example, if a life insurance policy is for

over $1,000,000, the insurance company is required by law to reinsure the excess. The
policy must identify the amount reinsured and the reinsuring company. These are

13

optional attributes that occur when the coverage amount is over $1,000,000. If we could
give a rule to the attribute that held the coverage amount, then that rule could add the
optional attributes when the coverage amount was over the limit. One solution is to give
every attribute a “changeRule” variable, but most attributes don’t have a change rule. It
would be better if we could only give attributes rules if they needed them.

How do you add behavior to an existing object?

One way to simulate adding behavior to an existing object is to make a new object with
the new behavior, initialize it with the state of the original object, and replace the original
object with the new object. But if you want to add behavior without replacing the object,
you can use the Decorator pattern[Gamma995].

Decorate the object with another object that adds the new behavior, but delegates most
messages to the first object.

An AttributeDecorator would be an object that stands in for an attribute, that has the
same interface as an attribute, and that references an attribute. It would delegate most
operations to its attribute, but it would also contain a rule that it would evaluate
whenever it delegated an operation that would change the value of the attribute.

Conclusion

If we put the models of Figure 5 and Figure 8 together, we see the core of the UDP
framework (in Figure 9). The UDP framework uses a few little tricks when it combines
these models. In particular, AttributeType is a Rule. Evaluating an AttributeType
returns the value of the Attribute with the same type (i.e. same name) in the context.

children children Rule
L type I rules -
Component ComponentType; valeUsing:
attributels i attributes A
type [[|
Attribute Attribute Type | [TableLookup Constant
valueUsing: name valueusing: value
type valteUsing:
BinaryOp.
valueUsing:

Figure 9: The UDP Framework

14

The UDP framework is more than just a framework, it is also a object modeling notation.
In effect, we have created a new object-oriented language. Since it is implemented in
Smalltalk, and since we are Smalltalk fans, it is reasonable to ask whether it is really a
good idea to invent another language. What is wrong with just using Smalltalk?

The advantage of the UDP framework is that it is special purpose. It is not a general
purpose modeling notation, but is specialized for modeling complex structures that not
only change in time (and we want a complete history of how they change in time) but
whose composition rules change over time. The framework automates persistence, user
interface, and history, but it does so at the price of ignoring all behavior other than
evaluating rules. As long as the behavior you want fits into the framework, the UDP
framework can make it easy to develop an application. Although it is always possible to
revert to Smalltalk to add new behavior, the UDP framework only provides a big
advantage if it can be used for most of the functionality of your application. Fortunately,
there are many applications for which the UDP framework seems to be useful.

References

[Johnson97] Ralph Johnson and Bobbie Woolf, Type Object, to appattiarn
Languages of Program Desigh Addison-Wesley, 1997.

[Lieberherr96]Adaptive Object-Oriented Software: The Demeter Method with
Propagation PatternsPWS, 1996.

[Beck97] Kent BeckSmalltalk Best Practice PatternBrentice-Hall PTR, 1997.
[Gamma95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlid3etegn
Patterns: Elements of Reusable Object-Oriented Soffwaléison-Wesley, 1995.
[Fowler97] Martin Fowler Analysis Patterns: Reusable Object Modélddison-Wesley,
1997.

15

