
05/07/98 1 of 72

The Objectiva Architecture
Francis Anderson (francisa@altinet.net) and Ralph Johnson (johnson@cs.uiuc.edu)

Introduction...2
Notation...4

Billing Overview...6
A Framework for Business Objects ...9

The Objectiva Business Model Domain ...10
Country ...12

Operational Level ..16
Region ...16
Entity...22
Data Value...25
Node..28
Entity Context ...32

Knowledge Level ..33
Entity Type..33
Attribute ..38
Entity and Data Major Components ...42
Continuous Data ..45
Discrete Data ...49
Complex Data..55
Discrete Collection Attribute ...60
Data Type..63
Framework Development...66
Relationship...67

Use Cases ..70

05/07/98 2 of 72

Introduction

Objectiva is a black-box framework for telecommunications billing. “Black-box
framework” means that it lets you build applications primarily by reusing existing classes
and does not force you to create new ones. “Telecommunications billing” means a
system that produces bills for a telephone company. Objectiva makes it possible to
quickly produce billing systems for all kinds of telecom services, including cellular, PCS,
local number portability, conventional local and long distance, and satellite services. It
also makes it possible to quickly customize an existing system to respond to changing
conditions and to provide new services. It is a “convergent billing” system that makes it
possible for a single billing system to handle any kind of telecommunications service.

A billing system has many parts, some technical in nature, and some that solely
implement the business rules of billing. The purpose of the Objectiva architecture is to
organize the parts of the system as effectively as possible in order to maximize their
reuse. In Objectiva, as in Smalltalk, everything is an object, with all the jargon that one
expects in order to be fully object-oriented: inheritance, encapsulation, polymorphism,
responsibilities, collaboration, etc.

The Objectiva Architecture consists of ten domains:

• some are technical in nature (Hardware, System Software, Common Services,
Operations Model and the User Interface);

• some are oriented more towards behavior (Business Process and User Conceptual
Model);

• some are oriented more towards structure (Business Model and Domain Model
Engine);

• one is a set of tools (Development Services).

05/07/98 3 of 72

Figure 1: Objectiva Architecture Domains

The Objectiva Architecture Domains are depicted in Figure 1as a UML Package
Diagram. In one sense, the domains can be thought of as the layers within Layered
Architecture [POSA], but this implies only one specific relationship (messaging) between
the domains. It is better to think of the dependencies as depicting how we build the
architecure, rather than just how the domains communicate. Once we have hardware and
system software, we build a domain model engine, from which we construct a business
model and common services to the system software. These common services are applied
to the different environments in the operations model, a special set of services being
required for the development environment. The business model requires an interface for
the various user roles and metaphors defined by the user conceptual model, which
implements the business process.

Although these domains area at a very high level of modeling, they have a direct
representation in the implementation of Objectiva. Figure 2 shows that the domains are
directly implemented as ENVY Configuration Maps. This is one of the goals of
Architecture: to provide configuration at a sufficiently high level that component-based
development becomes possible.

Revision Date: 5/3/98 Revised by: Francis Anderson Objectiva Architecture Domains

Objectiva Architecture Company Confidential

Object Model:

DomainModelEngine

BusinessModelCommonServices

SystemSoftware

User Conceptual Model

Business Process

UserInterface

OperationsModel

DevelopmentServices

Hardware

05/07/98 4 of 72

Figure 2: Objectiva Domains as ENVY Configuration Maps

To begin with, we will concentrate on the Business Model, and how it uses the Domain
Model Engine (DME) to express business rules. The DME is the most abstract of the
domains, and lies at the heart of the Objectiva Architecture.

Objectiva keeps track of a company’s customers. This includes their addresses and other
contact information, the agreements that each customer has with the Enterprise (which
can change frequently), the network events that cause a charge (like a local or long
distance call, a page, or an e-mail message), taxes, discounts, invoices sent, and payments
received. It manages equipment that is being rented or purchased, which means not only
charging for it, but keeping track of its location and managing an inventory of equipment
available for rental or purchase, and scheduling repairs on equipment that is broken.
Objectiva manages products, which are combinations of the various pricing plans that a
company is offering to customers. It connects to other systems for accounting, to get
network events, and to load subscriber information on the switch. Objectiva is a complex
information system, but it is made up of a fairly small number of highly reusable classes.
This is a key to its flexibility and power.

This paper describes the architecture of Objectiva, and assumes you know little about
telecommunications billing, but a lot about modern OO design, patterns, and Smalltalk.

Notation

05/07/98 5 of 72

Objectiva uses several hundred classes, and we’ll be looking at many of them. All the
classes added by Objectiva have a prefix of “Ons”, for Objectiva Name Space. Thus,
class names all look something like OnsNetworkAuthorization. It can get tedious to read
a document with names like that, and it seems unnecessary, since the names were chosen
to read well. So, class names are broken into their individual words, the “Ons” is
omitted, and a special font is chosen. Thus, the class named “OnsNetworkAuthorization”
will be written as NETWORK AUTHORIZATION. Smalltalk code will of course use the real
Smalltalk class names. This should make it easy for you to go from the document to the
code, but should keep the document easy to read.

05/07/98 6 of 72

Billing Overview

Billing means both calculating charges for an individual event, and computing discounts
and taxes on the total. In both cases, the billing is event-driven:

• For an individual event, the trigger is externally generated through the subscriber’s
usage of the network, or on the completion of an order (e.g. installation charge).

• For the computation of monthly charges (e.g. subscription charge) discounts and
taxes, the events are internally generated through the cyclical closure of a period.
Agreement period closure, which triggers the calculation of monthly recurring
charges and discounts, and account period closure, which triggers the calculation of
taxes and preparation of an invoice, should be thought of as being independent
events. Frequently, however, the two events are combined, since this makes their
explanation through a paper invoice much simpler.

Billing is accomplished by rating an event (calculating the charges), and posting the
results (a posting with charges) to an account. The rating of network events is the most
computationally intense part of Objectiva because it is done for most transactions. It is
common for a system to rate a million network transactions a day, and some rate
hundreds of millions. Cycle closure is the second most computationally intense part of
Objectiva. Together, these two activities account for more than 99% of the transactions
in a typical telecommunications billing system.

Rating can be complex, and there are many schemes (price plans) for rating. The charges
for a call can depend on the location of the caller and receiver, the agreements of the
caller and receiver (think of MCI’s “friends and family” program), and the time of day.
A cellular call can have airtime, roaming, long-distance, and landline charges. In
contrast, ship to satellite communications has a number of different terminal types, each
of which offers a different combination of voice, fax, telex, and e-mail service. The
rating of a call not only depends on the type of call, but also the type of equipment on
either end. Objectiva must handle all these rating schemes.

However, rating makes up only a small part of Objectiva. Most of Objectiva is involved
with representing more universal concepts like Business Party (Organization), Region,
Network, and Account. These are represented in the architecture as “business objects.”
Most of Objectiva is devoted to representing business objects, editing them, maintaining
relationships between them and constraints on their attributes, storing them in a database,
and keeping historical information on them. Because Objectiva supports these standard
functions so well, the rating algorithms are easy to change.

The first step in billing is to load information that rarely changes from outside sources.
Some of this information is about regions and networks, such as the fact that the 217 area
code is in Illinois and Illinois is in the United States. Some of this information describes
legal phone numbers or other “network authorization” numbers. In any case, this
information is provided partly by various international telecommunication organizations,

05/07/98 7 of 72

and partly by online maintenance. Nevertheless, it has to be loaded into an Objectiva-
based billing system.

The second step in billing is loading information about the service provider (the
Enterprise) such as the various price plans offered through customer agreements and the
rating rules for each price plan. This information is constantly changing. However, for
the sake of discussion, we will assume it is done before billing starts.

Once a billing system is set up, it performs six steps over and over. The steps can be
taking place simultaneously, but the results of one step affect the following steps.

1. Edit service order. Setup a new customer, or change the agreement with the
customer.

2. Rate CDR Batch. Calls and other network events that affect billing are grouped
into batches of CALL DETAIL RECORDS. Processing these events consists of making
NETWORK EVENT objects from the externally supplied data, rating these events, and
then charging them to the appropriate account.

3. Agreement period closure. Some transactions (such as monthly fees for equipment
charge, and the calculation of discounts) occur periodically based on the
customer’s agreement. Periodically these transactions must be created and
charged to the customer’s account.

4. Account period closure. Generate taxes and any other charges that depend on the
total invoice, and produce the invoice for a customer. Sometimes Objectiva prints
the invoices directly, sometimes it hands them off to a legacy system that prints
them.

5. Payment. Receive payment.
6. Adjustment. Change old billing information and make all adjustments.

05/07/98 8 of 72

Figure 3: Business Process Domain

The Business Process Domain (Figure 3) shows the decomposition of Objectiva into
business systems and subsystems. It depicts the functionality and requirements of the
system with which business people are comfortable, and it is the result of a significant
amount of business analysis.

This analysis is necessary for the development of a successful business system, but it is
not a technical activity. The Business Process domain is the responsibility of the
business, and standard Business Process Reengineering (BPR) and quality improvement
techniques should be applied to its optimization. Only if the business defines the critical
process and product indicators within the Business Process domain, can the Business
Model provide the required feedback to keep the overall system operating at peak
efficiency and effectiveness.

In short, billing consists of processing transactions and generating invoices. Billing is
difficult because the kinds of transactions and the rules for processing them are
constantly changing, and are different for every company. The key to Objectiva is hard-
coding the part of billing that does not change and making the part that does change very
flexible so that it can be tuned to the Business Process that a particular Enterprise needs
to be most competitive.

Product
Definition

“perception”

Product
Sales

“obtaining the
customer”

Revenue
Management

“charging the
customer”

Equipment &
Services

“reality”

Accounting

“the bottom
line”

Product
Delivery

“servicing the
customer”

Enterprise
Administration

“infrastructure”

Objectiva
Billing
System

Product
Definition

Price Plan
Definition

Posting Rule
Definition

Invoice
Definition

Tax Plan
Definition

Lead &
Prospect
Management

Sales Support

Commissions

Enterprise
Profile
Management

Role Definition

Employee
Management

Application
Security

Workflow
Administration

Region
Management

Third Party
Profile
Management

Equipment
Definition

Service
Definition

Equipment
Inventory

Authorization
Inventory

Network
Provisioning

Event
Definition

Customer
Profile &
Contact
Management

Order
Management

Service
Provisioning

Trouble
Reporting

Event
Collection

Charge
Generation

Charge
Posting

Cycle
Closure

Invoice
Production

Audit &
Controls

Credit
Management

Accounts
Receivable

Adjustment
Processing

Payment
Handling

Collections

Accounts
Payable &
Settlements

Revision Date: 2/27/98 Revised by: Francis Anderson Business System

Objectiva Architecture Company Confidential

Decomposition:

05/07/98 9 of 72

A Framework for Business Objects

Billing requires lots of information. For example, taxes depend on the location of the
customer. There might be city taxes, state taxes, and federal taxes. The cost of a call
also depends on where the call originated. Therefore, the system must know the location
of both the call and the customer. The charge to a customer depends not only on the
transaction, but also on the agreement that the customer makes with the Phone Company.
Thus, modeling the information needed to rate a phone call takes a lot of objects.

The high-level structure of these objects is always the same, but the details are always
different. For example, rating a network event (e.g.. phone call) involves the following:

1) finding the network authorization for the event (e.g.. the phone number of caller),
2) finding the price plan for the network authorization,
3) creating a posting for the event,
4) iterating over each part of the price plan and finding out how much it will add to

the charge for the event,
5) adding these charges to the posting,
6) applying the posting to the billing account.

But different kinds of telecommunication services have different kinds of network
events, network authorizations, price plans, and charges.

Even the simplest objects can vary. For example, you might think that a phone number
is a phone number, and wonder why Objectiva uses a fancy name like “network
authorization” for something that seems pretty simple. But a phone number is just a
special case of a network authorization. In general, a network authorization states the
right by which a call was able to use the network. It is usually either the originating or
terminating party in a call. From the network authorization, we can determine the billing
authorization which keeps track of the pricing plan used for rating the call, knows who
gets the invoice, the features they are willing to pay for, and dates that it is effective.
Some of this information is part of the core billing functions, but other information is
not. The core is unlikely to vary while the rest varies a lot. For example, a regular
phone line might support call forwarding and might allow certain kinds of incoming or
outgoing calls to be barred. Satellite service does not support these features, but supports
noise muting. None of these are used directly by rating algorithms, though they might be
used to choose a billing plan or to “provision” the switch.

05/07/98 10 of 72

The Objectiva Business Model Domain

As shown in Figure 1, the Business Model depends on the DME. This is due to the fact
that the DME is used to store those business rules that can be expressed as knowledge
level instances. This is the crux of the notion of a black box framework – to increase
functionality by adding instances of objects, rather than lines of code.

Figure 4: Business Objects

The Business Objects (Figure 4) are the major components of the Business Model
required for Telecom Billing. Each of the Business Objects is implemented as an ENVY
Application (e.g. COUNTRY APP); the dependencies between the Business Object packages
are implemented as ENVY prerequisites.

Revision Date: 2/16/98 Revised by: Francis Anderson Business Model Major Com ponents

Objectiva Architecture

Object Model:

Network

Inventory

Currency

Enterprise

Country

Ledger

Product

Service

05/07/98 11 of 72

Figure 5: Objectiva Architecture Entity Editor

The Objectiva Architecture Entity Editor (Figure 5) shows the decomposition of the
architecture into domains, and the Business Model Domain into its Major Components
(Business Objects). We will be using this outline view in the Entity Editor to look at a
number of different types of entity within Objectiva.

Figure 6: Business Model ENVY Configuration Map

The Business Model ENVY Configuration Map (Figure 6) shows each business object
implemented as an ENVY Application.

05/07/98 12 of 72

Country

The first business object to describe is Country, and we will be using it as the example to
describe how Objectiva’s Domain Model Engine (DME) implements the Active Object
Model pattern by building on the Entity major component of the DME.

Figure 7: Country Minor Components

The Country Minor Components (Figure 7) are Region and Address, but if Country has
these Minor Components, why were they not depicted in the Objectiva Architecture
Entity Editor (Figure 5)? A Minor Component is implemented as an ENVY
subapplication (e.g. REGION SUB APP) within the Major Component application (COUNTRY

APP). This association relationship can be derived by naming within the Smalltalk
image, and is displayable via the Relationships button on the Entity Editor.

Revision Date: 3/6/98 Revised by: Francis Anderson Country Minor Components

Objectiva Architecture

Object Model:

Region

Address

05/07/98 13 of 72

Figure 8: Major Component Relationships

Having selected the Configuration Components relationship (Figure 8), the Entity Editor
is redisplayed, but instead of viewing the architectural composition, the configuration
composition (physical ENVY structure) is displayed (Figure 9).

Figure 9: Country Major Component Configuration Components

05/07/98 14 of 72

Figure 10: Country ENVY Application

The Country ENVY Application (Figure 10) shows the dependencies from the UML
Package Diagram implemented as ENVY prerequisites. Since Event is a component of
the DME, shows that the Business Model depends on the DME. This information is also
available from the Entity Editor by selecting the Prerequisite Components (Figure 11) or
Dependent Components (Figure 12) from the Major Components Relationships (Figure
8).

Figure 11: Country Prerequisite Components

05/07/98 15 of 72

Figure 12: Country Dependent Components

In the naming of the Objectiva business objects, we have emphasized aggregation, as
opposed to generalization: thus, Country, even though it is a kind of region, is chosen as
the name of the business object, since it is the “big” region. When using the divide and
conquer approach, one must decide where to place each component; Objectiva groups
components together as much as possible because they are part of a larger component,
rather than because they are the same kind of thing as a more general component. We
feel that this encourages more stable and cohesive architecture, which is not dependent
on the much more arbitrary design decision of inheritance.

05/07/98 16 of 72

Operational Level

To support a telecommunications billing application, Objectiva must know about a
number of different kinds of region. The kinds of region that are supported depend on
the Country in which Objectiva is deployed. The countries are the roots of the forest of
regions. In the Operational Level, we concentrate on how the various regions (United
States, Texas, Area Code ‘972’, etc.) are represented; the Knowledge level describes how
the rules governing the types of Region are expressed.

Region

The Country Minor Components (Figure 7) shows us that the primary component of the
Country business object is Region. Having first applied aggregation to the naming of the
business objects (Country, Currency, Enterprise, etc.), we now apply generalization to
the naming of the minor components within them (Region, Address, Posting Rule,
Business Party, etc.).

The first order of business within most object-oriented applications is to gain a handle on
a node within a graph of objects, which can then be navigated by following pointers.
This involves the execution of a query, for which Objective provides a “Finder”
interface.

Figure 13: Region Finder

The Region Finder (Figure 13) enables us to compose a query for a Region, based on the
type of region that we are looking for, or any of the attributes of a Region.

05/07/98 17 of 72

Figure 14: Results of Wild Card Search on Region Name

The Results of Wild Card Search on Region Name (Figure 14) shows the regions
populated in Objectiva for testing purposes sorted by type and name. The origin displays
the “parent” of the region. As countries, Canada and the United States have no parent.

05/07/98 18 of 72

Figure 15: Region Types

In most cases when doing a search, the type of region will be known, and we will select a
region to edit

Figure 16: The United States Entity Editor

05/07/98 19 of 72

The United States Entity Editor (Figure 16) shows those attributes required by a Country,
but other Region types may only require abbreviation and / or tax price plan. Note that
the attributes have different data types, which we will discuss in detail later:

• abbreviation is a data entry string;
• charge band is selected from a list of available strings;
• address formats is a collection selected from a list of available objects;
• currency and tax price plan are selected from a list of available objects.

Figure 17: Texas

Figure 18: Southwestern Bell LATA Region

The Texas and Southwestern Bell LATA Region Entity Editors (Figures 17 and 18) show
the sharing of a Central Office Code (972618) by a Numbering Plan Area (972), which is

05/07/98 20 of 72

composed of Central Office Codes, and a Rate Center (Plano), which includes Central
Office Codes. Composition and inclusion are two different forms of aggregation, which
we will discuss later.

Figure 19: Region Object Model

Figure 20: Region ENVY Subapplication

The Region Object Model (Figure 19) is implemented by the Region subapplication in
ENVY (Figure 20). The reuse of the Entity framework allows REGION to consist of only
18 instance lines of code (LOC), and COUNTRY of only 7 class LOC. Of course, this is
only in the Business Model domain, the Entity major component of the DME consists of
1,436 instance LOC, and 141 class LOC, and the ENTITY EDITOR in the User Interface
domain consists of 84 instance LOC, and 74 class LOC. The test Country domain data in
the Development Services domain consists of 102 class LOC to populate the knowledge

Revision Date: 2/27/98 Revised by: Francis Anderson Region Object Model

Objectiva Architecture

Object Model:

Entity
(Entity)

Region

createSubRegionNamed:ofType:

Country

05/07/98 21 of 72

level, and 145 class LOC to populate the test data in the operational level. Each of these
is built upon previously built frameworks, of course, but the point is that only 25
additional LOC are required to implement the base Region functionality.

Other applications (e.g. Dispatching) will place additional requirements on Region such
as handling polygons of coordinates. These applications will add classes, structure and
behavior to the Region object model, but as has been demonstrated, a significant amount
of structural support is obtained by being a subclass of ENTITY. We will now look at how
this is achieved.

05/07/98 22 of 72

Entity

Most of the important operational level classes in Objectiva are subclasses of ENTITY,
which is part of the DME. The Region examples above start to demonstrate some of the
power of the Entity framework. As we progress through the descriptions of the business
objects, we will be further detailing the capabilities of the DME.

From the United States Entity Editor (Figure 16), we see that an entity has a name
(‘United States’). From the Tree View section of the editor, we see that an entity has a
type (Country), and that it is related to other entities of various types (LATA Region,
NPA Location and State). Finally, from the Data Values section of the editor, we see
that an entity is described by assigning values (‘USA’) to attributes (Abbreviation).

Somewhat surprisingly, the only piece of information the entity holds on to for itself, is
its name. It delegates the responsibility for holding on to the rest of the information to its
context, and the rules governing it to its entity type.

Figure 21: Instance Diagram of the ‘United States’

The Instance Diagram of the United States (Figure 21) shows most of the structure is in
ENTITY CONTEXT and ROOT ENTITY TYPE, with little falling into ENTITY itself. Also, note
the nested application of the TypeObject pattern between ROOT ENTITY TYPE and
CONCEPT. ‘United States’ (ENTITY) is an instance of type Country (ENTITY TYPE); Country
(ENTITY TYPE) is a subtype of Region (CONCEPT). We will cover this later when
describing the Knowledge Level.

The attributeDictionary variable is a temporary measure to enable an image-based query
mechanism, particularly for architecture metrics, and it raises the design question of
when to use an instance variable in ENTITY or a data value in ENTITY CONTEXT. As a

05/07/98 23 of 72

general rule, association relationships and queryable continuous data values (e.g. name)
should be stored in instance variables.

Figure 22: Entity Object Model

From the Entity Object Model (Figure 22), we see that ENTITY and ENTITY TYPE play the
expected roles in the Type Object pattern. In this case, the classification relationship has
been reified as ENTITY CONTEXT, which is a subclass of DATA VALUES HOLDER. An
entity’s context holds on to its type, its data values, and its parent / child (aggregation)
relationships. ENTITY CONTEXT also tracks the changes to these values over time, through
three different historical mechanisms: a change log, an event collection, and a collection
of historical editions of itself. We will be describing these historical capabilities later,
but they are mentioned now because it is the context’s responsibility for tracking the
history of its subject entity that determines its implementation via delegation rather than
inheritance.

EntityContext

Revision Date: 3/28/98 Revised by: Francis Anderson Entity Object Model

Objectiva Architecture Company Confidential

Object Model:

Value
(Type)

{node}
{type}
{valuesHolder}

Entity
name

1 context

DataValuesHolder
(DataValue)

1 subject EntityType
(EntityType)

1

05/07/98 24 of 72

Figure 23: Entity ENVY Subapplication

The Entity Object Model (Figure 22) shows that the only variable added by ENTITY

CONTEXT is entityType; actually, it also adds changeLog, events, and history, but we will
cover these later. So, let us look at how ENTITY CONTEXT stores its dataValues, which it
inherits from DATA VALUES HOLDER in the Data Value minor component.

05/07/98 25 of 72

Data Value

Instead of representing the properties of an ENTITY as instance variables, an ENTITY

CONTEXT holds them in a collection named dataValues. This is a very flexible solution,
in that a property may be added to an ENTITY with no change required to either code or
the physical schema.

Figure 24: Inspector View of United States Data Values

Figure 25: Instance Diagram of Data Values

05/07/98 26 of 72

Figure 26: Data Value Object Model

The Data Value Object Model (Figure 26) shows how DATA VALUES HOLDER has an
aggregation of many DATA VALUE, which places a value OBJECT in the context of a DATA

TYPE. All these classes are abstract. This, of course, is a second example of the Type
(DATA TYPE) Object (DATA VALUE) pattern, and Fowler’s Operational and Knowledge
levels. For now, we will concentrate on the operational level DATA VALUES HOLDER and
DATA VALUE. We will discuss the relationship to DATA TYPE later.

Figure 27: Data Value ENVY Subapplication

In the case of a CONTINUOUS DATA VALUE (United States Abbreviation ‘USA’), we are
dealing with a String value (‘USA’) in the context of an ATTRIBUTE (Abbreviation) of an
ENTITY TYPE (Country). As a general rule, we do not wish to store continuous values as

get:
set:to:
accumulate:

DataValuesHolder

Revision Date: 3/5/98 Revised by: Francis Anderson Data Value Object Model

Objectiva Architecture

Object Model:

Value
(Type)

DataValue

dataType

DataType
(DataType)

Node
(Model)

*

Object
1 value

1 context

DataValuesHolder has two additional instance
variables for schema storage transformation

purposes. Some dataValues are "flattened" into
stringValues and valueTypes to avoid the storage

overhead of an additional complex object.

05/07/98 27 of 72

persistent objects, since they cannot be shared, and, as simple values, only have meaning
within the context of one DATA VALUES HOLDER. Objectiva provides the schema Major
Component in the Common Services domain, which performs storage transformation on
objects prior to making them persistent. Prior to invoking storage transformation, objects
are told to “flatten” themselves.

Figure 28: Instance Diagram of Flattened Continuous Data Value

The Instance Diagram of the Flattened Continuous Data Value (Figure 28) shows how an
entity context flattens its continuous data values by storing the value in the stringValues
collection, and replacing the continuous data value with the attribute in the dataValues
collection. The dataValues OrderedCollection is replaced by an Array and the
stringValues StringCollection is replaced by a carriage return delimited String.

In this section, we have described how ENTITY uses ENTITY CONTEXT to store the values
of simple DATA TYPEs (ATTRIBUTEs), a capability ENTITY CONTEXT inherits from DATA

VALUES HOLDER. Next we will describe how relationships to other ENTITYs are also
stored in ENTITY CONTEXT, a capability it inherits from NODE.

05/07/98 28 of 72

Node

When we look at the United States Entity Editor (Figure 16), we see that the screen is
divided into two halves: “Tree View” and “Data Values”. The data values describe the
entity; the tree views define its relationship to other entities. The United States consists
of states (e.g. Texas), which consist of counties (e.g. Collin, Dallas, and Tarrant) and
Numbering Plan Areas (e.g. ‘972’), which consist of Central Office Codes (e.g.
‘972628’). Texas (Figure 29) becomes a node in a tree, or graph, of regions.

Figure 29: Instance Diagram of Region Contexts

DATA VALUES HOLDER inherits this capability from NODE, which provides a generalized
implementation for the values of relationships, similar to the manner in which data value
provides a generalized implementation of the values of attributes. Node is an extension
of the Composite pattern [Gamma 95], except that a black-box framework approach is
taken, implemented by delegation, rather than a white-box approach, implemented by
inheritance.

05/07/98 29 of 72

A graph of nodes may be a tree or a directed acyclic graph (DAG), depending on the
number of parents that a child is allowed. It is very hard to think of an entity that is not
part of at least one tree. In Objectiva, an entity delegates the responsibility for keeping
track of its position in multiple trees to its context.

A node keeps track of its links to other nodes in a graph with the instance variables
children, parent, and pseudoParents:

• children may be empty, in which case the entity is a leaf; or children may have
members, in which case the entity is a composite. The United States Entity Editor
(Figures 13 and 14) shows some of the children of the United States (Alabama,
Arkansas, etc.).

• parent may be nil, in which case the entity is the root of a tree and provides overall
context; for example, countries are the root regions, so the parent of the United States
is nil.

• pseudoParents is used to represent a DAG structure, in addition to a tree structure.
This handles the situation depicted in Figures 11 and 12, where the central office
code (COC) ‘972618’ is part of both the numbering plan area (NPA) ‘972’ and the
rate center ‘Plano’.

Figure 30: Instance Diagram of a Composition Relationship

The Instance Diagram of a Composition Relationship (Figure 30) shows the
implementation of the relationship between NPA ‘972’ and COC ‘972618’. This

05/07/98 30 of 72

relationship is a composition, and a strong form of composition at that, since ‘972’ is
propagated from the NPA into the name of the COC. Only an NPA can create a COC; if
an NPA is deleted, all its COC children must be deleted too; a COC can only be part of
one NPA.

Thus, since a child may only be part of one composition, the back pointer from the COC
context to the NPA context is stored in the parent variable.

Figure 31: Instance Diagram of an Inclusion Relationship

The Instance Diagram of an Inclusion Relationship (Figure 31) shows the
implementation of the relationship between Rate Center ‘Plano’ and COC ‘972618’,
which is a weaker form of aggregation that Objectiva calls inclusion. Before becoming
part of a rate center, a COC must already have been created by an NPA, and the back
pointer from the COC to the rate center is stored as a member in the pseudoParents
variable, thus allowing an entity to be a member of multiple inclusions.

NODE is defined in the root component of the Objectiva Architecture – the Model minor
component of the Domain major component of the Domain Model Engine domain. We
will not be discussing PROPOSITION and ERROR yet.

05/07/98 31 of 72

Figure 32: Model Object Model

Figure 33: Model ENVY Subapplication

Revision Date: 4/15/98 Revised by: Francis Anderson Model Object Model

Objectiva Architecture Company Confidential

Object Model:

bitMask

Model

Error class

errorSignal
logging

raiseSignal:

Node

ancestors
descendants
isRoot
isLeaf

Object
0..1 subject

* children

Proposition

logicalOperator
relationalOperator

1 value

0..1 parent
* pseudoParents

OnsModel also has a class
instance variable - schema.

This is described in the
Schema major component of

the Common Services domain.

05/07/98 32 of 72

Entity Context

Having now reached the root of the operational level Entity hierarchy, let us summarize
before describing the knowledge level that provides the rules mechanism that governs the
operational level.

An ENTITY has a context. The ENTITY CONTEXT has the following responsibilities:

• As a NODE, it is responsible for storing the relationship values of its subject entity
(COC ‘972618’). These are expressed in terms of its parent (NPA ‘972’), its
pseudoParents (rate center ‘Plano’) and its children (empty) – see Figures 30 and 31.

• As a DATA VALUES HOLDER, an ENTITY CONTEXT is responsible for storing the
attribute values of its subject entity (e.g. country ‘United States’). A data value is a
complex object that stores a value in the context of a data type. A continuous data
value is only owned by one entity context (“has by value”), and we do not want to
make a complex object persistent when a simple value is being represented. On
being made persistent, a continuous data value is flattened into its string
representation, and stored in the stringValues variable. If a measurement has been
taken, the unit of the quantity is stored in the valueTypes variable.

• The rules governing the relationship and attribute values of the ENTITY CONTEXT are
obtained from its entityType, which we will discuss in the Knowledge Level section.

• Finally, ENTITY CONTEXT keeps track of its change of state over time via its
changeLog, events and history variables. We will discuss these capabilities of ENTITY

CONTEXT when we demonstrate how the Event major component of the DME
supports the Currency and Ledger business objects.

05/07/98 33 of 72

Knowledge Level

In the Operational Level above, we concentrated on instances of Region (United States,
Texas, Area Code ‘972, etc.). In the Knowledge Level, we define the rules governing the
types of Region (Country, State, Area Code, etc.). Particularly, we describe the
relationships governing the types of Region (e.g. a country may have states), and the
attributes that describe the types of Region (e.g. we want to capture a country’s
currency).

Entity Type

In the United States, the Telecom industry depends on the North American Numbering
Plan (NANP), previously administered by BellCORE, now administered by Lockheed
Martin. Telecom providers receive updates to the NANP via the Local Exchange
Routing Guide (LERG), which is a set of flat files that describe the regions that make up
the NANP, and the carriers that are responsible for local service in those regions.

Figure 34: Partial Structure of the LERG.

The Partial Structure of the LERG (Figure 34) shows some of the types of Region
contained in the LERG, and some of the relationships between them. A Numbering Plan
Area (NPA) falls within either a State, Province, or NPA Location. An NPA is
composed of Central Office Codes, which are included in Rate Centers, which are part of

Revision Date: 2/25/98 Revised by: Francis Anderson North American Numbering Plan (Part)

Objectiva Architecture

Type Model:

LERG

State

NumberingPlanArea

CentralOfficeCode

LATA Region

LATA

Rate Center

Province NPA Location

05/07/98 34 of 72

Local Access Transport Areas (LATA). Note that this diagram will soon be invalidated
with the full implementation of Number Portability.

Object-oriented systems often support variability with inheritance. For example, one
way to describe how these types of regions vary would be to them subclasses of REGION.
However, this would lead to new subclasses for every application, so Objectiva uses a
different technique. The core of this technique is provided by the Entity and Data
components of the DME. Entity and Data both use the Type Object [JohnsonWoolf97]
pattern to define new types of business objects. Entity Types are described in terms of
Attributes using the Property [Foote97] pattern. Attributes are also an example of the
Observation [Fowler97] pattern. This dense combination of patterns at the core of
Objectiva is part of what makes it so powerful, but is also part of what makes it hard to
learn.

It should also be noted that these requirements are purely for a billing application. A
trouble call dispatching application would require mapping capabilities, which would be
additional responsibilities of Region, but are not described in this document.

Figure 35: Region Entity Types

The Region Entity Types (Figure 35) shows examples of the types of Region that may be
implemented by Objectiva. This shows the Nested Type Object pattern, since “Region”
is an instance of CONCEPT. So, the United States (an ENTITY) is a Country (an ENTITY

TYPE), which is a Region (a CONCEPT).

05/07/98 35 of 72

Figure 36: Instance Diagram of the Region Concept

The Instance Diagram of the Region Concept (Figure 36) demonstrates the Power Type
pattern [Odell95], in which an instance of CONCEPT (Region) corresponds to a subclass of
ENTITY (REGION). A ROOT ENTITY TYPE (Country) within a CONCEPT may override the
default entityClass.

We create new entities by sending the message #createEntityNamed: to a Root Entity
Type, rather than sending #new directly to a class. ENTITY TYPE is thus a factory for
ENTITY.

ENTITY TYPE>>createEntityNamed: aString

^self entityClass newNamed: aString
withType: self

05/07/98 36 of 72

Figure 37: Entity Type Object Model

The Entity Type Object Model (Figure 37) brings us into the Type System of Objectiva,
and is an implementation of the Active Object Model [Johnson97] pattern. This pattern
is appropriate in those systems that have to support a large number of rapidly changing
business rules, which, according to Tom Peters in Thriving on Chaos, is happening more
and more frequently. We have chosen the traditional Entity Attribute Relationship model
as the vehicle for capturing the rules, which provide the implementation of the
Knowledge Level data [Fowler97].

Figure 38: Entity Type ENVY Subapplication

Since this model is somewhat abstract, let us recap from the previously stated examples:

Revision Date: 4/19/98 Revised by: Francis Anderson Entity Type Object Model

Objectiva Architecture Company Confidential

Object Model:

Type
(Type)

EntityType

createEntity

RootEntityType

name
description
keyStrategy

Entity class
(Entity)

1

Concept

createRootEntityTypeNamed:

* subEntityTypes1

TemplateEntityType

1

1

aRootEntityType
points to itself, in
order to enable

queries

05/07/98 37 of 72

• Region is an instance of CONCEPT, with default entityClass REGION .
• Country, State, Numbering Plan Area, etc. are instances of ROOT ENTITY TYPE that are

sub (entity) types of Region.
• When we ask a Region type to create a new Region, by default, we will get an

instance of REGION, except if we ask Country, in which case we will get an instance
of COUNTRY.

We will now look at how we assign ATTRIBUTEs to an ENTITY TYPE.

05/07/98 38 of 72

Attribute

An ENTITY TYPE (Country) has attributes, which describe the data values to be recorded
for an ENTITY (‘United States’) of this type. An attribute defines a mapping between an
entity type (‘Country’) and a data type (String). The traditional solution to the definition
of attributes is to implement them as instance variables. There is absolutely nothing
wrong with this solution, in some circumstances. Everyone understands it. There is no
complex framework to learn. But if the business rules change, and we wish to add or
remove an attribute of Country, we need to change both the code (behavior) and the
schema of the persistence mechanism (structure).

We would also have numerous subclasses of REGION, the need for which we are trying to
eliminate. Is this such an effort? Not as much in Smalltalk as in other languages, but we
would like to keep code and schema changes to an absolute minimum, since those who
can make them are a particularly limited resource, and often sit right on the critical path
of implementing a business rule change. Instead, we wish to be able change the business
rules through the maintenance of object instances. The problem is that these instances
must express rules governing different types of data.

There are a number of patterns that describe problems and solutions in this area,
including Property [Foote97] and Observation [Fowler97]. Objectiva adopts the Entity,
Attribute, Relationship (EAR) model as the basis of its solution, and uses traditional data
modeling terminology, with its standard meanings.

As stated above, we define an attribute as a mapping between an entity type and a data
type; this is in contrast to a relationship, which is defined as a mapping between entity
types, and is discussed later. Instance variables of an object do not usually make this
kind of distinction, the expression “has by value” is sometimes used to attributes, as
opposed to the expression “has by reference”, which describes relationships.

Figure 39: Country Attributes

05/07/98 39 of 72

Figure 40: The Attributes of Country

We started to discuss continuous data (e.g. abbreviation) in the section on Data Value
above. A continuous data value only has meaning in the context of a single entity. In
contrast, a discrete data value (e.g. charge band 1), may be shared by a number of
entities, (e.g. all the countries in Europe), since there is only a limited set of values {‘0’,
‘1’, ‘2’, ‘3’} that it may take. In this case, the values of the discrete data type (charge
band) are strings, i.e. simple data types. Objectiva also allows the values of complex
data types (e.g. currency) to be available to a discrete data type.

05/07/98 40 of 72

Figure 41: Attribute Object Model

In the Attribute Object Model (Figure 41), ATTRIBUTE could be represented as a UML
Association Class. This is an example of a data modeling pattern that is very common,
its most well known implementation being the relationships between Order, Order Line
and Product, which is an example used in many a modeling class.

At the conceptual level, an entity type (order) may be described by many data types
(product), and a data type (product) may describe may entity types (orders). The type of
relationship between these concepts is called a many-to-many association. In looking at
the association, we discover that there are attributes that we want to record about the
association itself. In the case of the order, we want to record the quantity of each product
ordered. In the case of the attribute, we may want to change the name (e.g. originating
and terminating charge band), specify a default value, etc.

Thus the association itself becomes a class, (ATTRIBUTE and ORDER LINE), and the many-
to-many relationship has been resolved into two one-to-many relationships. But these
two relationships are of a very different nature. An ENTITY (ORDER) is composed of
ATTRIBUTES (ORDER LINES). This should be represented in UML is a filled in diamond
but my Visio template does not support this. Whereas, the type of ATTRIBUTE is specified
by DATA TYPE, and the type of ORDER LINE is specified by PRODUCT. Thus, in both cases,
we have replaced an association relationship by the combination of a composition and a
classification relationship. The classification relationship is another name for the

Revision Date: 4/19/98 Revised by: Francis Anderson Attribute Object Model

Objectiva Architecture Company Confidential

Object Model:

DataType
(DataType)

defaultDataValue
derivationStrategy
isRequiredFlag
changeLogFlag

Attribute

EntityType
(EntityType)

1

*

1

05/07/98 41 of 72

TypeObject pattern. So we have another example of nested TypeObject, which, since
ATTRIBUTE is also a DATA TYPE, is actually recursive.

Figure 42: Attribute ENVY Subapplication

Before discussing the different data types supported by Objectiva, we will take a look at
how the Entity and Data major components of the DME fit together.

05/07/98 42 of 72

Entity and Data Major Components

The Package Diagram of a Major Component places the object model of its Minor
Components in context. So far, we have been following class level links between object
models, which are implemented using a “foreign key” type of approach. For example,
the Attribute Object Model (Figure 41) does not define ENTITY TYPE and DATA TYPE, but
references them from the minor components of the same name, as indicated by the bold
face label in parentheses beneath the class name. The Attribute and Entity Type minor
components are both part of the Entity major component. Data Type, however, is part of
the Data major component. Since we must reference Data in order to fully describe
Entity, Entity is dependent upon Data.

Figure 43: Major Components of the Domain Model Engine

The Major Components of the Domain Model Engine (Figure 43) also depicts the path
we followed when tracing the inheritance in the Operational Level from REGION to
ENTITY and ENTITY CONTEXT (in Entity), to DATA VALUES HOLDER (in Data), to NODE (in
Domain).

Revision Date: 11/27/97 Revised by: Francis Anderson Domain Model Engine Major Components

Objectiva Architecture

Object Model:

Data

Entity

Domain

Event

05/07/98 43 of 72

Figure 44: Minor Components of Entity

The Minor Components of Entity (Figure 44) shows the dependency of Attribute upon
Entity Type. This is an existence dependency: without an entity type, an attribute could
not exist. Existence dependency is a property of the composition relationship: a
component (child) is existence dependent upon its composite (parent). If the composite
(anEntityType) is deleted, its components (attributes) are too; if the composite is copied,
its components are too (anAttribute is the mapping between one Entity Type and one
Data Type).

So the Minor Components of Entity (Figure 44) tells us that we cannot really understand
Attribute unless we understand Entity Type. Also, it tells us that we have a number of
different types of Attribute, with the continuous / discrete discrimination playing a very
important role. This discrimination first occurs in the Data major component of the
DME upon which Entity is dependent.

Revision Date: 2/17/98 Revised by: Francis Anderson Entity Minor Components

Objectiva Architecture Company Confidential

Object Model:

EntityType

Relationship

Attribute

Entity

DiscreteAttribute

DiscreteCollectionAttribute Status

ContinuousAttribute

MeasurementAttribute

05/07/98 44 of 72

Figure 45: Minor Components of Data

The Minor Components of Data (Figure 45) shows us that data comes in different
“dimensions”:

• Discrete Data has a limited domain of available values, which may be strings or
complex objects.

• Continuous Data has an unrestricted domain of values, which are representable as
strings or are the quantity of some unit, which may be recorded as a measurement.

Revision Date: 1/3/98 Revised by: Francis Anderson Data Minor Components

ObjectivaArchitecture Company Confidential

Object Model:

DataValue

DiscreteData ContinuousData

Quantity

Measurement

DataType

ComplexData

05/07/98 45 of 72

Continuous Data

Abbreviation ‘USA’ is a continuous data value, since the range of possible values that it
could take is effectively infinite, limited only by the maximum length that we choose to
allow for the value, and the value can be represented as a String. Basically, what this
means is that a continuous attribute is represented as an input field on a user interface,
see the United States Entity Editor (Figure 16).

Figure 46: Instance Diagram of Continuous Data Value

05/07/98 46 of 72

Figure 47: Continuous Attribute Object Model

Figure 48: Continuous Attribute ENVY Subapplication

Revision Date: 4/4/98 Revised by: Francis Anderson Continuous Attribute Object Model

Objectiva Architecture Company Confidential

Object Model:

Attribute
(Attribute)

ContinuousDataValue
(ContinuousData)

1 context

ContinuousDataElement
(ContinuousData)

DataType
1

05/07/98 47 of 72

Figure 49: Continuous Data Elements

Figure 50: Continuous Data Elements

05/07/98 48 of 72

Figure 51: Continuous Data Object Model

Figure 52: Continuous Data ENVY Subapplication

Revision Date: 3/15/98 Revised by: Francis Anderson Continuous Data Object Model

Objectiva Architecture

Object Model:

DataValue
(DataValue)

DataElement
(DataType)

printPolicy

ContinuousDataElementContinuousDataValue
value

0..1 context

String class

Number class

Duration class

Date class

Time class

StringCollection class

<<ValueDomain>>
1

05/07/98 49 of 72

Discrete Data

Charge Band ‘0’ is a DISCRETE DATA VALUE, since we have constrained its available
values to ‘0’, ‘1’, ‘2’, or ‘3’. Basically, what this means is that a discrete attribute is
represented as a combo box on a user interface, see the United States Entity Editor
(Figure 13).

Figure 53: Charge Band Data Values

Figure 54: Charge Band Combo Box

This is an example of a Category Observation [Fowler97]. In this case, a DISCRETE DATA

VALUE instance may be shared by a number of objects, and the meaning of Charge Band
0 is distinct from the meaning of Charge Band 1. Due to its sharing, Discrete Data Value
is an example of the Flyweight pattern.

05/07/98 50 of 72

Figure 55: Instance Diagram of Discrete Data

The Instance Diagram of a Discrete Data (Figure 55) shows us that, like CONTINUOUS

DATA VALUE, DISCRETE DATA VALUE places a String (‘0’) in the context of a DATA TYPE

(Charge Band). In this case, however, the subclass of DATA TYPE is DISCRETE DATA

ELEMENT. A discrete Data Type (Charge Band) stores its available values {0, 1, 2, 3} in
the valueDomain collection.

We may choose to describe a number of different types of Region, (e.g. Country, State)
in terms of a Charge Band, or we may choose to describe a phone call in terms of its
originating and terminating Charge Band. We will describe how this is done later on, but
for now we will say that we are placing a Discrete Data Type (Charge Band) within the
context of an Entity Type (Country). This context is propagated down to the values of
the data type, but the meaning of Charge Band 0 has not changed. We may, however,
have a different domain of values available to State than Country, and within the context
of a phone call, the differentiation between originating and terminating is critical. Thus,
an ENTITY CONTEXT does not directly hold on to a DISCRETE DATA VALUE; instead, it holds
on to a COMPLEX DATA VALUE..

05/07/98 51 of 72

Figure 56: Discrete Attribute Object Model

 Figure 57: Discrete Attribute ENVY Subapplication

Revision Date: 3/15/98 Revised by: Francis Anderson Discrete Attribute Object Model

Objectiva Architecture

Object Model:

DiscreteAttribute

dataValues

ComplexDataValue
(DiscreteData)

0..1 context

* valueDomain

Attribute
(Attribute)

DataType
1

DiscreteAttribute DiscreteDataElement
(DiscreteData)

localStringValue

Alias

DomainStrategy
1

DynamicDomainStrategy
class

StaticDomainStrategy
class

05/07/98 52 of 72

Figure 58: Discrete Data Elements

Figure 59: Discrete Data Values

05/07/98 53 of 72

Figure 60: Instance Diagram of Discrete Data Elements

05/07/98 54 of 72

Figure 61: Discrete Data Object Model

 Figure 62: Discrete Data ENVY Subapplication

Revision Date: 3/21/98 Revised by: Francis Anderson Discrete Data Object Model

Objectiva Architecture

Object Model:

DataValue
(DataValue)

DataElement
(DataType)

DiscreteDataValue

abbreviation
description
value

dataValues

DiscreteDataElement
* valueDomain 1 context

05/07/98 55 of 72

Complex Data

Currency is a Complex Data Element since the values that it may take are complex
objects (instances of CURRENCY), rather than just simple strings. Complex data allows us
to handle the problem introduced by the statement “One man’s entity is another man’s
attribute”. Basically, what this means is that a discrete attribute with a complex data type
is represented as a combo box on a user interface but the entries in the drop down are
complex objects, not just strings, see the United States Entity Editor (Figure 13).

Figure 63: Currency Selection

Figure 64: Currency Dimension

05/07/98 56 of 72

Figure 65: Instance Diagram of a Complex Data Value

The Instance Diagram of a Complex Data Value (Figure 65) demonstrates that the value
of a COMPLEX DATA VALUE may be any kind of complex object, in this case an instance of
CURRENCY. Although there is only a limited set of currencies, they are instances of a
complex class (CURRENCY), rather than a simple class (e.g. String). The same is true for
tax price plan.

05/07/98 57 of 72

Figure 66: Complex Data Elements

Figure 67: Complex Data Values

05/07/98 58 of 72

 Figure 68: Instance Diagram of Complex Data Elements

05/07/98 59 of 72

Figure 69: Complex Data Object Model

Figure 70: Complex Data ENVY Subapplication

Revision Date: 4/4/98 Revised by: Francis Anderson Complex Data Object Model

Objectiva Architecture Company Confidential

Object Model:

DataValue
(DataValue)

ComplexDataValue

DiscreteDataElement
(DiscreteData)

contextSensitiveFlag

isContextSensitive

ComplexDataElement

<<Type>>

values

1 valueDomain

0..1 context

<<Value>>
1

05/07/98 60 of 72

Discrete Collection Attribute

Address formats {‘US Postal Address’ ‘US Post Office Box’} is a discrete collection
data value, since, although we have constrained the available values, multiple values may
be selected. In this case, the available values are also complex objects. Selection via a
user interface is performed via an “assign and remove” metaphor.

Figure 71: Address Format Selection

05/07/98 61 of 72

Figure 72: Instance Diagram of a Discrete Collection Data Value

05/07/98 62 of 72

Figure 73: Discrete Collection Attribute Object Model

Figure 74: Discrete Collection Attribute ENVY Subapplication

Revision Date: 3/15/98 Revised by: Francis Anderson Discrete Collection Attribute Object Model

Objectiva Architecture

Object Model:

DiscreteCollectionAttribute

<<DiscreteValue>>

* valueDomain

DiscreteAttribute
(DiscreteAttribute)

DataType
1

DiscreteCollectionAttribute DiscreteDataElement
(DiscreteData)

ComplexDataValue
(DiscreteData)

DiscreteCollectionDataValue
1 context

* value

DiscreteAttribute
(DiscreteAttribute)

DiscreteValue is either a discrete
data value or an instance from a

ComplexDataElement's
valueDomain. i.e. not a

ComplexDataValue

Warning: It is not
possible to transform a
DiscreteCollectionValue

properly, so it is the
equivalent of a

persistent collection

05/07/98 63 of 72

Data Type

The problem with nesting the TypeObject pattern is that it is very hard to know when to
stop. We have not yet discussed how Objectiva handles quantities, we will do this when
describing the Currency business object. But, suffice it to say, Quantity requires yet
another application of TypeObject, because we measure quantities (e.g. 5 feet) in terms
of a unit (feet), which are convertible to other units (e.g. inches). Convertible units are in
the same dimension (e.g. distance).

Figure 75: Unit of Quantity Dimensions

Now, particularly with object databases, reachability is an issue. This means that all
objects must be reachable from a few well-known objects that act as the roots of the
graph of objects. It is desirable to reduce the number of well-known, or bound, objects.

By their very definition, data elements are defined in a context-free manner, but how
many data elements will there be in an Enterprise, and how volatile will they be.
Similarly, concepts and countries are context-free.

Dimensions, on the other hand should be relatively stable, and make a nice foundation
for the Objectiva Type System. So we apply the power type concept one last time, and
introduce an additional set of dimensions that correspond to the subclasses of DATA

ELEMENT. We call these “class dimensions”, since we put the knowledge that a class is
also a dimension in the instance creation (new) method of the class, which, in addition to
creating a new instance, adds it to the units for the corresponding dimension.

05/07/98 64 of 72

CONTINUOUS DATA ELEMENT class>>newNamed: aString ofType: aClass

^self addInstance:
(self new initializeNamed: aString

ofType: aClass)

DATA ELEMENT class>>addInstance: anObject

^OnsDimension addUnit: anObject
toDimension: self name stripPrefix

Figure 76: Objectiva Dimensions

05/07/98 65 of 72

 Figure 77: Data Type Object Model

Figure 78: Data Type ENVY Subapplication

Revision Date: 3/15/98 Revised by: Francis Anderson Data Type Object Model

Objectiva Architecture Company Confidential

Object Model:

Type
(Type)

DataType

name
valueDomain
maxSize

createValue:
dataType
getDefaultValueFor:
getValue:

description

DataElement

Dimension

*

<<Unit>>

<<ClassUnit >> MeasurementUnit
(Quantity)

For schema binding purposes, a
class (e.g. OnsDiscreteDataElement)
may be represented as a dimension

(discreteDataElement). New
instances of the class are added as

units of the dimension

0..1 defaultUnit

05/07/98 66 of 72

Framework Development

The Attribute Object Model (Figure 39) tells us that we may have an improvement
opportunity. We know from the Entity Package Diagram (Figure 41) that we are going
to have a number of different subclasses of ATTRIBUTE. The Attribute Object Model tells
us that each subclass of ATTRIBUTE will be reflected somehow in the DATA ELEMENT and
DATA VALUE hierarchies. This is the kind of combinatorial subclass proliferation that
patterns minimize. In this case, a Strategy for value domain would appear to be in order
so Data Value, Attribute and Data Element would share a Continuous Value Domain,
rather than each having a continuous sub class. As yet, this work has not been
performed. The implementation of Strategy in this context would be an example of
refactoring. Let us see how this process proceeds, and whether it is appropriate in this
case.

The first question is “Do the hierarchies qualify as parallel?”

Figure 79: Hierarchy Comparison: DATA VALUE; ATTRIBUTE: DATA ELEMENT

05/07/98 67 of 72

Relationship

Figure 80: Region Concept Relationships

Figure 81: Range of Children Relationship

Figure 82: Instance Diagram of Concept Relationship

05/07/98 68 of 72

Figure 83: Country Relationships

The Country Relationships (Figure 81) states the rules that a Country can have children
of LATA Region, NPA Location, Province or State, and may also have a Tax Price Plan.

Figure 84: Instance Diagram of Root Entity Type Relationship

05/07/98 69 of 72

Figure 85: Relationship Object Model

 Figure 86: Relationship ENVY Subapplication

Revision Date: 4/19/98 Revised by: Francis Anderson Relationship Object Model

Objectiva Architecture Company Confidential

Object Model:

RootEntityType
(EntityType)

Relationship

name
relationshipType
min
max

Type
(Type)

contextType
iterator
min
max

RelatedEntityType

Concept
(EntityType)

1

*

* range

1

EntityType
(EntityType)

The range concepts
provide the available

rootEntityTypes that may
appear in the context of the

relationship

* subEntityTypes

TemplateEntityType
(EntityType)

1

*

05/07/98 70 of 72

Use Cases

Figure 87: Maintain Regions Action Sequence

MAINTAIN REGIONS class>>timeLineDefinition
"
(self runCondition: #Default) result
self regressionTest
"
^self actions: #(createCountry

createSubRegion)
result: #country
businessObject: #Country
roles: #(regionAdministrator)

Revision Date: 4/25/98 Revised by: Francis Anderson Maintain Regions

Objectiva Architecture Company Confidential

Action Sequence:

Actor Country

create country

Entity

create sub region

create child

Domain

add child

05/07/98 71 of 72

MAINTAIN REGIONS class>>createCountry
"
((self getAction: #createCountry) runCondition: #Default) result
(self getAction: #createCountry) regressionTest
"
^(self sends: #getOrCreateEntityNamed:

to: #rootEntityType
with: #(countryName)
result: #country
assert:

[:s | | country |
country := s result.
country entityType == s rootEntityType
and: [country name = s countryName
and: [((OnsDimension getUnitsInDimension: #country)

includes: country)
and: [(country addressFormats isKindOf: OrderedCollection)
and: [(country currency isKindOf: OnsCurrency)
and: [(country taxPricePlan isKindOf: OnsPricePlan)
and: [country taxPricePlan typeSelector == #taxPricePlan]]]]]]])
rootEntityType: #selectedRegion

inConcept: 'Region';
variable: #selectedRegion

value: 'Country';
variable: #countryName

value: 'Test Country';
variable: #abbreviation

value: 'TST';
variable: #chargeBand

value: '3';
variable: #addressFormats

value: #('US Street Address');
yourself

05/07/98 72 of 72

MAINTAIN REGIONS class>> createSubRegion
"
((self getAction: #createSubRegion) runCondition: #Default) result
(self getAction: #createSubRegion) regressionTest
"
^(self sends: #getOrCreateSubRegionNamed:ofType:

to: #region
with: #(regionName

regionType)
result: #subRegion
assert:

[:s | | region subRegion |
subRegion := s result.
region := s region.
subRegion entityType == s regionType

and: [subRegion parent == region
and: [(region children includes: subRegion)
and: [subRegion name = s regionName]]]])

precondition: #region
actionSequence: self
action: #createCountry;

variable: #regionName
value: 'Test Child Region';

variable: #childrenTypes
from: #region;

selection: #regionType
from: #childrenTypes
on: #selectedRegionType;

variable: #selectedRegionType
value: #first;

variable: #abbreviation
value: 'TS';

yourself

